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VARIATIONAL ANALYSIS FOR DIRICHLET
IMPULSIVE FRACTIONAL DIFFERENTIAL
INCLUSIONS INVOLVING THE p-LAPLACIAN

Samad Mohseni Kolagar, Ghasem A. Afrouzi, John R. Graef*

By using variational methods and critical point theory, the authors establish
the existence of infinitely many weak solutions for impulsive differential in-
clusions involving two parameters and the p-Laplacian and having Dirichlet
boundary conditions.

1. INTRODUCTION

Because of its wide applicability in the modeling of many phenomena in
various fields of physics, chemistry, biology, engineering and economics, the theory
of fractional differential equations has recently been attracting increasing interest;
see for instance the monographs of Hilfer [19], Kilbas et al. [24], Miller and Ross
[29], Podlubny [31], Samko et al. [33], the papers [1, 2, 4, 5, 6, 9, 25, 27, 35, 37]
and references therein. Particular applications of fractional differential equations to
problems in fluid flow, electrical networks, control of dynamical systems, elasticity,
and signal processing, for example, have appeared in the literature.

Impulsive boundary value problems for differential equations and inclusions
have been intensively studied in recent years. Such problems appear in mathemat-
ical models with sudden changes in their states such as in population dynamics,
pharmacology, optimal control, etc. [26]. Impulsive problems for fractional equa-
tions are often treated by topological methods such as in [3, 7, 8, 23]. The existence
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of solutions of impulsive problems is studied using variational methods and critical
point theorems in [10, 36, 39]. The recent monograph [17] gives background and
applications of differential inclusions.

In the present paper, motivated by the results in [14, 18, 34, 38] and em-
ploying an abstract critical point result (see Theorem 1 below), we obtain sufficient
conditions to ensure the existence of infinitely many weak solutions to the problem
(1); see Theorem 2 below. We refer to [12], in which related variational methods
are used for non-homogeneous problems.

The aim of this article is to show the existence of infinitely many weak solu-
tions to the two parameter impulsive fractional differential inclusion

2D, (0D3u(2)) + 0y (u(x)) € AF(u(x)) + G (x, u()), ae. v € [0,T],

ORI
A(D7 (§Dgu))(z)) = Lj(u(zy)), j=1,2,...,m,
u(0) = u(T) =0,

where 1/p < a <1, A >0, 0 >0,T >0, p > 1, ¢p(x) = |z|P72x, (DY and
+ DT are the left and right Riemann-Liouville fractional derivatives respectively,
and 0 =29 <z <22 <...< Ty < Tyt =T Here,
A( D3 (§Dgw))(x)) = . D (5DZ) () — DT (§D5) (2 ),
where
DFHEDY) (@) = lim ,DETH(EDY)(x),

DFT (D) (a7) = lim ,DFN(GD8) (),

and §DY is the left Caputo fractional derivative of order o. The multifunction F
defined on R is assumed to satisfy

(F1) F:R — 2% is upper semicontinuous with compact convex values;
(F2) min F, max F' : R — R are Borel measurable;

(F3) [¢] <a(l+|s|""!) forall se R, £ € F(s), r>1 (a>0).

Also, G is a multifunction defined on [0, 7] x R, satisfying

(G1) G(z,-) : R — 2% is upper semicontinuous with compact convex values for a.e.
z €0, 7]\ Q, where Q = {z; :i=1,2,...,m};

(G2) minG, max G : ([0,7]\ @) x R — R are Borel measurable;
(G3) €] < a(l+s|"71) for a.e. 2 €[0,T], s € R, £ € G(z,s), r > 1 (a > 0).
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2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Definition 1. ([24, 31]) Let u be a function defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives of order a > 0 of u are defined by

Dpu(t) = oD () = s 0 [ g
S (O 77 M e
and
dm B (_1)n dr b .
D¢ = (=1\"—, Do " - N -7 _ \n—a
(D ult) = (1" i D () = g [ (e

for every t € [a,b], provided the right-hand sides are pointwise defined on [a, b],
wheren —1 < a <nandn € N.
Here, I'(«) is the standard gamma function given by

+oo
INa) = / 227t 2.
0

Set AC"™([a,b],R) to be the space of functions u : [a,b] — R such that u €
C" ([a,b],R) and u("1) € AC([a,b],R). Here, as usual, C"~'([a,b],R) denotes
the set of mappings being (n — 1) times continuously differentiable on [a,b]. In
particular, we denote AC([a,b],R) := AC*([a,b], R).

