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VARIATIONAL ANALYSIS FOR DIRICHLET
IMPULSIVE FRACTIONAL DIFFERENTIAL

INCLUSIONS INVOLVING THE p-LAPLACIAN

Samad Mohseni Kolagar, Ghasem A. Afrouzi, John R. Graef ∗

By using variational methods and critical point theory, the authors establish
the existence of infinitely many weak solutions for impulsive differential in-
clusions involving two parameters and the p-Laplacian and having Dirichlet
boundary conditions.

1. INTRODUCTION

Because of its wide applicability in the modeling of many phenomena in
various fields of physics, chemistry, biology, engineering and economics, the theory
of fractional differential equations has recently been attracting increasing interest;
see for instance the monographs of Hilfer [19], Kilbas et al. [24], Miller and Ross
[29], Podlubny [31], Samko et al. [33], the papers [1, 2, 4, 5, 6, 9, 25, 27, 35, 37]
and references therein. Particular applications of fractional differential equations to
problems in fluid flow, electrical networks, control of dynamical systems, elasticity,
and signal processing, for example, have appeared in the literature.

Impulsive boundary value problems for differential equations and inclusions
have been intensively studied in recent years. Such problems appear in mathemat-
ical models with sudden changes in their states such as in population dynamics,
pharmacology, optimal control, etc. [26]. Impulsive problems for fractional equa-
tions are often treated by topological methods such as in [3, 7, 8, 23]. The existence
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of solutions of impulsive problems is studied using variational methods and critical
point theorems in [10, 36, 39]. The recent monograph [17] gives background and
applications of differential inclusions.

In the present paper, motivated by the results in [14, 18, 34, 38] and em-
ploying an abstract critical point result (see Theorem 1 below), we obtain sufficient
conditions to ensure the existence of infinitely many weak solutions to the problem
(1); see Theorem 2 below. We refer to [12], in which related variational methods
are used for non-homogeneous problems.

The aim of this article is to show the existence of infinitely many weak solu-
tions to the two parameter impulsive fractional differential inclusion

(1)


xD

α
Tφp

(
0D

α
xu(x)

)
+ φp(u(x)) ∈ λF (u(x)) + µG(x, u(x)), a.e. x ∈ [0, T ],

x 6= xj ,
∆(xD

α−1
T (c0D

α
xu))(xj) = Ij(u(xj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0,

where 1/p < α ≤ 1, λ > 0, µ ≥ 0, T > 0, p > 1, φp(x) = |x|p−2x, 0D
α
x and

xD
α
T are the left and right Riemann-Liouville fractional derivatives respectively,

and 0 = x0 < x1 < x2 < . . . < xm < xm+1 = T . Here,

∆(xD
α−1
T (c0D

α
xu))(xj) = xD

α−1
T (c0D

α
x )(x+

j )− xD
α−1
T (c0D

α
x )(x−j ),

where

xD
α−1
T (c0D

α
x )(x+

j ) = lim
x→x+

j

xD
α−1
T (c0D

α
x )(x),

xD
α−1
T (c0D

α
x )(x−j ) = lim

x→x−j
xD

α−1
T (c0D

α
x )(x),

and c
0D

α
x is the left Caputo fractional derivative of order α. The multifunction F

defined on R is assumed to satisfy

(F1) F : R→ 2R is upper semicontinuous with compact convex values;

(F2) minF, maxF : R→ R are Borel measurable;

(F3) |ξ| ≤ a(1 + |s|r−1) for all s ∈ R, ξ ∈ F (s), r > 1 (a > 0).

Also, G is a multifunction defined on [0, T ]× R, satisfying

(G1) G(x, ·) : R→ 2R is upper semicontinuous with compact convex values for a.e.
x ∈ [0, T ] \Q, where Q = {xi : i = 1, 2, . . . ,m};

(G2) minG, maxG : ([0, T ] \Q)× R→ R are Borel measurable;

(G3) |ξ| ≤ a(1 + |s|r−1) for a.e. x ∈ [0, T ], s ∈ R, ξ ∈ G(x, s), r > 1 (a > 0).



Impulsive Fractional Differential Inclusions 113

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Definition 1. ([24, 31]) Let u be a function defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives of order α > 0 of u are defined by

aD
α
t u(t) :=

dn

dtn
aD

α−n
t u(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1u(s)ds

and

tD
α
b u(t) := (−1)n

dn

dtn
tD

α−n
b u(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(t− s)n−α−1u(s)ds

for every t ∈ [a, b], provided the right-hand sides are pointwise defined on [a, b],
where n− 1 ≤ α < n and n ∈ N.
Here, Γ(α) is the standard gamma function given by

Γ(α) :=

∫ +∞

0

zα−1e−zdz.

