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COVERING COMPLETE GRAPHS BY

MONOCHROMATICALLY BOUNDED SETS

Luka Milićević

Given a k-colouring of the edges of the complete graph Kn, are there k − 1

monochromatic components that cover its vertices? This important special

case of the well-known Lovász-Ryser conjecture is still open. In this paper we

consider a strengthening of this question, where we insist that the covering

sets are not merely connected but have bounded diameter. In particular, we

prove that for any colouring of E(Kn) with four colours, there is a choice

of sets A1, A2, A3 that cover all vertices, and colours c1, c2, c3, such that for

each i = 1, 2, 3 the monochromatic subgraph induced by the set Ai and the

colour ci has diameter at most 80.

1. INTRODUCTION

Given a graph G, whose edges are coloured with a colouring χ:E(G) → C
(where adjacent edges are allowed to use the same colour), given a set of vertices A,
and a colour c ∈ C, we write G[A, c] for the subgraph induced by A and the colour
c, namely the graph on the vertex set A and the edges {xy:x, y ∈ A,χ(xy) = c}. In
particular, when A = V (G), we write G[c] instead of G[V (G), c]. Finally, we also
use the usual notion of the induced subgraph G[A] which is the graph on the vertex
set A with edges {xy:x, y ∈ A, xy ∈ E(G)}. We usually write [n] = {1, 2, . . . , n}
for the vertex set of Kn.

Our starting point is the following conjecture of Gyárfás.
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Conjecture 1. ([2], [4]) Let k be fixed. Let G be a k-edge-coloured Kn. Then we
can find sets A1, . . . , Ak−1 whose union is [n], and colours c1, . . . , ck−1 such that
G[Ai, ci] is connected for each i ∈ [k − 1].

This is an important special case of the well-known Lovász-Ryser conjecture,
which we now state.

Conjecture 2. (Lovász-Ryser conjecture. [6], [9]) Let G be a graph whose maxi-
mum independent sets have size α(G). Then, whenever E(G) is k-coloured, we can
cover G by at most (k − 1)α(G) monochromatic components.

Conjectures 1 and 2 have attracted a great deal of attention. When it comes
to the Lovász-Ryser conjecture, we should note the result of Aharoni ([1]), who
proved the case of k = 3. For k ≥ 4, the conjecture is still open. The special case
of complete graphs was proved by Gyárfás ([3]) for k ≤ 4, and by Tuza ([10]) for
k = 5. For k > 5, the conjecture is open.
Let us also mention some results similar in the spirit to Conjecture 6. In [8], in-
spired by questions of Gyárfás ([2]), Ruszinkó showed that every k-colouring of
the edges of Kn has a monochromatic component of order at least n/(k − 1) and
of diameter at most 5. This was improved by Letzter ([5]), who showed that in
fact there are monochromatic triple stars of order at least n/(k − 1). This bound
is known to be tight in some cases, as shown by Gyárfás in [3]. In fact, Gyárfás
proves that if (k − 1)2|n and there is an affine plane of order k − 1, then one may
find a k-edge-colouring of Kn where no monochromatic component is larger than
n/(k − 1). For more results and questions along these lines, we refer the reader to
surveys of Gyárfás ([2], [4]).

In a completely different direction, relating to contraction mappings on metric
spaces, the following theorem is proved in [7]. (We mention in passing that the
current paper is self-contained, and in particular no knowledge of [7] is assumed.)

Theorem 3. There is an absolute constant C > 0 such that the following holds.
If 0 < λ < C, and if {f, g, h} are commuting continuous maps on a complete
metric space (X, d) with the property that for any two distinct points x, y ∈ X
we have min{d(f(x), f(y)), d(g(x), g(y)), d(h(x), h(y))} ≤ λd(x, y), then the maps
f, g, h have a common fixed point. In fact, we may take C = 10−18.

One of the ingredients in the proof of Theorem 3 was the following simple
lemma.

Lemma 4 ([7], Lemma 5.5). Suppose that G is a Kn with a 3-edge-colouring.
Then we may find colours c1, c2, (not necessarily distinct), and sets V1, V2 such
that V1 ∪ V2 = [n] and G[V1, c1], G[V2, c2] are each connected and of diameter at
most 8.

Proof sketch. Let x be a vertex and let χ be the given colouring. Define Ai =
{a:χ(ax) = i}. Thus, A1, A2, A3 are non-empty, as otherwise we are done, by
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taking Ai ∪ {x} for the non-empty Ai. We now try to ‘absorb’ vertices from Ai
inside Aj . To this end, we define Bi,j = {a ∈ Ai: (∀u ∈ Aj)χ(au) 6= j}, so that

diamj

(
{x} ∪ Aj ∪ (Ai \ Bi,j)

)
≤ 4. Hence, when {i, j, k} = [3] and Bi,j and Bi,k

are disjoint, then we are done. Thus, we may assume that all Bi,j are non-empty.

All edges between Bi,j and Bj,i are of colour k, hence diamkG[Bi,j∪Bj,i] ≤ 2.
Pick any v ∈ B3,1 ∩B3,2. If χ(vu) = 3 for some u ∈ B1,2, then

diam3G[B1,2 ∪B2,1 ∪A3 ∪ {x}] ≤ 5,diam1G[A1 ∪ (A2 \B2,1) ∪ {x}] ≤ 4

completing the proof. Similarly, we deduce that when w ∈ B2,1, χ(vw) 6= 3. There-
fore, when v ∈ B3,1 ∩B3,2, then χ(B1,2, v) = 2 and χ(B2,1, v) = 1.

If χ(uv) = 2 for some u ∈ A1 \ B1,2, then take A1 ∪ A2 ∪ {x, v} with colour
2, and A3 ∪ {x} with colour 3 to prove the lemma, and argue analogously when
χ(wv) = 1 for w ∈ A2 \ B2,1. Hence, we may assume that χ(A1 \ B1,2, v) = 3 and
χ(A2 \B2,1, v) = 3. But now it follows that

diam3G[B1,2 ∪B2,1] ≤ 2,diam3G[[n] \ (B1,2 ∪B2,1)] ≤ 4

completing the proof.

In the case of two colours, we also note a very slight strengthening of the
classical observation due to Erdős and Rado which says that for every graph G
either G or Gc is connected.

Lemma 5. Suppose that G is Kn with a 2-edge-colouring. Then we may find a
colour c such that G[c] is connected and of diameter at most 3.

Proof sketch. After a short inspection, it is clear that the claim holds for n ≤ 4.
For n ≥ 5, for each pair of vertices x, y, let C(x, y) be the set of colours c ∈ [2]
such that there is a set of at most four vertices V such that x, y ∈ V and G[V ] is
c-connected and of diameter at most 3. If 1 ∈ C(x, y) for all pairs, we are done,
and similarly if 2 ∈ C(x, y) for all pairs, we are also done. Otherwise, there are
u, v, w, z such that 1 /∈ C(u, v), 2 /∈ C(w, z). Note that some of these vertices
might coincide, but V = {u, v, w, z} has size at least 3. Consider the subgraph
G[V ] which is monochromatically connected and of diameter at most 3, to obtain
a contradiction.

In [7], a common generalization of these statements and a strengthening of
Conjecture 1 was conjectured.