Definition 2. ([13, 16, 33]) Let v > 0 and n € N.

(i) If v € (n—1,n) and u € AC™([a,b],R), then the left and right Caputo
fractional derivatives of order ~ for the function u exist almost everywhere on [a, b],
and are given by

¢ DY u(t) = I‘(n;—v) / (t — 5)" 7 Lu™ (8)ds
and - .
¢DJu(t) = FE;—) - /t (s — )" 7t (s)ds

for every t € [a, ], respectively.
(ii) If y=n — 1 and u € AC""*([a,b],R), then

cprtu(t) = u("_l)(t) and ng_lu(t) = (—1)("_1)u(”_1)(t)
for every t € [a, b].

With these definitions, we have the following formulas for fractional integra-
tion by parts and the composition of the Riemann-Liouville fractional integration
operator with the Caputo fractional differentiation operator as proved in [24] and
[33].
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Proposition 1. The following property of fractional integration

b

b
/ LD} u()]o(t)dt = / LDy o(Ou(t)dt, 4 >0

a

holds provided that w € LP([a,b],R), v € Li([a,b],R), and p > 1, ¢ > 1, and
Ip+1/g<1+y,0orp#1,q#1, and1/p+1/qg=1+7.

Proposition 2. Letn € Nandn—1 < v < n. Ifu € AC"([a,b],R) or u €
C"([a,b],R), then

D (DT u() = u(t) =

and . o
Dy (D) = ut) — 3 Ty
for every t € [a,b]. In particular, if 0 < v < 1 and v € AC([a,b],R) or u €
CY([a,b],R), then
2) oD 7EDu) =ut) —ula) and D7 ({Dyu(t)) = u(t) — u(b).

Let (X, || ||x) be a real Banach space. We denote by X* the dual space of X,
while (-, -) stands for the duality pairing between X* and X. A function ¢ : X — R
is called locally Lipschitz if, for all u € X, there exist a neighborhood U of u and a
real number L > 0 such that

lp(v) —o(w)| < L|lv —w|x for all v,w € U.

If ¢ is locally Lipschitz and u € X, the generalized directional derivative of ¢ at u
along the direction v € X is defined by

©°(u;v) := limsup plw +7v) = gp(w).

w—ru, 70T T
The generalized gradient of ¢ at u is the set
Op(u) :={u" € X*: (u",v) < ¢°(u;v) for allv € X}.

Thus, d¢ : X — 2% is a multifunction. We say that ¢ has a compact gradient if
J¢p maps bounded subsets of X into relatively compact subsets of X*.

Lemma 1 ([30, Proposition 1.1]). Let ¢ € C*(X) be a functional. Then ¢ is
locally Lipschitz and

©°(u;v) = (@' (u),v)  for all u,v € X;
Ap(u) = {¢'(u)} for allu € X.
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Lemma 2 ([30, Proposition 1.3]). Let ¢ : X — R be a locally Lipschitz functional.
Then ¢°(u;-) is subadditive and positively homogeneous for all u € X, and

©°(u;v) < Lv||  for all u,v € X,
with L > 0 being a Lipschitz constant for ¢ around u.

Lemma 3 ([15]). Let ¢ : X — R be a locally Lipschitz functional. Then ¢° :
X x X — R is upper semicontinuous, and for all A >0 and u, v € X,

(Ap)®(u;v) = Ap®(u; v).
Moreover, if @, ¢ : X = R are locally Lipschitz functionals, then
(o4 ¥)°(wv) < ©°(us0) +¢P°(usv)  for all u, v € X.

Lemma 4 ([30, Proposition 1.6]). Let ¢, ¥ : X — R be locally Lipschitz function-
als. Then

OAp)(u) = Adp(u) forallu e X, X € R,
Ao+ ) (u) C dp(u) + 0Y(u) for allu € X.

Lemma 5 ([20, Proposition 1.6]). Let ¢ : X — R be a locally Lipschitz functional
with a compact gradient. Then ¢ is sequentially weakly continuous.