Set ACn([a, b],R) to be the space of functions u : [a, b] → R such that u ∈
Cn−1([a, b],R) and u(n−1) ∈ AC([a, b],R). Here, as usual, Cn−1([a, b],R) denotes
the set of mappings being (n − 1) times continuously differentiable on [a, b]. In
particular, we denote AC([a, b],R) := AC1([a, b],R).

Definition 2. ([13, 16, 33]) Let γ ≥ 0 and n ∈ N.

(i) If γ ∈ (n − 1, n) and u ∈ ACn([a, b],R), then the left and right Caputo
fractional derivatives of order γ for the function u exist almost everywhere on [a, b],
and are given by

c
aD

γ
t u(t) =

1

Γ(n− γ)

∫ t

a

(t− s)n−γ−1u(n)(s)ds

and

c
tD

γ
b u(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1u(n)(s)ds

for every t ∈ [a, b], respectively.

(ii) If γ = n− 1 and u ∈ ACn−1([a, b],R), then

c
aD

n−1
t u(t) = u(n−1)(t) and c

tD
n−1
b u(t) = (−1)(n−1)u(n−1)(t)

for every t ∈ [a, b].

With these definitions, we have the following formulas for fractional integra-
tion by parts and the composition of the Riemann-Liouville fractional integration
operator with the Caputo fractional differentiation operator as proved in [24] and
[33].
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Proposition 1. The following property of fractional integration∫ b

a

[aD
−γ
t u(t)]v(t)dt =

∫ b

a

[tD
−γ
b v(t)]u(t)dt, γ > 0

holds provided that u ∈ Lp([a, b],R), v ∈ Lq([a, b],R), and p ≥ 1, q ≥ 1, and
1/p+ 1/q ≤ 1 + γ, or p 6= 1, q 6= 1, and 1/p+ 1/q = 1 + γ.

Proposition 2. Let n ∈ N and n − 1 < γ ≤ n. If u ∈ ACn([a, b],R) or u ∈
Cn([a, b],R), then

aD
−γ
t (caD

γ
t u(t)) = u(t)−

n−1∑
j=0

u(j)(a)

j!
(t− a)j

and

tD
−γ
b (ctD

γ
b u(t)) = u(t)−

n−1∑
j=0

(−1)ju(j)(b)

j!
(b− t)j

for every t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and u ∈ AC([a, b],R) or u ∈
C1([a, b],R), then

(2) aD
−γ
t (caD

γ
t u(t)) = u(t)− u(a) and tD

−γ
b (ctD

γ
b u(t)) = u(t)− u(b).

Let (X, ‖·‖X) be a real Banach space. We denote by X∗ the dual space of X,
while 〈·, ·〉 stands for the duality pairing between X∗ and X. A function ϕ : X → R
is called locally Lipschitz if, for all u ∈ X, there exist a neighborhood U of u and a
real number L > 0 such that

|ϕ(v)− ϕ(w)| ≤ L‖v − w‖X for all v, w ∈ U.

If ϕ is locally Lipschitz and u ∈ X, the generalized directional derivative of ϕ at u
along the direction v ∈ X is defined by

ϕ◦(u; v) := lim sup
w→u, τ→0+

ϕ(w + τv)− ϕ(w)

τ
.

The generalized gradient of ϕ at u is the set

∂ϕ(u) := {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X}.

Thus, ∂ϕ : X → 2X
∗

is a multifunction. We say that ϕ has a compact gradient if
∂ϕ maps bounded subsets of X into relatively compact subsets of X∗.

Lemma 1 ([30, Proposition 1.1]). Let ϕ ∈ C1(X) be a functional. Then ϕ is
locally Lipschitz and

ϕ◦(u; v) = 〈ϕ′(u), v〉 for all u, v ∈ X;

∂ϕ(u) = {ϕ′(u)} for all u ∈ X.
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Lemma 2 ([30, Proposition 1.3]). Let ϕ : X → R be a locally Lipschitz functional.
Then ϕ◦(u; ·) is subadditive and positively homogeneous for all u ∈ X, and

ϕ◦(u; v) ≤ L‖v‖ for all u, v ∈ X,

with L > 0 being a Lipschitz constant for ϕ around u.

Lemma 3 ([15]). Let ϕ : X → R be a locally Lipschitz functional. Then ϕ◦ :
X ×X → R is upper semicontinuous, and for all λ ≥ 0 and u, v ∈ X,

(λϕ)◦(u; v) = λϕ◦(u; v).