Conjecture 6. For every k, there is an absolute contant Ck such that the fol-
lowing holds. Given any colouring of the edges of Kn in k colours, we can find
sets A1, A2, . . . , Ak−1 whose union is [n], and colours c1, c2, . . . , ck−1 such that
Kn[Ai, ci] is connected and of diameter at most Ck, for each i ∈ [k − 1].
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The main result of this paper is

Theorem 7. Conjecture 6 holds for four colours, and one may take C4 = 80.

1.1. An outline of the proof

We begin the proof by establishing the weaker Conjecture 1 for the case of four
colours. Although this was proved by Gyárfás in [3], the reasons for giving a proof
here are twofold. Firstly, we actually give a different reformulation of Conjecture 1
that has a more geometric flavour. The proof given here and the reformulation we
consider emphasize the importance of the graph Gk, defined as a direct product of
k copies of Kn, to Conjecture 1. Secondly, by giving this proof we make the paper
self-contained.
We also need some auxiliary results about colourings with two or three colours,
like Lemmas 5 and 4 mentioned above. In particular, we generalize the case of two
colours to complete multipartite graphs. Another auxiliary result we use is the fact
that Gk essentially cannot have large very sparse graphs.

In the remainder of the outline, let G stand for 4-edge-colouring of Kn.

The main tool in our proof is the notion of (c3, c4)-layer mappings, where
c3, c4 are two colours. For a non-empty P ⊂ N2

0 (where N0: = N ∪ {0}), this is
a mapping L:P → P(n), (where [n] is the vertex set of our graph G), with the
property that

1. sets L(A) partition [n] as A ranges over P ,

2. and for A,B ∈ P with |A1 − B1|, |A2 − B2|≥ 2, we have all edges between
L(A) and L(B) in G coloured using only c3, c4.

This is a generalization of the idea that if we fix a vertex x0 and we assign
A(x) = (dc1(x0, x), dc2(x0, x)) ∈ N2

0 to each vertex x, where dc1 , dc2 are distances
in colours c1, c2 (which are the remaining two colours), then if A(x), A(y) satisfy

|A(x)
1 −A(y)

1 |, |A
(x)
2 −A(y)

2 |≥ 2, the edge xy cannot be coloured by c1 or c2.
Given a subset P ′ of the domain P , we say that it is k-distant if for all distinct
A,B ∈ P ′ we have |A1 −B1|, |A2 −B2|≥ k. Once we have all this terminology set
up, we begin building up structure in our graph, essentially as follows:

Step 1. We prove that if a (c3, c4)-layer mapping has a 3-distant set of size
at least 4, then Theorem 7 holds.

Step 2. We continue the analysis of distant sets, and prove essentially that if
a (c3, c4)-layer mapping has a 6-distant set of size at least 3, then Theorem 7
holds.

Step 3. We prove Theorem 7 when every colour induces a connected sub-
graph.
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Step 4. We prove Theorem 7 when any two monochromatic components of
different colours intersect.

Step 5. We put everything together to finish the proof.

Organization of the paper. In the next subsection, we briefly discuss a
reformulation of Conjecture 1. In Section 2, we collect some auxiliary results, in-
cluding results on 2-colourings of edges of complete multipartite graphs and the
results on sparse subgraphs of Gk and indepenent sets in G3. In Section 3, we
prove Conjecture 1 for four colours, reproving a result of Gyárfás. The proof of
Theorem 7 is given in Section 4, with subsections spliting the proof into the steps
described above. Finally, we end the paper with some concluding remarks in Sec-
tion 5.

1.2. Another version of Conjecture 1

Let l be an integer, define the graph Gl with vertex set Nl0 and put an edge
between any two sequences that differ at every coordinate. Equivalently, Gl is the
direct product of l copies of KN0

(the complete graph on the vertex set N0). We
formulate the following conjecture.

Conjecture 8. Given a finite set of vertices X ⊂ Nl0, we can find l sets X1, . . . , Xl ⊆
X that cover X and each Xi is either contained in a hyperplane of the form {xi = c}
or Gl[Xi] is connected.

This conjecture is actually equivalent to Conjecture 1.

Proposition 9. Conjectures 1 and 8 are equivalent for k = l + 1.

Proof. Conjecture 1 implies Conjecture 8. Let X ⊂ Nl0 be a finite set. Let n = |X|
and define an (l + 1)-colouring χ:E(Kn) → [l + 1] by setting χ(xy) = i, where i
is the smallest coordinate index such that xi = yi, otherwise, when x and y dif-
fer in all coordinates, set χ(xy) = l + 1. If Conjecture 1 holds, we may find sets
A1, A2, . . . , Al that cover [n], and colours c1, c2, . . . , cl such that Kn[Ai, ci] are all
connected. Fix now any i, and let B ⊂ X be the set of vertices corresponding to
Ai. If ci ≤ l, then for any x, y ∈ B, there is a sequence of vertices z1, z2, . . . , zm ∈ B
such that xi = (z1)i = (z2)i = · · · = (zm)i = yi, so xi = yi. Hence, B is subset of
the plane {xi = v} for some value v. Otherwise, if c = l + 1, that means that the
edges of Kn[Ai, ci] correspond to edges of Gl[B], so Gl[B] is connected, as desired.

Conjecture 8 implies Conjecture 1. Let χ:E(Kn) → [k] be any k-colouring

of the edges of Kn. For every colour c, look at components C
(c)
1 , . . . , C

(c)
nc of

Kn[c]. For each choice of x1, x2, . . . , xk−1 with xc ∈ [nc] for c ∈ [k − 1], we

define Cx = Cx1,x2,...,xk−1
= ∩c∈[k−1]C

(c)
xc , which is the intersection of monochro-

matic components, one for each colour except k. Let X ⊂ Nk−1 be the set of all
(k − 1)-tuples x for which Cx is non-empty. If Conjecture 8 holds, then we can
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find A1, A2, . . . , Ak−1 that cover X such that each Ai is either contained in a hy-
perplane, or induces a connected subgraph of Gk−1. If Ai ⊂ {xc = v}, then the

corresponding intersections Cx for x ∈ Ai are all subset of C
(c)
v . On the other hand,

if Gk−1[Ai] is connected, then taking any adjacent x, y ∈ Gk−1[Ai], we have that
xc 6= yc for all c ∈ [k − 1]. Hence all the edges of between Cx and Cy are coloured
by k. Hence, all the sets Cx for x ∈ Ai are subset of the same component of Kn[k].
This completes the proof of the proposition.

2. AUXILIARY RESULTS

As suggested by its title, this section is devoted to deriving some auxiliary
results. Firstly we extend Lemma 5 to complete multipartite graphs. The case of
bipartite graphs is slightly different from the general case of more than two parts,
and is stated separately. We also introduce additional notation. Given a colour c
and vertices x, y we write dc(x, y) for the distance between x and y in G[c]. If they
are not in the same c-component, we write dc(x, y) =∞. In particular, dc(x, y) <
∞ means that x, y are in the same component of G[c]. Further, we write Bc(x, r)
for the c-ball of radius r around x, defined as Bc(x, r) = {y: dc(x, y) ≤ r}, where c is
a colour, x is a vertex, and r is a nonnegative integer. For any graph G, throughout
the paper, the diameter of G, written diamG, is the supremum of all finite distances
between two vertices of G. Note that this is a slightly unusual definition, since more
traditionally infinite diameter implies that the graph is disconnected. However, in
our case diamG = ∞ only happens when G has arbitrarily long induced paths
(as we focus on the finite graphs in this paper, this will not occur). In other
words, the diameter of a graph G defined here is the supremum of diameters of
all components of G. For a colour c and a set of vertices A, the c-diameter of
A, writen diamcA, is the diameter of G[A, c]. We use the standard notation for
complete multipartite graphs, so Kn1,n2,...,nr stands for the graph with r vertex
classes, which are independent sets, of sizes n1, n2 . . . , nr, and all edges between
different classes are present in the graph.