We say that v € X is a (generalized) critical point of a locally Lipschitz
functional ¢ if 0 € dp(u); i.e.,

©°(u;v) >0 forallv e X.

If a non-smooth functional g : X — (—o0,+00) is expressed as a sum of a locally
Lipschitz function, ¢ : X — R, and a convex, proper, and lower semicontinuous
function, j : X — (—o0,+00), that is, g := ¢ + j, a (generalized) critical point of
g is every u € X such that

e (usv —u) +j(v) —j(u) >0

for all v € X (see [30, Chapter 3]).

Hereafter, we assume that X is a reflexive real Banach space, NV : X — R
is a sequentially weakly lower semicontinuous functional, T : X — R is a sequen-
tially weakly upper semicontinuous functional, A is a positive parameter, j : X —
(=00, +00) is a convex, proper, and lower semicontinuous functional, and D(j) is
the effective domain of j. Let

M:="T—j, ©L:=N-IM=(N-XY)+\.
We also assume that N is coercive and

(3) D(j) NN~ ((=00,7)) # 0
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for all » > inf x . Moreover, owing to (3) and provided r > inf x A, we can define

(Supv€N71((,oo’T)) M('U)) - M(u)

r) = inf ’
P = Bt ) =N
7 1= liminf o (r), rs(infx 'Y+ -

If N and T are locally Lipschitz functionals, the following result is proved in [11,
Theorem 2.1]; it is a more precise version of [28, Theorem 1.1] (also see [32]).

Theorem 1. Under the above assumptions on X, N and M, we have:

(a) For every r > infx N and every A € (0,1/¢(r)), the restriction of the func-
tional Iy = N — AM to N=1((—oco,7)) admits a global minimum that is a
critical point (local minimum) of I in X.

(b) If v < 400, then for each A € (0,1/7), the following alternative holds: either

(b1) I, possesses a global minimum, or
(b2) there is a sequence {u,} of critical points (local minima) of I such that
limy,— 400 M (up) = +00.
(c) If § < 400, then for each X € (0,1/9), the following alternative holds: either

(c1) there is a global minimum of N that is a local minimum of Iy, or

(c2) there is a sequence {uy} of pairwise distinct critical points (local minima)
of I, with lim, oo N (uy,) = inf x N, that converges weakly to a global
minimum of N

To establish a variational structure for the main problem, it is necessary to
construct appropriate function spaces. Following [22], denote by C§°([0, T],R) the
set of all functions g € C*°([0,T],R) with ¢(0) = g(T') = 0.

Definition 3. Let 0 < o <1 and 1 < p < co. The fractional derivative space Eg"”
is defined by the closure with respect to the weighted norm

T T 1/p
(4) lullap == </ |6 D u(t)[Pdt —|—/ |u(t)|pdt> , for all u € E5°P.
0 0

Clearly, the fractional derivative space Ey"" is the space of functions u € LP[0,T]
having an a-order fractional derivative ¢Dgu € LP[0,T] and satisfying u(0) =
u(T) = 0. From [22, Proposition 3.1], we know for 0 < a < 1, the space Ej" is a
reflexive and separable Banach space.

For every u € Ef, set

T 1/s
[ullzs == </ Iui(t)sdt> ;s>
0
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and
oo ‘= Imax t)].

Remark 1. For any u € E;j? according to (2), and in view of the fact that
u(0) = u(T) = 0, we have ¢ Dfu(t) = §Du(t) and ; DFu(t) = {DFu(t) for t € [0, 7.

Lemma 6 ([22]). Let 0 < a <1 and 1 <p < co. For allu € Ey°?, we have

T« T 1/p
p < ——— 6D u(t)|Pdt .
i < gy ([ lsDruora)

Moreover, If o > % and % + % =1, then

Ta—1/p T . 1/p
e < ([ prurar)
D) (e~ Dg+ 1 Vo
(5) 1 Ta—l/p (/T| D ( )|Pd )l/p
= — SDSu(t)|Pdt .
I'(a) ((O;)ill)p+1>pT o Ot

As a consequence of this lemma, we can consider Ej** with the norm

T 1/p
[ullap = </ |8D?U(t)pdt) , u€ BT,
0

which is equivalent to (4).