Moreover, if ϕ, ψ : X → R are locally Lipschitz functionals, then

(ϕ+ ψ)◦(u; v) ≤ ϕ◦(u; v) + ψ◦(u; v) for all u, v ∈ X.

Lemma 4 ([30, Proposition 1.6]). Let ϕ, ψ : X → R be locally Lipschitz function-
als. Then

∂(λϕ)(u) = λ∂ϕ(u) for all u ∈ X, λ ∈ R,
∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X.

Lemma 5 ([20, Proposition 1.6]). Let ϕ : X → R be a locally Lipschitz functional
with a compact gradient. Then ϕ is sequentially weakly continuous.

We say that u ∈ X is a (generalized) critical point of a locally Lipschitz
functional ϕ if 0 ∈ ∂ϕ(u); i.e.,

ϕ◦(u; v) ≥ 0 for all v ∈ X.

If a non-smooth functional g : X → (−∞,+∞) is expressed as a sum of a locally
Lipschitz function, ϕ : X → R, and a convex, proper, and lower semicontinuous
function, j : X → (−∞,+∞), that is, g := ϕ + j, a (generalized) critical point of
g is every u ∈ X such that

ϕ◦(u; v − u) + j(v)− j(u) ≥ 0

for all v ∈ X (see [30, Chapter 3]).

Hereafter, we assume that X is a reflexive real Banach space, N : X → R
is a sequentially weakly lower semicontinuous functional, Υ : X → R is a sequen-
tially weakly upper semicontinuous functional, λ is a positive parameter, j : X →
(−∞,+∞) is a convex, proper, and lower semicontinuous functional, and D(j) is
the effective domain of j. Let

M := Υ− j, Iλ := N − λM = (N − λΥ) + λj.

We also assume that N is coercive and

(3) D(j) ∩N−1((−∞, r)) 6= ∅
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for all r > infX N . Moreover, owing to (3) and provided r > infX N , we can define

ϕ(r) := inf
u∈N−1((−∞,r))

(
supv∈N−1((−∞,r))M(v)

)
−M(u)

r −N (u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX N )+

ϕ(r).

If N and Υ are locally Lipschitz functionals, the following result is proved in [11,
Theorem 2.1]; it is a more precise version of [28, Theorem 1.1] (also see [32]).

Theorem 1. Under the above assumptions on X, N and M, we have:

(a) For every r > infX N and every λ ∈ (0, 1/ϕ(r)), the restriction of the func-
tional Iλ = N − λM to N−1((−∞, r)) admits a global minimum that is a
critical point (local minimum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that
limn→+∞N (un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of N that is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima)
of Iλ, with limn→+∞N (un) = infX N , that converges weakly to a global
minimum of N .

To establish a variational structure for the main problem, it is necessary to
construct appropriate function spaces. Following [22], denote by C∞0 ([0, T ],R) the
set of all functions g ∈ C∞([0, T ],R) with g(0) = g(T ) = 0.

Definition 3. Let 0 < α ≤ 1 and 1 < p <∞. The fractional derivative space Eα,p0

is defined by the closure with respect to the weighted norm

(4) ‖u‖α,p :=

(∫ T

0

|c0Dα
t u(t)|pdt+

∫ T

0

|u(t)|pdt

)1/p

, for all u ∈ Eα,p0 .

Clearly, the fractional derivative space Eα,p0 is the space of functions u ∈ Lp[0, T ]
having an α-order fractional derivative 0D

α
t u ∈ Lp[0, T ] and satisfying u(0) =

u(T ) = 0. From [22, Proposition 3.1], we know for 0 < α ≤ 1, the space Eα,p0 is a
reflexive and separable Banach space.

For every u ∈ Eα0 , set

‖u‖Ls :=

(∫ T

0

|ui(t)|sdt

)1/s

, s ≥ 1,
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and
‖u‖∞ := max

t∈[0,T ]
|u(t)|.

Remark 1. For any u ∈ Eα,p0 according to (2), and in view of the fact that
u(0) = u(T ) = 0, we have 0D

α
t u(t) = c

0D
α
t u(t) and tD

α
Tu(t) = c

tD
α
Tu(t) for t ∈ [0, T ].

Lemma 6 ([22]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , we have

‖u‖Lp ≤
Tα

Γ(α+ 1)

(∫ T

0

|c0Dα
t u(t)|pdt

)1/p

.

Moreover, If α > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤
Tα−1/p

Γ(α)((α− 1)q + 1)
1
q

(∫ T

0

|c0Dα
t u(t)|pdt

)1/p

=
1

Γ(α)

Tα−1/p

( (α−1)p
p−1 + 1)

p−1
p

(∫ T

0

|c0Dα
t u(t)|pdt

)1/p

.