Lemma 10. Suppose that the edges of G = Kn1,n2 are coloured in two colours.
Then, one of the following holds:

1. either there are two vertices u, v in the same vertex class, such that all edges
from u have the first colour, and all edges from v have the second colour, or

2. there is a colour c, such that G[c] is connected and of diameter at most 7, or

3. there are partitions [n1] = A1 ∪B1 and [n2] = A2 ∪B2 such that all edges in
(A1 × A2) ∪ (B1 × B2) are of one colour, and all the edges in (A1 × B2) ∪
(B1 ×A2) are of the other colour.

Proof. Let χ:E → [2] be the given colouring. Suppose that the first possibility in
the conclusion does not hold. Note that if u and v are vertices such that all edges
incident to u are coloured by 1 and all edges incident to v are coloured by 2, then u
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and v are forced to be in the same vertex class, which we forbade. Hence, without
loss of generality, every vertex has at least one edge coloured by 1. Furthermore,
if all edges of some vertex w are coloured by 1, then the second possibility in the
conclusion holds. Thus, we may in fact assume that every vertex is incident to
edges of both colours.
We start by observing the following. If there are two vertices v1, v2 such that for
colour 1 the inequality 6 ≤ d1(v1, v2) <∞ holds, then for every vertex u such that
χ(uv1) = 1, we must also have d2(u, v1) ≤ 3. Indeed, let (v1 = w0, w1, w2, . . . , wr =
v2) be a minimal 1-path from v1 to v2. Hence r ≥ 6, the vertices wi with an
index of the same parity belong to the same vertex class of G = Kn1,n2

and the
edges v1w3 = w0w3, w3w6, w6u ∈ E(G) are all of colour 2 (otherwise, we get a
contradiction to the fact that d1(wi, v2) = r − i), implying that d2(v1, u) ≤ 3.
Now, suppose that a 1-component 1 has diameter at least 7. Let x1, x2 ∈ 1 be such
that d1(x1, x2) = 7. The observation above tells us that if a vertex y is adjacent
(in G) to x1, and d2(x1, y) > 1, then χ(x1, y) = 1, so d2(x1, y) ≤ 3. Hence, every
vertex y adjacent (in G) to x1, satisfies d2(x1, y) ≤ 3. Similarly, any vertex y
adjacent to x2 satisfies d2(x2, y) ≤ 3. But, x1, x2 are in different vertex classes (as
their 1-distance is odd), so their neighbourhhoods cover the whole vertex set, and
x1x2 is an edge of colour 2 as well, from which we conclude that G[2] is connected
and of diameter at most 7. Thus, if any monochromatic component has diameter
at least 7, the lemma follows, so assume that this does not occur.
Now we need to understand the monochromatic components. From the work above,
it suffices to find monochromatic components of the desired structure, the diameter
is automatically bounded by 6. Suppose that there are at least three 1-components,
X1∪X2, Y1∪Y2, Z1∪Z2 with X1, Y1, Z1 subsets of one class of Kn1,n2

and X2, Y2, Z2

subsets of the other. Recall that each vertex has a 1-coloured edge, so the sets
X1, . . . , Z2 are non-empty. Let u, v ∈ X1 ∪ Y1 ∪ Z1 be arbitrary vertices. Then we
can find w ∈ X2 ∪ Y2 ∪ Z2 in different 1-component from u, v. Hence, χ(uw) =
χ(wv) = 2, so d2(u, v) ≤ 2. Therefore, both vertex classes of G are 2-connected
and consequently the whole graph is 2-connected.
Finally, assume that each colour has exactly two monochromatic components. Let
[n1] = A1∪B1, [n2] = A2∪B2 be such that A1∪A2, B1∪B2 are the 1-components.
Hence, A1 ∩B1 = A2 ∩B2 = ∅, and all edges in A1×B2 and B1×A2 are of colour
2. Thus, sets A1 ∪B2 and B1 ∪A2 are 2-connected and cover the vertices of G, so
they must be the two 2-components. Thus, all edges in A1×A2 and B1×B2 must
be coloured by 1, proving the lemma.

Lemma 11. Let r ≥ 3, and suppose that G = Kn1,n2,...,nr
is a complete r-partite

graph. Suppose that the edges of G are 2-coloured. Then, one of the following holds.

1. Either there are two vertices u and v in the same vertex class such that all
edges incident to u are of one colour, and all edges incident to v are of the
other colour, or

2. there is a colour c such that G[c] is connected and of diameter at most 9.
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Proof. Let χ:E(G) → [2] be the given colouring. We begin the proof by making
the following observations.

Claim. For any two vertices u, v, we have dc(u, v) ≤ 3 for some colour or
u, v lie in the same vertex class and all edges from u are coloured in one colour,
and all edges from v are coloured in the other colour.

Proof of the claim. Suppose that dc(u, v) ≤ 3 does not hold for either colour.
Clearly, u and v lie in the same vertex class, and for any vertex w in a differ-
ent vertex class we have χ(uw) 6= χ(vw). Suppose that u has edges of both colours,
let w and z be vertices satisfying χ(uw) = 1, χ(uz) = 2. Without loss of gener-
ality, w and z are in different vertex classes (otherwise, pick arbitrary vertex t in
a vertex class different from those of u and w, and change w to t if χ(ut) = 1,
otherwise change z to t). Hence, χ(vw) = 2, χ(vz) = 1. If χ(wz) = 1, then the
path (u,w, z, v) shows d1(u, v) ≤ 3, and if χ(wz) = 2, then the path (u, z, w, v)
shows d2(u, v) ≤ 3, both of which result in a contradiction, proving the claim.

Hence, we are either done, or we may assume that for any two vertices x, y
in the given graph we have dc(x, y) ≤ 3 for a suitable colour. Define a new 2-edge-
colouring χ′ of the complete graph on vertices V (G), by χ′(x, y) = c for some c
such that dc(x, y). By Lemma 5, we may find c such that all pairs of vertices are
on distance at most 3 in colour c under the edge-colouring χ′. Returning to the
original colouring χ, we get that G[c] is connected and of diameter at most 9, as
desired.

2.1. Induced subgraphs of Gl

Recall that Gl is the graph on Nl0, with edges between pairs of points all
of whose coordinates differ. In this subsection we prove a few properties of such
graphs, particularly focusing on G3. We begin with a general statement, which will
be reproved for specific cases with stronger conclusions.

Lemma 12. If S is a set of vertices in Gl and the maximum degree of Gl[S] is at
most d, then the number of non-isolated vertices of Gl[S] is at most Ol,d(1).