Lemma 7 ([22]). Assume that 0 < a <1 and 1 < p < co. Assume that o > %

and the sequence {u,} converges weakly to w in Eg'*, i.e., up, — u. Then {u,}
converges strongly to u in C([0,T]),R), i.e., ||up — t]lec = 0, as n — co.

For v € E§"*, by Remark 1 and Definition 1 we have
T T
/0 [+ D3y (o D2u(x))u(w)ds = / [ D3 (D u(2))o()
T
- / v(@)dl. D2 6 (§ Du(z))]

T
- / [ D 6, (D2 u()) o' (2)da.

Thus, from Proposition 1 and Definition 2 we have
T T
/ [« D7 6p (0 D3 u())]v(x)dx = / Pp(§ D3 u(x))o Dy~ o' (x)da
0 0

- / 6p(§ D)) D20 () e

So we can define the weak solutions of FBVP (1) as follows.
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Definition 4. A function v € X is a weak solution of the problem (1) if there
exists u* € LP([0,T]) (for some p > 1) such that

T m
/O [0p(6Dzu(x))gDgv(x) + dp(u(x))v(z) — u*(z)o(z)] do + Z Li(u(zi))v(zi) =0

for all v € X and u* € AF(u(x)) + pG(z,u(x)) for a.e. z € [0,T].

For a.e. € [0,T] and all s € R, we introduce the Aumann-type set-valued
integral

/ F(t)dt = { / f(®)dt : f:R — R is a measurable selection of F},
0 0

and we set F(u) = fOT min [ F(s)dsdx for all u € LP([0,T]). We also have the
Aumann-type set-valued integral

/ G(z,t)dt = {/ glz,t)dt : g:]0,T] x R — R is a measurable selection of G}
0 0

and set G(u) = fOT min [ G(z, s) ds dz for all u € LP([0,T]).

Lemma 8 ([21, Lemma 3.1]). The functionals F,G : LP([0,T]) — R are well
defined and Lipschitz on any bounded subset of LP([0,T]). Moreover, for all u €
L?([0,7T]) and oll u* € O(F(u) + G(u)),

u*(z) € F(u(z)) + G(z,u(x)) for a.e. z €[0,T].
We define an energy functional for the problem (1) by setting
1 m o ru(z;)
D) = [l = AF@) — 6w + 3 [ s)ds
i=1"0
for all v € X.

Lemma 9 ([34, Lemma 4.4]). The functional Iy : X — R is locally Lipschitz.
Moreover, for each critical point u € X of Iy, u is a weak solution of (1).
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3. MAIN RESULTS

We are now ready to formulate our main result using the following assump-
tions:

(F4)

.ot
.. . SUpjy < min [ F(s)ds
lim inf

£——+o0 gp

2r'(2—a)¢

. RHEoa)k, 2LE_)E (T —y)
Jo? min F(s )dsdx—i—fT min | F(s)dsdx

)

1
< — lim sup PNCER
PC ttoo 1§pwa+zl ) O#(T ffz)ds

(I1) I;(0) =0, Ii(s)s >0, s € R, i=1,2,...,m
(A1) ; <a<l

We define
1 ( Top 1 )
c:=
(F(a))P \(fazte 4 1)p-1
and
9 T/2 T
We 1= (—)p(/ 2P0~ dy —|—/ (x' 7 = 2(z — T/2)1_°‘)pdx).
T 0 T/2
Theorem 2. Assume that (F1)—(F4), (I1) and (A1) hold. Let
T 2o, 2 (7,
fog min [, T " F(s)dsdx + fT min [~ T (=) B(s) ds da
A1 :=1/limsup e EVeEr—— ,
Z;
E—+oo 1£pwa +Zl 1f0 [( )d
su min s)ds
Ay =1 hml f Piri<e T fO () .
E—+4o0 Egp

Then, for every A € (A1, A2), and every multifunction G satisfying (G1)—(G3), and

(G4) fo mlnfo (x,8)dsdx >0 for allt € R, and

SUp|;|<¢ Min fot G(z,s)ds
57’

(G5) Goo :=limg 400 < 400,

if we put

.t
1 SUP|y<¢ Min [ F(s)ds
= —(1- li f =
o= o (1= Apc flglin & )

where pg yx = +0o when Gog = 0, problem (1) admits an unbounded sequence of
weak solutions for every p € [0, pugx) in X.
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Proof. Our aim is to apply Theorem 1(b) to (1). To this end, we fix A € (A1, A2)
and let G be a multifunction satisfying (G1)—(G5). Since A < Ay, we have

.t
1 su min |, F(s)ds
HG N = ——— e (1 - )\pchmlnf Plri<e fo (s) ) > 0.