(5)

As a consequence of this lemma, we can consider Eα,p0 with the norm

‖u‖α,p :=

(∫ T

0

|c0Dα
t u(t)|pdt

)1/p

, u ∈ Eα,p0 ,

which is equivalent to (4).

Lemma 7 ([22]). Assume that 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p

and the sequence {un} converges weakly to u in Eα,p0 , i.e., un ⇀ u. Then {un}
converges strongly to u in C([0, T ]),R), i.e., ‖un − u‖∞ → 0, as n→∞.

For v ∈ Eα,p0 , by Remark 1 and Definition 1 we have∫ T

0

[xD
α
Tφp(0D

α
xu(x))]v(x)dx =

∫ T

0

[xD
α
Tφp(

c
0D

α
xu(x))]v(x)dx

= −
∫ T

0

v(x)d[xD
α−1
T φp(

c
0D

α
xu(x))]

=

∫ T

0

[xD
α−1
T φp(

c
0D

α
xu(x))]v′(x)dx.

Thus, from Proposition 1 and Definition 2 we have∫ T

0

[xD
α
Tφp(0D

α
xu(x))]v(x)dx =

∫ T

0

φp(
c
0D

α
xu(x))0D

α−1
x v′(x)dx

=

∫ T

0

φp(
c
0D

α
xu(x))c0D

α
xv(x)dx.

So we can define the weak solutions of FBVP (1) as follows.
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Definition 4. A function u ∈ X is a weak solution of the problem (1) if there
exists u∗ ∈ Lp([0, T ]) (for some p > 1) such that∫ T

0

[φp(
c
0D

α
xu(x))c0D

α
xv(x) + φp(u(x))v(x)− u∗(x)v(x)] dx+

m∑
i=1

Ii(u(xi))v(xi) = 0

for all v ∈ X and u∗ ∈ λF (u(x)) + µG(x, u(x)) for a.e. x ∈ [0, T ].

For a.e. x ∈ [0, T ] and all s ∈ R, we introduce the Aumann-type set-valued
integral∫ s

0

F (t)dt =
{∫ s

0

f(t)dt : f : R→ R is a measurable selection of F
}
,

and we set F(u) =
∫ T

0
min

∫ u
0
F (s) ds dx for all u ∈ Lp([0, T ]). We also have the

Aumann-type set-valued integral∫ s

0

G(x, t)dt =
{∫ s

0

g(x, t)dt : g : [0, T ]× R→ R is a measurable selection of G
}

and set G(u) =
∫ T

0
min

∫ u
0
G(x, s) ds dx for all u ∈ Lp([0, T ]).

Lemma 8 ([21, Lemma 3.1]). The functionals F ,G : Lp([0, T ]) → R are well
defined and Lipschitz on any bounded subset of Lp([0, T ]). Moreover, for all u ∈
Lp([0, T ]) and all u∗ ∈ ∂(F(u) + G(u)),

u∗(x) ∈ F (u(x)) +G(x, u(x)) for a.e. x ∈ [0, T ].

We define an energy functional for the problem (1) by setting

Iλ(u) =
1

p
‖u‖pα − λF(u)− µG(u) +

m∑
i=1

∫ u(xi)

0

Ii(s)ds

for all u ∈ X.

Lemma 9 ([34, Lemma 4.4]). The functional Iλ : X → R is locally Lipschitz.
Moreover, for each critical point u ∈ X of Iλ, u is a weak solution of (1).
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3. MAIN RESULTS

We are now ready to formulate our main result using the following assump-
tions:

(F4)

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp

<
1

pc
lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
ds

;

(I1) Ii(0) = 0, Ii(s)s > 0, s ∈ R, i = 1, 2, . . . ,m.

(A1) 1
p < α ≤ 1.

We define

c :=
1

(Γ(α))p

( Tαp−1

( (α−1)p
p−1 + 1)p−1

)
and

wα := (
2

T
)p
(∫ T/2

0

xp(1−α)dx+

∫ T

T/2

(x1−α − 2(x− T/2)1−α)pdx
)
.

Theorem 2. Assume that (F1)–(F4), (I1) and (A1) hold. Let

λ1 := 1
/

lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

,

λ2 := 1
/

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

1
pcξ

p
.