Proof. By Ramsey’s theorem we have an N such that whenever E(KN ) is coloured
using 2l − 1 colours, there is a monochromatic Kl+1. Let S′ be the set of non-
isolated vertices in S. We show that |S′|< (d2 + d + 1)N . Suppose not. Since
the maximum degree is at most d, we have a subset S′′ ⊂ S of size |S′′|≥N such
that sets {s}∪N(s) are disjoint for all s ∈ S′′ (simply pick a maximal such subset,
their second neighbourhoods must cover the whole S′). In particular, S′′ is an
independent set in Gl, so for every pair of vertices x, y ∈ S, the set I(x, y) = {i ∈
[l]:xi = yi} is non-empty. Thus, I:E(KS′′) → P(l) \ {∅} is a (2l − 1)-colouring
of the edges of a complete graph KS′′ on the vertex set S′′. Due to the choice of
N , there is a monochromatic clique on subset T ⊂ S′′ of size at least l + 1, whose
edges are coloured by some set I0 6= ∅. Hence, xi 6= ti for all i ∈ [l] and for distinct
t′, t′′ ∈ T we have t′i = t′′i if and only if i ∈ I0. Take a vertex t ∈ T , and since t
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is not isolated and the neighbourhoods of vertices in S′′ are disjoint, we can find
x ∈ S′ such that tx is an edge, but t′x is not for other t′ ∈ T . Thus, xi 6= t′i for
all t′ ∈ T and i ∈ I0. But, xt′ is not an edge for t′ ∈ T \ {t}, so we always have
i ∈ [l] \ I0 such that xi = t′i. But, for each i ∈ I0, the values of t′i are distinct for
each t′ ∈ T . Hence, for each i, there is at most one vertex t′ ∈ T \ {t} such that
xi = t′i. Therefore |T |−1 ≤ |[l] \ I0|≤ l− 1, so |T |≤ l, which is a contradiction.

We may somewhat improve on the bound in the proof of the lemma above by
observing that for colour I0 we only need a clique of size l− |I0|+2. Thus, instead
of the Ramsey number

R(l + 1, l + 1, . . . , l + 1︸ ︷︷ ︸
2l−1

),

we could use
R(l + 2− |I1|, l + 2− |I2|, . . . , l + 2− |I2l−1|),

where Ii are the non-empty sets of [l]. But, even for paths in G3, which we shall
use later, taking l = 3, d = 2, we get the final bound of 7R(2, 3, 3, 3, 4, 4, 4), where 7
comes from d2 + d+ 1 factor we lose when moving from S′ to S′′. We now improve
this bound.

Lemma 13. If S is a set of vertices of G3 such that G3[S] is a path, then |S|≤ 30.

Proof. Let S = {s1, s2, . . . , sr} be such that (s1, s2, . . . , sr) is an induced path in
G3, so the only edges are sisi+1.
Case 1. For all i ∈ {4, 5, . . . , 10}, si coincides with one of s1 or s2 in at least two
coordinates.

Since s1s2 is an edge, s1 and s2 have all three coordinates different. Thus,
for i ∈ {4, 5, . . . , 10}, we have (si)c ∈ {(s1)c, (s2)c} for all coordinates c. Hence,
there are only at most 6 possible choices of si (as si 6= s1, s2), so r ≤ 9.
Case 2. There is i0 ∈ {4, 5, . . . , 10} with at most one common coordinate with each
of s1, s2. Since s1si0 , s2si0 are not edges, w.l.o.g. we have s1 = (x1, x2, x3), s2 =
(y1, y2, y3), si0 = (x1, y2, z3), where xi 6= yi, z3 /∈ {x3, y3}. Consider any point sj ,
for j ≥ i0 + 2. It is not adjacent to any of s1, s2, si0 . If (sj)1 = x1 and (sj)2 6= y2,
then (sj)3 = y3. Similarly, if (sj)1 6= x1 and (sj)2 = y2, then (sj)3 = x3. Also, if
(sj)1 6= x1, (sj)2 6= y2, then sj = (y1, x2, z3). Hence, for j ≥ i0 + 2, the point sj is
on one of the lines

(x1, y2, ·), (x1, ·, y3), (·, y2, x3) or it is the point (y1, x2, z3),

where (a, b, ·) stands for the line {(a, b, z): z arbitrary}, etc. Note that a point on
(x1, y2, ·) is not adjacent to any point on (·, y2, x3), and the same holds for lines
(x1, y2, ·) and (x1, ·, y3). Hence, along our path, a point on the line (x1, ·, y3) is
followed either by a point on (·, y2, x3) or the point (y1, x2, z3) (the latter may
happen only once). In any case, if |S|≥ 30, then among si0+2, si0+3, . . . , si0+20, we
must get a contiguous sequence sj , sj+1, . . . , sj+7 of points

sj , sj+2, sj+4, sj+6 ∈ (x1, ·, y3), sj+1, sj+3, sj+5, sj+7 ∈ (·, y2, x3).
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Finally, we look at A = sj , B = sj+2, C = sj+5, D = sj+7. These four points form
an independent set, but A 6= B gives A2 6= B2, so one of A2 6= y2, B2 6= y2 holds,
and similarly, one of C1 6= x1, D1 6= x1 holds as well. Choosing a point among A,B
and a point among C,D for which equality does not hold gives an edge, which is
impossible.

Finally, we study independent sets in G3. Note that Lemma 12 in this case
does not tell us anything about the structure of such sets. When we refer to lines
or planes, we always think of very specific cases, namely the lines are the sets of
the form {x:xi = a, xj = b} and the planes are {x:xi = a}. Similarly, collinearity
and coplanarity of points have stronger meaining, and imply that points lie on a
common line or plane defined as above.

Lemma 14. Let S be a set of vertices in G3. If every two points of S are collinear,
then S is a subset of a line. If every three points of S are coplanar, then S is a
subset of a plane.

Proof. We first deal with the collinear case. Take any pair of points, x, y ∈ S,
w.l.o.g. they coincide in the first two coordinates. Take third point z ∈ S. If z does
not share the values of the first two coordinates with x and y, then we must have
x3 = z3 = y3, which is impossible. As z was arbitary, we are done.
Suppose now that we have all triples coplanar. W.l.o.g. we have a noncolinear pair
x, y, which only coincide in the first coordinate. Then all other points may only be
in the plane {p: p1 = x1}.

Lemma 15. (Structure of the independent sets of size 4.) Given an independent
set I of G3 of size 4 (at least) one of the following alternatives holds.

(S1) I is coplanar, or

(S2) I = {(a, b, c), (a′, b′, c), (a′, b, c′), (a, b′, c′)}, where a 6= a′; b 6= b′ and
c 6= c′, or

(S3) up to permutation of coordinates I = {(a, b, c), (a, b, c′), (a, b′, x), (a′, b, x)},
where a 6= a′; b 6= b′ and c 6= c′.

Proof. Suppose that I = {A,B,C,D} is not a subset of any plane. We distinguish
between two cases.