£—+o0 é‘p
Now fix 11 € (O,N.q;% set 11 := A1, and

A2

Vg = ——— =
2 1+pc%/\2 Goo

If Goo = 0, then vy = Ay, o = Ay and X € (v1,12). If G # 0, since 7 < Kaxs we
have

A
— 4+ oGy < 1,
A2

and so
Ao —

— >\,
1+ pc%)\g G
namely, A < v5. Hence, taking into account that A > \; = v, we have \ € (v1,1v2).
Now, set B
J(z,s) = F(s) + %G(x, )
for all (z,s) € [0,T] x R. Assume j is identically zero in X, and for each u € X,
take

m

N (u) *||u||p +Z/ / mln/ (x,s)dsdz,
M(u) :=T(u) = j(u) = T(u),
and B 7
Ii(u) := N(u) — AM(u) = N(u) — AT (u).

It is a simple matter to verify that A is sequentially weakly lower semicontinuous on
X. Clearly, N' € C'(X). By Lemma 1, A is locally Lipschitz on X. By Lemma 8,
F and G are locally Lipschitz on LP([0,T]). So, Y is locally Lipschitz on L”(]0,T]).
Moreover, X is compactly embedded into LP([0,T7]), so T is locally Lipschitz on
X. Furthermore, T is sequentially weakly upper semicontinuous. For all v € X,

by (I1), o
/ Ii(s)ds >0, i=1,2,...,m
0

Hence, we have

“(xz)

N = Sty + 3 [ hds > Sl
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for all u € X. Hence, N is coercive and infx N = N (0) = 0.

We want to show that, under our hypotheses, there exists a sequence {4, } C
X of critical points for the functional I5, that is, every element u, satisfies

L (U, v —1up) >0, for every v € X.

Now, we claim that v < 4+00. To see this, let {£,,} be a sequence of positive numbers
such that lim,, . &, = +00 and

. SUPjy<¢, Min fot J(x,8)ds supj<¢min fot J(z,s)ds
lim = lim inf .
n—-+o00 & £—+4o0 &p

Take 1
ry = —E&0, foralln e N.
pe

Then, for all v € X with N'(v) < 7, taking into account that [v% , < pr, and
(5), one has |v(x)| < &, for every = € [0,T]. Therefore, for all n € N,

. (SUPpen—1((—oo,ry) M(v)) — M(u)
plry) = inf
wEN ~1((—o0,r)) r 7N(U)

SUP|uz, <pr. (F(v) + £G())

r

SUPjt|<¢, (foT min f(f F(s)dsdz + fOT min fot G(z,s) dsdx)

>=|

- C{SUP\tléfn min fot F(s)ds | BSWPpe, min fg G(x, s)ds}
=7 & by & |
Moreover, from conditions (F4) and (G5), we have

SUP|4|<¢, Min fot G(x,s)ds
&n

.t
su min [, F(s)ds I
lim Plri<en fo (5) + lim % < 400,

n—-+oo 52 n——+o0o
which implies
SUp|¢|<¢, Min f(f J(z,8)ds

lim < +o00.
n—+4o0o fﬁ +

Therefore,

t
su min [, J(x,s)ds
(6) 5 < limiinf (r,) < pelim inf —11=¢ Jo I (. 5)