Then, for every λ ∈ (λ1, λ2), and every multifunction G satisfying (G1)–(G3), and

(G4)
∫ T

0
min

∫ t
0
G(x, s) ds dx ≥ 0 for all t ∈ R, and

(G5) G∞ := limξ→+∞
sup|t|≤ξ min

∫ t
0
G(x,s)ds

ξp < +∞,

if we put

µG,λ :=
1

pcG∞

(
1− λpc lim inf

ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
)
,

where µG,λ = +∞ when G∞ = 0, problem (1) admits an unbounded sequence of
weak solutions for every µ ∈ [0, µG,λ) in X.
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Proof. Our aim is to apply Theorem 1(b) to (1). To this end, we fix λ ∈ (λ1, λ2)
and let G be a multifunction satisfying (G1)–(G5). Since λ < λ2, we have

µG,λ :=
1

pcG∞

(
1− λpc lim inf

ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
)
> 0.

Now fix µ ∈ (0, µg,λ), set ν1 := λ1, and

ν2 :=
λ2

1 + pcµ
λ
λ2G∞

.

If G∞ = 0, then ν1 = λ1, ν2 = λ2 and λ ∈ (ν1, ν2). If G∞ 6= 0, since µ < µG,λ, we
have

λ

λ2
+ pcµG∞ < 1,

and so
λ2

1 + pcµ
λ
λ2G∞

> λ,

namely, λ < ν2. Hence, taking into account that λ > λ1 = ν1, we have λ ∈ (ν1, ν2).
Now, set

J(x, s) := F (s) +
µ

λ
G(x, s)

for all (x, s) ∈ [0, T ] × R. Assume j is identically zero in X, and for each u ∈ X,
take

N (u) :=
1

p
‖u‖pα +

m∑
i=1

∫ u(xi)

0

Ii(s)ds, Υ(u) :=

∫ T

0

min

∫ u

0

J(x, s) ds dx,

M(u) := Υ(u)− j(u) = Υ(u),

and
Iλ(u) := N (u)− λM(u) = N (u)− λΥ(u).

It is a simple matter to verify thatN is sequentially weakly lower semicontinuous on
X. Clearly, N ∈ C1(X). By Lemma 1, N is locally Lipschitz on X. By Lemma 8,
F and G are locally Lipschitz on Lp([0, T ]). So, Υ is locally Lipschitz on Lp([0, T ]).
Moreover, X is compactly embedded into Lp([0, T ]), so Υ is locally Lipschitz on
X. Furthermore, Υ is sequentially weakly upper semicontinuous. For all u ∈ X,
by (I1), ∫ u(xi)

0

Ii(s)ds > 0, i = 1, 2, . . . ,m.

Hence, we have

N (u) =
1

p
‖u‖pα,p +

m∑
i=1

∫ u(xi)

0

Ii(s)ds >
1

p
‖u‖pα,p
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for all u ∈ X. Hence, N is coercive and infX N = N (0) = 0.

We want to show that, under our hypotheses, there exists a sequence {un} ⊂
X of critical points for the functional Iλ, that is, every element un satisfies

I◦
λ
(un, v − un) ≥ 0, for every v ∈ X.

Now, we claim that γ < +∞. To see this, let {ξn} be a sequence of positive numbers
such that limn→+∞ ξn = +∞ and

lim
n→+∞

sup|t|≤ξn min
∫ t

0
J(x, s)ds

ξpn
= lim inf

ξ→+∞

sup|t|≤ξ min
∫ t

0
J(x, s)ds

ξp
.

Take

rn :=
1

pc
ξpn, for all n ∈ N.

Then, for all v ∈ X with N (v) < rn, taking into account that ‖v‖pα,p < prn and
(5), one has |v(x)| ≤ ξn for every x ∈ [0, T ]. Therefore, for all n ∈ N,

ϕ(rn) = inf
u∈N−1((−∞,r))

(
supv∈N−1((−∞,r))M(v)

)
−M(u)

r −N (u)

≤
sup‖v‖pα,p<prn

(
F(v) + µ

λ
G(v)

)
rn

≤
sup|t|≤ξn

( ∫ T
0

min
∫ t

0
F (s) ds dx+ µ

λ

∫ T
0

min
∫ t

0
G(x, s) ds dx

)
rn

≤ pc
[ sup|t|≤ξn min

∫ t
0
F (s)ds

ξpn
+
µ

λ

sup|t|≤ξn min
∫ t

0
G(x, s)ds

ξpn

]
.

Moreover, from conditions (F4) and (G5), we have

lim
n→+∞

sup|t|≤ξn min
∫ t

0
F (s)ds

ξpn
+ lim
n→+∞

µ

λ

sup|t|≤ξn min
∫ t

0
G(x, s)ds

ξpn
< +∞,

which implies

lim
n→+∞

sup|t|≤ξn min
∫ t

0
J(x, s)ds

ξpn
< +∞.