Case 1. There are no collinear pairs in I.
Let A = (a, b, c). But AB is not an edge and not colinear so A and B differ in
precisely two coordinates. Thus, w.l.o.g. B = (a′, b′, c) where a 6= a′ and b 6= b′.
If C3 also equals c, then we must have C3 = (a′′, b′′, c) with a′′ different from a, a′

and b′′ from b, b′. However, looking at D, we cannot have D3 = c as otherwise
I ⊂ {x3 = c}, so D must differ at all three coordinates from one of the points
A,B,C, making them joined by an edge, which is impossible. Thus C3 = c′, with
c′ 6= c. Since AC and BC are not edges, C ∈ {(a, b′, c′), (a′, b, c′)}. The same
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argument works for D, so D3 = c′′ 6= c, and D ∈ {(a, b′, c′′), (a′, b, c′′)}. However, if
c′ 6= c′′, then C,D are either collinear or adjacent in G3, which are both impossible.
Hence c′′ = c′, and {C,D} = {(a, b′, c′), (a′, b, c′)}, as desired.

Case 2. W.l.o.g. A and B are collinear.
Let A = (a, b, c), B = (a, b, c′) with c 6= c′. Since {x1 = a} does not contain the
whole set I, we have w.l.o.g. C1 = a′ 6= a. If C2 6= b, then AC or BC is an edge,
which is impossible. Therefore, C2 = b. Hence D2 = b′ 6= b, and by a similar
argument D1 = a. Finally CD is not an edge, so their third coordinate must be
the same, proving the lemma.

Lemma 16. (Structure of the independent sets of size 5.) Given an independent
set I of G3 of size 5 (at least) one of the following alternatives holds

1. I is coplanar, or

2. I is a subset of a union of three lines, all sharing the same point.

Proof. List the vertices of I as x1, x2, x3, x4, x5. By Lemma 14, we may w.l.o.g.
assume that x1, x2, x3 are not coplanar. By the previous lemma, {x1, x2, x3, xi}
for i = 4, 5 may have structure S2 or S3. But if both structures are S2, then we
must have that in both quadruples, at each coordinate, each value appears precisely
two times. This implies x4 = x5. Hence, w.l.o.g. {x1, x2, x3, x4} has structure S3.
Therefore, assume w.l.o.g. that

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), x4 = (0, 0, c′)

for some c′ 6= 1 (which corresponds to the choice a = 0, a′ = 1, b = 0, b′ = 1, x =
0, c = 1 in the previous Lemma, switching the roles of c and c′ if necessary). Looking
at {x1, x2, x3, x5}, if it had S2 for its structure, we would get x5 = (1, 1, 1), which
is adjacent to x4, and thus impossible. Hence {x1, x2, x3, x5} also has structure
S3. Permutting the coordinates only permutes x1, x2, x3, and does not change the
number of zeros in x5. Thus, w.l.o.g.

{(1, 0, 0), (0, 1, 0), (0, 0, 1), x5} = {x1, x2, x3, x5}
= {(d, e, f), (d, e, f ′), (d′, e, y), (d, e′, y)},

for some d 6= d′, e 6= e′, f 6= f ′. But in the first coordinate, only zero can appear
three times, so d = 0. Similarly, e = 0, so x5 ∈ (0, 0, ·), after a permutation of
coordinates. Thus x5 has at least two zeros, so our independent set I is a subset
of the union of lines passing through the point (0, 0, 0), as required.

Corollary 17. (Structure of the independent sets of size at least 5.) Given an
independent set I of G3 of size at least 5 (at least) one of the following alternatives
holds

1. I is coplanar, or
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2. I is a subset of a union of three lines, all sharing the same point.

Proof. Let I = {x1, . . . , xr} and r ≥ 5. Suppose that I is not coplanar, since we
are done otherwise. By Lemma 14, w.l.o.g. {x1, x2, x3} is not a coplanar set. Take
any distinct i, j ≥ 4, and apply Lemma 16 to {x1, x2, x3, xi, xj}. Thus, these five
points lie on a union of three lines, sharing the same point pij . But, this point is
the same for all choices of i and j, and so are the three lines, which completes the
proof.

3. CONJECTURE 1 FOR FOUR COLOURS

In this short section we reprove the result of Gyárfás.

Theorem 18. (Gyárfás) Conjecture 1 for four colours and Conjecture 8 for G3

are true.

Proof. By the equivalence of conjectures, it suffices to prove Conjecture 8 for G3.
Let X be the given finite set of vertices in G3. Assume that G3[X] has at least four
components, otherwise we are done immediately. By a representatives set we mean
any set of vertices that contains at most one vertex from each component of X. A
complete representative set is a representatives set that intersects every component
of X.

Observation 19. If there are three colinear points, each in a different component,
then X can be covered by two planes. In other words, if two planes do not suffice,
then among every three points in different components, there is a non-colinear pair.

Proof. W.l.o.g. these are points (0, 0, 1), (0, 0, 2), (0, 0, 3). Then, unless X ⊂ {x1 =
0} ∪ {x2 = 0}, we have a point of the form (a, b, c) with a, b both non-zero, so it
is a neighbour of at least two of the points we started with, contradicting the fact
that they belong to different components. For the second part, recall that if every
pair in a triple is colinear, then the whole triple lies on a line.

By the observation above, every representatives set of size at least 3 has a
noncollinear pair. Suppose firstly that every complete representatives set is a sub-
set of a plane. Pick a complete representatives set {x1, x2, . . . , xr}, with xi ∈ Ci,
where Ci are the components. W.l.o.g. x1, x2 is a noncollinear pair, therefore, it
determines a plane π, forcing components C3, C4, . . . , Cr to be entirely contained
in this plane. Hence, we may cover the whole set X by components C1 and C2,
and the plane π. Therefore, by Lemma 14, we may assume that we have a repre-
sentatives set of size 3 which does not lie in any plane.

Case 1. X has more than four components.
Let {x1, x2, x3} be a representatives set, xi ∈ Ci, which is not coplanar.

Then, for any choice of y4, . . . , yr, such that {x1, x2, x3, y4, . . . , yr} is a complete
representatives set, by Corollary 17 we have three lines that meet in a single point
that contain all these points. Observe that this structure is determined entirely by
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x1, x2, x3. Indeed, since these three points are not coplanar, they cannot coincide in
any coordinate. However, since there are at least five components, {x1, x2, x3} ex-
tends to an independent set of size 5, which must be a subset of three lines sharing a
point p. But we can identify p, since pi must be the value that occurs precisely two
times among (x1)i, (x2)i, (x3)i, and hence the lines are l1 = px1, l2 = px2, l3 = px3.1

Thus, the union of the lines l1, l2, l3 contains the components C4, . . . , Cr and the
vertices x1, x2, x3. By Observation 19, each li has representatives from at most two
components. Hence, we may not have the common point of the three lines p present
in X, as otherwise some line li would have three components meeting it. W.l.o.g.
l2, l3 intersect two components, and l1 may intersect one or two. Then, picking any
y ∈ l2, z ∈ l3 such that {x1, x2, x3, y, z} is a representatives set, using the argu-
ment above applied to {x1, y, z} instead of {x1, x2, x3}, we deduce that C2 ⊂ l2,
C3 ⊂ l3. Therefore, we can cover all vertices by C1 and lines l1, l2 and l3. These
three lines lie inside the planes l1l2 and l1l3,2 which completes the proof in this case.

Case 2. X has precisely four components and there exists a coplanar complete
representatives set.