< +o00.
n——+oo E—+o0 fp

Since

SUP |4 <¢ MiN fg J(z,s)ds  SUPp<¢ min fg F(s)ds | ASWPpi<e min fot G(x,s)ds
&p a &p by &p ’
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and taking (G5) into account, we get

ot -
Sup|y<¢ min [ J(z, s)ds Sup|y < min [ F(s)ds

. . I3
7 lim inf < lim inf + = Goo.
( ) §—+o0 gp T ¢+t oo gp A
Moreover, from Assumption (G4) we obtain
T 2r@-o), 2w,
_ Jo? min [~ 7T J(z,s)dsdx + fT min [, T =) J(x,s)ds dz
lim sup X T T (72
§—roo Efpwa +>0 fo T Y I(s)ds
T r—a), @) (p_,
. Jo? min F(s )dsdx—l—fT rmnf0 =) p(s) ds d
(8) > limsup pRPE .
§—+o0 lé‘pwa +Zz 1 f[) i Ii(S)dS
Therefore, from (7) and (8), we observe that
_ 1
A€ (Vla VQ) - T r(2—a)€ A E-a)f (p ’
) Jo2 min f; T F(s)ds dm+f£ min [, T F(s)dsdz
lim sup 21"(22—rx)£ (T—w;)
£—+4o00 Lerwat+m, fy 7 “ Ii(s)ds
1
lim infsupltlgf min fot J(x,s)ds
§—+o0 igp

C(0,1/7).

For the fixed ), the inequality (6) ensures that the condition (b) of Theorem
1 can be applied and either I5 has a global minimum or there exists a sequence

{un} of weak solutions of the problem (1) such that lim,, . ||u,|| = +oo.

The next step is to show that for the fixed X, the functional I5 has no global
minimum. To do this, we first show that the functional I3 is unbounded from

below. Since

2r(2 )¢ 2r(2 Q)¢ (T—2)
1 f min [, )dsdx—i—fT min [;~ T F(s)dsdx
= < limsup e
£—+00 1§pwa + 3 1fo (T—=:) I;(s)ds
T 2I'(2— oc)i QF(Z a)é T
. f0§ min [, 7 J(z,s)dsdx + fT min [, T =) J(x,s)dsdz
< limsup EIESIE

£—+o00 1,gpwa +3, fo (T=z:) I;(s)ds

9
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there exists a sequence {£,} of positive numbers and a constant 7 such that
limy, 5400 & = 00 and

2 (2—a)én 2 (2— a)gn (T 1,’)

1 fO% min [~ T " J(x,s)dsdz + fT min | J(x,s)dsdx

C_En (7,

A 1§nwa+zz o 7 1>I¢(8)d$

for each sufficiently large n € N. For all n € N, set

w (x) _ 21—‘(2;&)5" x? r E [07 %)7
" M (T —g), w e (LT,
Clearly wy,(0) = w,(T) = 0 and w,, € LY ([0,T]). A direct calculation shows that

“, zel0,%),

Zn 1
oDz wn (@) = { é( —2(x—T/2)'"*), x € (%,T]

Furthermore,

T T/2 T
| ipten@rae= [ ipsun@rdes [ (5Dswn (o)
0 0 T/2

_ 2 T/ (1-a) T e 1-a
_(T)p {/o x? dt+/T/2(x —2(x—=T/2) " *)Pdt ;.

= wuéP.

Thus, w, € X, in particular,

T
mmm=/|wMWWW=%&
0

wp (25 )

(10) N, 8%+2/
By (9) and (10), we see that
I(wy,) = N(wy,) — AM(w,,)
1 m wn (@)
—EPw, + / I;(s)ds
=& Z ()
CINCEPST. T 2R a)n ()

- / mm/ ms)dsdx—i—/ min/ ' J(ac,s)dsdm)
z 0

( gpwa—i—Z/own(x )I-( )ds)(l—XT)

i=1
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for every n € N large enough. Since A7 > 1 and lim,,_, ;o &, = +00, we have

nErJIrloo Ix(wn) -

Thus, the functional I5 is unbounded from below, and so it has no global minimum.
Therefore, from part (b2) of Theorem 1, the functional I3 admits a sequence of
critical points {u,} C Ey°? such that lim,,—, ;oo N(%,) = +00. Since N is bounded
on bounded sets, {@,} has to be unbounded, i.e.,

ngrfoo [%nlla,p = +o0.

Moreover, if w, € EJ" is a critical point of Iy, clearly, by definition,
E(tn,v —y,) >0, for every v € Eg°".