Therefore,

(6) γ ≤ lim inf
n→+∞

ϕ(rn) ≤ pc lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
J(x, s)ds

ξp
< +∞.

Since

sup|t|≤ξ min
∫ t

0
J(x, s)ds

ξp
≤

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
+
µ

λ

sup|t|≤ξ min
∫ t

0
G(x, s)ds

ξp
,
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and taking (G5) into account, we get

(7) lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
J(x, s)ds

ξp
≤ lim inf

ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
+
µ

λ
G∞.

Moreover, from Assumption (G4) we obtain

lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
J(x, s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
J(x, s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

(8) ≥ lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

.

Therefore, from (7) and (8), we observe that

λ ∈ (ν1, ν2)⊆


1

lim sup
ξ→+∞

∫ T
2

0 min
∫ 2Γ(2−α)ξ

T
x

0 F (s) ds dx+
∫ T
T
2

min
∫ 2Γ(2−α)ξ

T
(T−x)

0 F (s) ds dx

1
p ξ
pwα+

∑m
i=1

∫ 2Γ(2−α)ξ
T

(T−xi)
0 Ii(s)ds

,

1

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t
0
J(x,s)ds

1
pc ξ

p


⊆ (0, 1/γ).

For the fixed λ, the inequality (6) ensures that the condition (b) of Theorem
1 can be applied and either Iλ has a global minimum or there exists a sequence
{un} of weak solutions of the problem (1) such that limn→∞ ‖un‖ = +∞.

The next step is to show that for the fixed λ, the functional Iλ has no global
minimum. To do this, we first show that the functional Iλ is unbounded from
below. Since

1

λ
< lim sup

ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

≤ lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
J(x, s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
J(x, s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

,
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there exists a sequence {ξn} of positive numbers and a constant τ such that
limn→+∞ ξn = +∞ and
(9)

1

λ
< τ <

∫ T
2

0
min

∫ 2Γ(2−α)ξn
T x

0
J(x, s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξn

T (T−x)

0
J(x, s) ds dx

1
pξ
p
nwα +

∑m
i=1

∫ 2Γ(2−α)ξn
T (T−xi)

0
Ii(s)ds

for each sufficiently large n ∈ N. For all n ∈ N, set

wn(x) =

{
2Γ(2−α)ξn

T x, x ∈ [0, T2 ),
2Γ(2−α)ξn

T (T − x), x ∈ (T2 , T ].

Clearly wn(0) = wn(T ) = 0 and wn ∈ LP ([0, T ]). A direct calculation shows that

c
0D

α
xwn(x) =

{
2ξn
T x1−α, x ∈ [0, T2 ),

2ξn
T (x1−α − 2(x− T/2)1−α), x ∈ (T2 , T ]

Furthermore,∫ T

0

|c0Dα
t wn(x)|pdt =

∫ T/2

0

(|c0Dα
xwn(x)|pdt+

∫ T

T/2

(|c0Dα
xwn(x)|pdt

= (
2ξn
T

)p

{∫ T/2

0

xp(1−α)dt+

∫ T

T/2

(x1−α − 2(x− T/2)1−α)pdt

}
.

= wαξ
p
n.

Thus, wn ∈ X, in particular,

‖wn‖pα,p =

∫ T

0

|c0Dα
t wn(x)|pdt = wαξ

p
n,

and so

(10) N (wn) =
1

p
ξpnwα +

m∑
i=1

∫ wn(xi)

0

Ii(s)ds.

By (9) and (10), we see that

Iλ(wn) = N (wn)− λM(wn)

=
1

p
ξpnwα +

m∑
i=1

∫ wn(xi)

0

Ii(s)ds

− λ
(∫ T

2

0

min

∫ 2Γ(2−α)ξn
T x

0

J(x, s) ds dx+

∫ T

T
2

min

∫ 2Γ(2−α)ξn
T (T−x)

0

J(x, s) ds dx
)

<
(1

p
ξpnwα +

m∑
i=1

∫ wn(xi)

0

Ii(s)ds
)

(1− λτ)
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for every n ∈ N large enough. Since λτ > 1 and limn→+∞ ξn = +∞, we have

lim
n→+∞

Iλ(wn) = −∞.

Thus, the functional Iλ is unbounded from below, and so it has no global minimum.
Therefore, from part (b2) of Theorem 1, the functional Iλ admits a sequence of
critical points {un} ⊂ Eα,p0 such that limn→+∞N (un) = +∞. Since N is bounded
on bounded sets, {un} has to be unbounded, i.e.,

lim
n→+∞

‖un‖α,p = +∞.