Let {x1, x2, x3, x4} be a complete representatives set, with xi ∈ Ci. W.l.o.g.
we have xi = (ai, bi, 0). By Observation 19, we do not have a collinear triple among
these 4 points, so each of the sequences (ai)

4
i=1 and (bi)

4
i=1 has the property that a

value may appear at most twice in the sequence.
Suppose for a moment that each of these two sequences has at most one value that
appears twice. Write v for the value that appears two times in (ai), if it existis,
and let u be the corresponding value for (bi). If we take a point y ∈ X outside the
plane (·, ·, 0), then the number of appearances of y1 in (ai) and y2 in (bi) combined
is at least three. So, either y1 is the unique doubly-appearing value u for ai or
y2 = v, so the three planes (u, ·, ·), (·, v, ·) and (·, ·, 0) cover X.
Now, assume that w.l.o.g. {ai} has two doubly-appearing values, i.e. a1 = a2 =
u 6= a3 = a4 = v. If y is outside the plane (·, ·, 0), then if y1 6= u, one of the pairs
x1y, x2y must be an edge, so x3y and x4y are not edges, so we must have y1 = v.
Similarly, if y is outside the plane (·, ·, 0) and y1 6= v, then y1 = u. Hence, for all
points y ∈ X, we have y1 ∈ {u, v} or y3 = 0, and three planes cover once again.

Case 3. X has precisely four components, but no complete representatives set is
coplanar.

Thus, by Lemma 15, every complete representatives set has either S2 or S3
as its structure. Observe that if S2 is always the structure, then all the components
are singletons, because any three points in the structure S2 determine the fourth
point, and we are done by taking a plane to cover two vertices. So, there is a
representatives set with structure S3. Take such a representatives set x1, x2, a, b,
w.l.o.g. x1 = (0, 0, 1), x2 = (0, 0, 2). Take any y that shares the component with a,

1For points x, y, we write xy for the line determined by points x and y, i.e. if xi = yi, xj =
yj , xk 6= yk, this is xy = {z: zi = xi, zj = xj}.

2If lines l1 = {t: ti = ai, tj = aj} and l2 = {t: ti = ai, tk = ak} are given and {i, j, k} = [3], we
write l1l2 for the plane {t: ti = ai}.
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and any z that shares the component with b. Then, {x1, x2, y, z} is also a complete
representatives set, so it is not coplanar. But, as x1, x2 are collinear, it may not
have structure S2, so the structure must be S3, which forces y3 = z3. Hence, we
can cover X by components of x and y and the plane (·, ·, a3). This completes the
proof.

Note that the theorem is sharp – we can take X = {0, 2e1, 2e2, 2e3, e1 +
e2, e1 + e3, e2 + e3}, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

4. CONJECTURE 6 FOR FOUR COLOURS

Recall, by a diameter of a colour c, written diamc(G), we mean the maximum
distance between vertices sharing the same component of G[c]. In the remaining
part of the paper, for a given 4-colouring χ:E(Kn) → [4], we say that χ satisfies
Conjecture 6 with (constant) K if there are sets A1, A2, A3 whose union is [n] and
colours c1, c2, c3 such that each Kn[Ai, ci] is connected and of diameter at most K.
Thus, our goal can be phrased as: there is an absolute constant K such that every
4-colouring χ of E(Kn) satisfies Conjecture 6 with K.
We begin the proof of the main result by observing that essentially we may assume
that at least two colours have arbitrarily large diameters. We argue by modifying
the colouring slightly.

Lemma 20. Suppose χ is a 4-colouring of E(Kn) such that three colours have
diameters bounded by N1. Then χ satisfies Conjecture 6 with max{N1, 30}.

Proof. Write G = Kn, and observe that if a point does not receive all four colours
at its edges, we are immediately done. Let χ be the given colouring of the edges,
and suppose that colours 1, 2 and 3 have diameter bounded by N1. We begin by
modifying the colouring slightly. Let xy be any edge coloured by colour 4. If x
and y share the same component in G[c] for some c ∈ {1, 2, 3}, change the colour
of xy to the colour c (if there is more than one choice, pick any). Note that such
a modification does not change the monochromatic components, except possibly
shrinking the components for the colour 4. Let χ′ stand for the modified colouring.
Observe that the diameter of colour 4 in χ′ is also bounded. Indeed, begin by list-

ing all the components for colours i ∈ {1, 2, 3} as C
(i)
1 , C

(i)
2 , C

(i)
3 , . . . . For x ∈ N3,

consider the sets Cx = Cx1,x2,x3
= C

(1)
x1 ∩C

(2)
x2 ∩C

(3)
x3 . Let X be the set of all x such

that Cx 6= ∅. If G(χ′)[4] (where the superscript indicates the relevant colouring) has
an induced path (v1, v2, . . . , vr), then if xi ∈ N3 is defined to be such that vi ∈ Cxi

,
in fact (x1, x2, . . . , xr) becomes an induced path in G3. But Lemma 13 implies that
r ≤ 30. Hence, the 4-diameter in the colouring χ′ is at most 30.
Applying Theorem 18 for the colouring χ′, gives three monochromatic components
that cover the vertex set, let these be G(χ′)[A1, c1], G(χ′)[A2, c2], G(χ′)[A3, c3], where
the superscript indicates the relevant colouring. Using the same sets and colours,
but returning to the original colouring, we have thatG(χ)[A1, c1], G(χ)[A2, c2], G(χ)[A3, c3]
are all still connected, as 1, 2 and 3-components are the same in χ and χ′, while
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there can only be more 4-coloured edges in the colouring χ. Also, 1, 2 and 3-
diameters are bounded by N1, and 4-diameters of sets may only decrease when
returning to colouring χ′, so the lemma follows.

Let us recall some additional notions. Let P ⊂ N2
0 be a set, and let L:P →

P(n) \ {∅} be a function with the property that {L(A):A ∈ P} forms a partition
of [n] and there are two colours c3, c4

3 such that whenever A,B ∈ P and |A1 −
B1|, |A2−B2|≥ 2, then all edges between the sets L(A) and L(B) are coloured with
c3 and c4 only. We call L the (c3, c4)-layer mapping and we refer to P as the layer
index set. Further, we call a subset S ⊂ P a k-distant set if for every two distinct
points A,B ∈ S we have |A1 −B1|, |A2 −B2|≥ k.
Let us briefly motivate this notion. Suppose that Kn[c1] and Kn[c2] are both
connected. Fix a vertex x0 and let P = {(dc1(x0, v), dc2(x0, v)): v ∈ [n]} ⊂ N2

0. Let
L(A): = {v ∈ [n]: (dc1(x0, v), dc2(x0, v)) = A} for all A ∈ P (this also motivates the
choice of the letter L, we think of L(A) as a layer). Then, if x ∈ L(A), y ∈ L(B)
for A,B ∈ P with |A1 − B1|≥ 2, |A2 − B2|≥ 2, by triangle inequality, we cannot
have dc1(x, y) ≤ 1 nor dc2(x, y) ≤ 1, so xy takes either the colour c3 or the colour
c4. As we shall see, we may have more freedom in the definition of P and L if there
is more than one component in a single colour.
We now explore these notions in some detail, before using them to obtain some
structural results on the 4-colourings that possibly do not satisfy Conjecture 6.

Lemma 21. Let χ be a 4-edge-colouring, L a (c3, c4)-layer mapping with layer
index set P , and suppose that {A,B,C} ⊂ P is a 3-distant set. Write G = Kn.
Then at least one of the following holds.