Finally, by Lemma 9, the critical points of I3 are weak solutions of the problem (1)
and this proves the theorem. O

Remark 2. Under the conditions

SUP |4 <¢ MiN fot F(s)ds

lim inf =0
=+ gp
and
T 2r2—a)f . 20(2—a)€ (pr_ .
. JoZmin [;— T " F(s)dsdx + [+ min Ly T (T B(s) ds da
lim sup - — zr(zzia)g(T_xv) = 400,
oo 5EPWa + Y de T " 1i(s)ds

from Theorem 2, we see that for every A > 0 and for each u € [0, pc%), problem
(1) admits a sequence of weak solutions that is unbounded in X. Moreover, if
G = 0, the result holds for every A > 0 and p > 0.

The following result is a special case of Theorem 2 with p = 0.

Theorem 3. Assume that (F1)—(F4), (I1) and (A1) hold. Then, for each

1
T 2 (2—a)€ ; 2I'(2—a)¢ _ )
Jo? min f; T “F(s) dsdaz+ [T min f; 7T = F(s)dsdx

lim supg_, 4 o ) MC-)E 1,
m k2
gﬁpwaJrZi:l Jo T

S

I;(s)ds

1 )
.. su min [ J(z,s)ds |’
liminfe, 4 supj<¢ min Jo J(@,2)

1
pet?
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the problem

D%, (Opgu(ag)) + ¢p(u(z)) € AF(u(z)), ae z € 0,T],
T # xj,
A(ID%71<6Dgu>)<x]) :Ij(u(xj))’ J=12,...,m,
u(0) =u(T) =0
has an unbounded sequence of weak solutions in X.

Example 1. We choose p =4, a = 0.8, 21 = %, To = % and I (s) = Ix(s) = 2s,
for all s € R. Consider the problem

2D8%04 (6D u(@)) + da(u(@) € AF(u(2)), ae. z€[0,2]

(1) T o |
AlDy ™ (605 °))(x5) = Iiu(zy)), j=1,2,
u(0) =u(2) =0
where, for s € R,
{0}, if s <271/,
F(s) = 4[0,1], if s =271/3,

{s—2713 41}, ifs>271/3,
Simple calculations show that ¢ ~ 1.8779,
t
sup min/ F(s)ds =0,
t|<2-1/3 0
and

fol min for(%o.s)gz F(s)dsdz + ff min f(f(270'8)§(27m) F(s)dsdx

T(2—0.8)(2—a;
E&hwos + Y0, 0 (0920 1 (5)ds
fol min 00'9182& F(s)dsdz + f12 min 00'91825(2*1) F(s)dsdz

0.283564wg.s + 317 2sds + [; 7% 2sds

1 1 0.9182¢x
= 2 i F(s)dsd
0.2835¢4wg 5 + 0.2634€2 ( /0 min /0 (s) ds da)

9 —1/3 .0.9182¢x
~ F(s)dsd
0.2835§4w0.8+0.2634§2< /0 /0 max F'(s) ds dv

1 Ex
+/ max F'(s) ds d:c) >0
2-1/3 Jo

for some & € R. Thus,

t
su min [, F(s)ds
lim inf Plri<e fo (s)

=0
£—+oo 0.2835&4
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and

i fol min OF(Q_O'g)&E F(s)dsdx + ff min for(z—o.s)g(Q—x) F(s)dsdx -
im sup — —
£ too 0.2835¢ 4wy s + 32, [1 CTODET 1gyds

Hence, by Theorem 3, problem (11), for A lying in a convenient interval, has an
unbounded sequence of weak solutions in Eg'g’ .

Next, we wish to point out the following consequences of Theorem 3 using
the conditions

.. in [T F(s)d
(F5) liminfe_ o0 SoltI<e mg“fo (s)ds _ 1.

P pc?

T 2 (2—a)€ 2L (2—c)€ (p_
Jo? min f; T “ F(s)ds dw+f§ min [, T (==

F(s)dsdz
> 1.

(F6) limsupg_,

) M€ 1,
pEPwat+3 Jo T

Corollary 1. Assume that (F1)—(F3), (F5)-(F6), (I1) and (A1) hold. Then, the

problem

I;(s)ds

D%, (ODgu(x)) + ép(u(x)) € A\F(u(z)), ace. z€[0,T],

T # x5,
A(xD%_l((c)Dgu))(Ij) =1I;(u(z;)), j=1,2,...,m,
u(0) =u(T)=0

has an unbounded sequence of weak solutions in X.