Moreover, if un ∈ Eα,p0 is a critical point of Iλ, clearly, by definition,

I◦
λ
(un, v − un) ≥ 0, for every v ∈ Eα,p0 .

Finally, by Lemma 9, the critical points of Iλ are weak solutions of the problem (1)
and this proves the theorem.

Remark 2. Under the conditions

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
= 0

and

lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

= +∞,

from Theorem 2, we see that for every λ > 0 and for each µ ∈
[
0, 1

pcG∞

)
, problem

(1) admits a sequence of weak solutions that is unbounded in X. Moreover, if
G∞ = 0, the result holds for every λ > 0 and µ ≥ 0.

The following result is a special case of Theorem 2 with µ = 0.

Theorem 3. Assume that (F1)–(F4), (I1) and (A1) hold. Then, for each

λ ∈

(
1

lim supξ→+∞

∫ T
2

0 min
∫ 2Γ(2−α)ξ

T
x

0 F (s) ds dx+
∫ T
T
2

min
∫ 2Γ(2−α)ξ

T
(T−x)

0 F (s) ds dx

1
p ξ
pwα+

∑m
i=1

∫ 2Γ(2−α)ξ
T

(T−xi)
0 Ii(s)ds

,

1

lim infξ→+∞
sup|t|≤ξ min

∫ t
0
J(x,s)ds

1
pc ξ

p

)
,
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the problem
xD

α
Tφp

(
0D

α
xu(x)

)
+ φp(u(x)) ∈ λF (u(x)), a.e. x ∈ [0, T ],

x 6= xj ,
∆(xD

α−1
T (c0D

α
xu))(xj) = Ij(u(xj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0

has an unbounded sequence of weak solutions in X.

Example 1. We choose p = 4, α = 0.8, x1 = 1
2 , x2 = 7

4 and I1(s) = I2(s) = 2s,
for all s ∈ R. Consider the problem

(11)


xD

0.8
2 φ4

(
0D

0.8
x u(x)

)
+ φ4(u(x)) ∈ λF (u(x)), a.e. x ∈ [0, 2],

x 6= xj ,
∆(xD

−0.2
2 (c0D

0.8
x ))(xj) = Ij(u(xj)), j = 1, 2,

u(0) = u(2) = 0

where, for s ∈ R,

F (s) =


{0}, if s < 2−1/3,

[0, 1], if s = 2−1/3,

{s− 2−1/3 + 1}, if s > 2−1/3.

Simple calculations show that c ' 1.8779,

sup
|t|≤2−1/3

min

∫ t

0

F (s)ds = 0,

and ∫ 1

0
min

∫ Γ(2−0.8)ξx

0
F (s) ds dx+

∫ 2

1
min

∫ Γ(2−0.8)ξ(2−x)

0
F (s) ds dx

1
4cξ

4w0.8 +
∑2
i=1

∫ Γ(2−0.8)ξ(2−xi)
0

Ii(s)ds

'
∫ 1

0
min

∫ 0.9182ξx

0
F (s) ds dx+

∫ 2

1
min

∫ 0.9182ξ(2−x)

0
F (s) ds dx

0.2835ξ4w0.8 +
∫ 0.4591ξ

0
2sds+

∫ 0.2296ξ

0
2sds

' 1

0.2835ξ4w0.8 + 0.2634ξ2
2
(∫ 1

0

min

∫ 0.9182ξx

0

F (s) ds dx
)

' 2

0.2835ξ4w0.8 + 0.2634ξ2

(∫ 2−1/3

0

∫ 0.9182ξx

0

maxF (s) ds dx

+

∫ 1

2−1/3

∫ ξx

0

maxF (s) ds dx
)
> 0

for some ξ ∈ R. Thus,

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

0.2835ξ4
= 0
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and

lim sup
ξ→+∞

∫ 1

0
min

∫ Γ(2−0.8)ξx

0
F (s) ds dx+

∫ 2

1
min

∫ Γ(2−0.8)ξ(2−x)

0
F (s) ds dx

0.2835ξ4w0.8 +
∑2
i=1

∫ Γ(2−0.8)ξ(2−xi)
0

Ii(s)ds
> 0.

Hence, by Theorem 3, problem (11), for λ lying in a convenient interval, has an
unbounded sequence of weak solutions in E0.8,4

0 .

Next, we wish to point out the following consequences of Theorem 3 using
the conditions

(F5) lim infξ→+∞
sup|t|≤ξ min

∫ t
0
F (s)ds

ξp < 1
pc ;

(F6) lim supξ→+∞

∫ T
2

0 min
∫ 2Γ(2−α)ξ

T
x

0 F (s) ds dx+
∫ T
T
2

min
∫ 2Γ(2−α)ξ

T
(T−x)

0 F (s) ds dx

1
p ξ
pwα+

∑m
i=1

∫ 2Γ(2−α)ξ
T

(T−xi)
0 Ii(s)ds

> 1.