1. The colouring χ satisfies Conjecture 6 with (constant) 22, or

2. for some colour c ∈ {c3, c4} we have G[L(A)∪L(B)∪L(C), c] connected and
of diameter at most 9.

Proof of Lemma 21. Observe that all edges between L(A) and L(B), between L(A)
and L(C), and between L(B) and L(C), are of colours c3 and c4. This is a complete
tripartite graph with classes L(A), L(B) and L(C) and we may apply Lemma 11.
If we get the second outcome of that lemma, then w.l.o.g. L(A)∪L(B)∪L(C) is c3-
connected and of c3-diameter at most 9, proving the claim. Otherwise, w.l.o.g. we
obtain vertices u, v ∈ L(A) such that χ(uz) = c3, χ(vz) = c4 for all z ∈ L(B)∪L(C).
Let A1 be the set of all a ∈ L(A) such that all edges from a are of colour c3, and
let A2 be the set of all a ∈ L(A) which have at least one c4-coloured edge. Thus,
L(A) = A1 ∪A2 is a partition, and u ∈ A1, v ∈ A2. Define the following three sets
of vertices

U = {w: dc3(w,L(B)) ≤ 10},W = {w: dc4(w,L(B)) ≤ 10} and T = V (G)\(U∪W ).

3This choice of indices was made on purpose – we shall first use colours c1, c2 to define P and
L, and the remaining colours will be c3 and c4.
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Clearly, U and W monochromatically connected and of diameter at most 22 for
colours c3 and c4 respectively. Moreover, by the properties of u and v, we also have
A1 ∪ L(B) ∪ L(C) ⊂ U and A2 ∪ L(B) ∪ L(C) ⊂W .
Consider any other point D ∈ P . By pigeonhole principle, D is 2-distant from at
least one of the points A,B,C. Suppose that D is 2-distant from E ∈ {B,C}.
Then, all edges from L(D) to L(E) are of colours c3 and c4, so for each z ∈ L(D),
we have dc3(z, u) ≤ 2 or dc4(z, v) ≤ 2, so L(D) ⊂ U ∪W . Therefore, if z ∈ T ,
then z ∈ L(D) for a point D which is 2-distant from A. Then all edges between
L(A) and L(D) are coloured by c3 and c4 and we may apply Lemma 10. Since
z /∈ U ∪W , we have dc3(z,B) > 10, dc4(z,B) > 10, so χ(za) = c4 for all a ∈ A1,
and χ(za) = c3 for all a ∈ A2. Thus, T ∪ A1 is monochromatically connected and
of diameter at most 2, so the claim follows after taking U, V, T ∪A1.

Lemma 22. Let χ be a 4-edge-colouring, L a (c3, c4)-layer mapping with layer
index set P , and suppose that {A,B,C} ⊂ P is a 3-distant set. Write G = Kn.
Suppose that G[L(A)∪L(B)∪L(C), c3] is contained in a subgraph H3 ⊂ G[c3] which
is connected and of c3-diameter at most N3. Suppose additionally that G[L(A) ∪
L(B), c4] is contained in a subgraph H4 ⊂ G[c4] that is connected and of diameter
at most N4. Then the given colouring satisfies Conjecture 6 with max{N3, N4}+ 2.

The following observation is very useful when we work with 3-distant sets.

Observation 23. Suppose that A,B,C,D ∈ P and that A,B,C are 3-distant.
Then D is 2-distant from at least one of the points A,B,C.

Proof. Suppose to the contrary that D is not 2-distant from either of the points
A,B,C. By pigeonhole principle we may find an index i and two points A′, B′

among A,B,C such that |Di − A′i|, |Di − B′i|≤ 1, so |A′i − B′i|≤ 2, which is a
contradiction.

Proof of Lemma 22. Pick any D ∈ P . Note that since A,B,C are 3-distant, by
Observation 23 D is 2-distant from a point E among A,B,C.
Let U be the set of all vertices x in G such that dc3(x, L(A) ∪ L(B) ∪ L(C)) ≤ 1.
Hence, G[U, c3] ∪ H3 is connected and of diameter at most N3 + 2. Consider
any vertex v /∈ U . Let D ∈ P be such that v ∈ L(D). If E ∈ {A,B,C} is
2-distant from D, then all edges from v to L(E) must have colour c4. Define
W = {w /∈ U : dc4(w,L(C)) ≤ 1} and Z = {z /∈ U : dc4(w,L(A) ∪ L(B)) ≤ 1}, so if
v /∈ U , by the argument above, we have that v ∈W or v ∈ Z. Moreover, if E = C,
all edges between v and L(C) must have colour c4, so diamc4(L(C) ∪ W ) ≤ 2.
Hence, we may take

G[L(A) ∪ L(B) ∪ L(C) ∪ U, c3] ∪H3,

H4 ∪G[Z, c4], and

G[L(C) ∪W, c4],

to prove the lemma (after omitting the corresponding subgraphs if W or Z are
empty).
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Lemma 24. Let G be Kn with a 4-edge-colouring χ and suppose that L is a (c3, c4)-
layer mapping for some colours c3, c4 ∈ [4] with a 3-distant set of size at least 4.
Then χ satisfies Conjecture 6 with constant 29.

Proof. Suppose that some A,B,C,D ∈ P are 3-distant. All edges between L(A)∪
L(B)∪L(C)∪L(D) are of colours c3 and c4 only, so by Lemma 11 either G[L(A)∪
L(B) ∪ L(C) ∪ L(D), c] is connected for some c ∈ {c3, c4} and of diameter at most
9, or w.l.o.g. there are vertices u, v ∈ A, such that χ(uz) = c3 and χ(vz) = c4 for all
z ∈ L(B)∪L(C)∪L(D). However, in the latter case, Lemma 21 tells us that either
χ satisfies Conjecture 6 with constant 22, or w.l.o.g. G[L(A) ∪ L(B) ∪ L(C), c3]
is connected and of diameter at most 9. Thus, in either case we conclude that
w.l.o.g. G[L(A)∪L(B)∪L(C)∪L(D), c3] is connected and of diameter at most 11.

Pick any E ∈ P . Applying Observation 23 twice, we see that E is 2-distant
from at least two points A′(E), B′(E) among A,B,C,D. Hence, A′(E), B′(E), E
is a 2-distant set, so edges between L(A′(E)), L(B′(E)) and L(E) are of colours c3
and c4 only. By Lemma 21, unless we are done, for some colour c(E) ∈ {c3, c4} we
have G[L(A′(E)) ∪ L(B′(E)) ∪ L(E), c(E)] connected and of diameter at most 9.
However, if c(E) = c4, then by Lemma 22 we get that χ satisfies Conjecture 6 with
constant 13, since L(A′(E))∪L(B′(E)) is also contained in c3-connected subgraph
of diameter at most 11. Hence, c(E) = c3 for all E, and the whole graph is c3-
connected and of c3-diameter at most 29.

Lemma 25. Suppose that χ is a 4-colouring of E(Kn) and that L is a (c3, c4)-
layer mapping for some colours c3, c4 ∈ [4] with a 7-distant set {A,B,C}. Suppose
additionally that there are X,Y ∈ P such that |X1 − A1|, |X1 − B1|, |X1 − C1|≥ 5
and |Y2 −A2|, |Y2 −B2|, |Y2 −C2|≥ 5. Then χ satisfies Conjecture 6 with constant
31.