We conclude our paper with two more consequences of our main result. The
following corollary is an immediate consequence of Corollary 1.

Corollary 2. Assume that (F1)-(F3) hold, I;(0) = 0, and I;(s)s > 0 for s € R,
i=1,2,....m. If
SUp|y<¢ Min fot F(s)ds

lim inf =0
E—+o0 é'p
and
T 2r2-—a) . 20(2—a)€ (p_

. fog min [, 7 F(s)dsdx + fIT min [, 7 T )F(s) dsdx

lim sup 2 = 400

g-r+o0 1 oy (T ) ’

pﬁpwa >y fo I;(s)ds

then problem (1) with A =1 and p = 0 admits a sequence of pairwise distinct weak
solutions.

Corollary 3. Let Fy : R — 28 be an upper semicontinuous multifunction with
compact convex values, such that min Fy,max F; : R — R are Borel measurable
and |£] < a(l + |s|"* 1) for all s € R, € € Fi(s), and r1 > 1 (a > 0). In addition,
assume that:
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(C1) hm inf Pltse mi;fo e

=+

< 400,

T 2I(2—a)€ 2L@2—a)€ (1,
02 min [, T o (s)ds derfT min [, T Fi(s)dsdz
(C2) limsup - Dy = 4o00.
§—+oo Levwarym, fy T " 1;(s)ds

Then, for every multifunction Fy : R — 28 that is upper semicontinuous with
compact conver values such that min F5, max Fs : R — R are Borel measurable and
1€l < b1+ |s]"271) for all s € R, € € Fy(s), ro > 1 (b > 0), and that satisfies the
conditions

t
(12) Supmin/ Fy(s)ds <0
teR 0
and
(13)
T 2re—a), LG (r_y
o fogminfo F()dsd:c—i-melnfO (T- )F()dsd:c
lglﬁigof 1 m %(T ;) > —0,
Egpwa + Zi:l 0 IZ(S)dS
for each
1
A e (0, S ’>,
liminfe 4 SUuP|t|<e I;;{o 1 (s)ds

the problem

= D7 ¢y (oDi“U(x)) + dp(u(x)) € AF(u(2)) + pG(z,u(z)), ae z€l0,T],
x # x5,

A(zD%_l(ngu))(xJ) :Ij(u(xj))7 .7: 1327"'ama

uw(0) =u(T)=0

has an unbounded sequence of weak solutions in X.

Proof. Set F(t) = F1(t) + Fa(t) for all t € R. Conditions (C2) and (13) yield

T 2r2—a)g . 21"(2 E (p_y
' fogminfo T F(s )dsda:JrfT min [[~ T T )F(s)dsdx
léIiliup 1 2F(2T )€ (T—2;)
° gfpwa +>0, fo I;(s)ds
T PICETI g
~ Jimsup Jo?min [; T (Fy(s) + Fy(s))dsdx
2l (2—a) € s
£—+o0 1€pwa + Z’L 1Jo T (T 1) Il(s)ds

21“(2 )€

fT min |, T=2)(Fy(s) + Fy(s)) ds dw
2F(2 a)é

1§pwa + 30 fo (T—z:) I;(s)ds
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Moreover, conditions (C1) and (12) ensure that

.t .t
su min [, F(s)ds su min [, Fi(s)ds
lim inf Ple<e fo (5) < lim inf Plri<e fo 1(s)

£—+o0 gp E—+o0 é‘p

< +o00.

Since
1 1

SUp |4 <¢ min f(;‘ F(s)ds —

1
pet”

SUP|;|<¢ Min f; Fy(s)ds’

1
78"

liminfe 4 liminfe 4o

by applying Theorem 3, we have the desired conclusion.

O

Remark 3. We observe that in Theorem 2 we can replace £ — +oo with & — 0T,
and then by the same argument as in the proof of Theorem 2, but using conclusion
(c) of Theorem 1 instead of (b), problem (1) has a sequence of weak solutions that

strongly converges to 0 in X.
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