Corollary 1. Assume that (F1)–(F3), (F5)–(F6), (I1) and (A1) hold. Then, the
problem 

xD
α
Tφp

(
0D

α
xu(x)

)
+ φp(u(x)) ∈ λF (u(x)), a.e. x ∈ [0, T ],

x 6= xj ,
∆(xD

α−1
T (c0D

α
xu))(xj) = Ij(u(xj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0

has an unbounded sequence of weak solutions in X.

We conclude our paper with two more consequences of our main result. The
following corollary is an immediate consequence of Corollary 1.

Corollary 2. Assume that (F1)–(F3) hold, Ii(0) = 0, and Ii(s)s > 0 for s ∈ R,
i = 1, 2, . . . ,m. If

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
= 0

and

lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα −

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

= +∞,

then problem (1) with λ = 1 and µ = 0 admits a sequence of pairwise distinct weak
solutions.

Corollary 3. Let F1 : R → 2R be an upper semicontinuous multifunction with
compact convex values, such that minF1,maxF1 : R → R are Borel measurable
and |ξ| ≤ a(1 + |s|r1−1) for all s ∈ R, ξ ∈ F1(s), and r1 > 1 (a > 0). In addition,
assume that:
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(C1) lim inf
ξ→+∞

sup|t|≤ξ min
∫ t
0
F1(s)ds

ξp < +∞;

(C2) lim sup
ξ→+∞

∫ T
2

0 min
∫ 2Γ(2−α)ξ

T
x

0 F1(s) ds dx+
∫ T
T
2

min
∫ 2Γ(2−α)ξ

T
(T−x)

0 F1(s) ds dx

1
p ξ
pwα+

∑m
i=1

∫ 2Γ(2−α)ξ
T

(T−xi)
0 Ii(s)ds

= +∞.

Then, for every multifunction F2 : R → 2R that is upper semicontinuous with
compact convex values such that minF2, maxF2 : R→ R are Borel measurable and
|ξ| ≤ b(1 + |s|r2−1) for all s ∈ R, ξ ∈ F2(s), r2 > 1 (b > 0), and that satisfies the
conditions

(12) sup
t∈R

min

∫ t

0

F2(s)ds ≤ 0

and
(13)

lim inf
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F2(s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F2(s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

> −∞,

for each

λ ∈
(

0,
1

lim infξ→+∞
sup|t|≤ξ min

∫ t
0
F1(s)ds

1
pc ξ

p

)
,

the problem
xD

α
Tφp

(
0D

α
xu(x)

)
+ φp(u(x)) ∈ λF (u(x)) + µG(x, u(x)), a.e. x ∈ [0, T ],

x 6= xj ,
∆(xD

α−1
T (c0D

α
xu))(xj) = Ij(u(xj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0

has an unbounded sequence of weak solutions in X.

Proof. Set F (t) = F1(t) + F2(t) for all t ∈ R. Conditions (C2) and (13) yield

lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
F (s) ds dx+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
F (s) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

= lim sup
ξ→+∞

∫ T
2

0
min

∫ 2Γ(2−α)ξ
T x

0
(F1(s) + F2(s)) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

+

∫ T
T
2

min
∫ 2Γ(2−α)ξ

T (T−x)

0
(F1(s) + F2(s)) ds dx

1
pξ
pwα +

∑m
i=1

∫ 2Γ(2−α)ξ
T (T−xi)

0
Ii(s)ds

= +∞.
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Moreover, conditions (C1) and (12) ensure that

lim inf
ξ→+∞

sup|t|≤ξ min
∫ t

0
F (s)ds

ξp
≤ lim inf

ξ→+∞

sup|t|≤ξ min
∫ t

0
F1(s)ds

ξp
< +∞.

Since

1

lim infξ→+∞
sup|t|≤ξ min

∫ t
0
F (s)ds

1
pc ξ

p

≥ 1

lim infξ→+∞
sup|t|≤ξ min

∫ t
0
F1(s)ds

1
pc ξ

p

,

by applying Theorem 3, we have the desired conclusion.

Remark 3. We observe that in Theorem 2 we can replace ξ → +∞ with ξ → 0+,
and then by the same argument as in the proof of Theorem 2, but using conclusion
(c) of Theorem 1 instead of (b), problem (1) has a sequence of weak solutions that
strongly converges to 0 in X.
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