Proof. Pick any other D ∈ P . If D is 3-distant from each of A,B,C, we obtain a
3-distant set of size 4, so by Lemma 24 we are done. Hence, for every D ∈ P we
have E ∈ {A,B,C} such that |Ei −Di|≤ 2 for some i.
Since {A,B,C} is a 7-distant set, by Lemma 21, we have w.l.o.g. G[L(A)∪L(B)∪
L(C), c3] connected and of diameter at most 9. We now derive some properties of
L(D) for points D ∈ P be such that |Di − Ai|, |Di − Bi|, |Di − Ci|≥ 3 for some
i ∈ {1, 2}. (Note that such points exist by assumptions.)

Let D be such a point and let j be such that {i, j} = {1, 2}. Since the
set {A,B,C} is 7-distant, there are distinct E1, E2 ∈ {A,B,C} such that |Dj −
(E1)j |, |Dj − (E2)j |≥ 3. Thus, {D,E1, E2} is also a 3-distant set. Applying
Lemma 21 to {D,E1, E2} implies that G[L(D) ∪ L(E1) ∪ L(E2), c] is connected
and of diameter at most 9, for some c ∈ {c3, c4}, unless we are already done. How-
ever, if c = c4, G[L(E1) ∪ L(E2), c4] is contained in a subgraph of G[c4] that is
connected and of diameter at most 9, so Lemma 22 applies and the claim follows.
Hence, we must have G[L(D) ∪ L(E1) ∪ L(E2), c3] connected and of diameter at
most 9. In particular, whenever D ∈ P satisfies |Di − Ai|, |Di − Bi|, |Di − Ci|≥ 3
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for some i ∈ {1, 2}, then every point in L(D) is at c3-distance at most 9 from
L(A) ∪ L(B) ∪ L(C).

Let X,Y be the given points that obey |X1 − A1|, |X1 − B1|, |X1 − C1|≥ 5
and |Y2 − A2|, |Y2 − B2|, |Y2 − C2|≥ 5. W.l.o.g. |X2 − A2|≤ 2. If |Y1 − A1|≤ 2,
then X,Y,B,C form a 3-distant set of size 4, and once again the claim follows from
Lemma 24. Hence, w.l.o.g. |Y1 − B1|≤ 2. By the work above, we also have that
every point in L(X) ∪ L(Y ) is at c3-distance at most 9 from L(A) ∪ L(B) ∪ L(C).
Note also that X,Y are 3-distant.

It remains to analyse D ∈ P such that for both i = 1, 2 there is an E ∈
{A,B,C} such that |Ei −Di|≤ 2. We show that in most cases, depending on the
choice of E, we have that L(D) is, in fact, at bounded c3-distance from L(A) ∪
L(B) ∪ L(C). If we have an E ∈ {A,B,C} such that both |E1 − D1|≤ 2 and
|E2−D2|≤ 2 hold, then taking E′, E′′ such that {E,E′, E′′} = {A,B,C}, we have
{D,E′, E′′} 3-distant, so Lemma 21 once again implies that every vertex in L(D)
is at c3-distance at most 9 from L(A)∪L(B)∪L(C) (or we are done by Lemma 22).
We distinguish the following cases.

• If |D1−A1|≤ 2, |D2−B2|≤ 2, then D is 3-distant from X,Y . Let us check this.
By triangle inequality, we obtain |X1−D1|, |Y1−D1|, |D2−X2|, |Y2−D2|≥ 3.
We also know that L(X)∪L(Y )∪L(C) is contained in the subgraph G[L(A)∪
L(B) ∪ L(C) ∪ L(X) ∪ L(Y )] ⊂ G[c3] that is connected and of diameter at
most 27, so every vertex in L(D) is at c3-distance at most 10 from L(A) ∪
L(B) ∪ L(C), unless there is a vertex v ∈ L(D) such that all edges from
v to L(X) ∪ L(Y ) are of colour c4. However, in such a case, L(X) ∪ L(Y )
is also contained in c4-connected subgraph of diameter 2 (with vertex set
{v} ∪ L(X) ∪ L(Y )) and we are done by Lemma 22.

• If |D1 −C1|≤ 2, |D2 −B2|≤ 2, note that {D,X, Y } is 3-distant and then the
same argument we had in the case above proves that L(D) is on c3-distance
at most 10 from L(A) ∪ L(B) ∪ L(C).

• If |D1 −A1|≤ 2, |D2 −C2|≤ 2, note that {D,X, Y } is 3-distant and then the
same argument we had in the case above proves that L(D) is on c3-distance
at most 10 from L(A) ∪ L(B) ∪ L(C).

Finally, we define P1, P2, P3 ⊂ P as

P1 = {D ∈ P : |D1 −B1|, |D2 −A2|≤ 2}
P2 = {D ∈ P : |D1 − C1|, |D2 −A2|≤ 2}
P3 = {D ∈ P : |D1 −B1|, |D2 − C2|≤ 2}

which are disjoint and if D ∈ P \ (P1 ∪ P2 ∪ P3) we know that L(D) is on c3-
distance at most 10 from L(A) ∪ L(B) ∪ L(C). Let also Li = ∪D∈PiL(D). Hence,
since for D ∈ P1 we have |D1 − C1|, |D2 − C2|≥ 2, all edges between L(D) and
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L(C) are coloured using c3 and c4, thus all edges between L1 and L(C) take these
two colours. Similarly, all edges between L2 and Y , and all edges between L3 and
X are taking only the colours c3 and c4. Observe that if D ∈ P2, D

′ ∈ P3 then
|D1 −D′1|, |D2 −D′2|≥ 3. Thus all edges between L2 and L3 are only of colours c3
and c4.
Set M = {v ∈ [n]: dc3(v, L(A) ∪ L(B) ∪ L(C)) ≤ 11}, and note that G[M, c3] is
connected and of diameter at most 31. We observe the following.

• If x ∈ L1 \M , then all edges from x to L(C) take only colour c4. Thus, if
c ∈ L(C) is arbitrary, we have G[{c}∪(L1\M), c4] connected and of diameter
2.

• Similarly, if x ∈ L2 \M , then all edges from x to L(Y ) take only colour c4.
Thus, if y ∈ L(Y ) is arbitrary, we have G[{y} ∪ (L2 \M), c4] connected and
of diameter 2.

• Similarly, if x ∈ L3 \M , then all edges from x to L(A) take only colour c4.
Thus, if a ∈ L(A) is arbitrary, we have G[{a} ∪ (L3 \M), c4] connected and
of diameter 2.

From this we conclude that unless all L1 \M,L2 \M,L3 \M are non-empty, we
are done, since we can take G[M, c3] as one of the graphs, and two additional c4
monochromatic graphs as above. Set U2 = L2 \M,U3 = L3 \M . Let y ∈ L(Y ), a ∈
L(A) be arbitrary. As noted above, all edges {y} × U2 and {a} × U3 are of colour
c4. Hence, if there is an edge u2u3 of colour c4 with u2 ∈ U2, u3 ∈ U3, we have
G[{a, y}∪U2∪U3, c4] connected and of diameter at most 5. Taking this graph with
G[M, c3] and G[{c} ∪ (L1 \M), c4], proves the claim.
Finally, the remaining possibility is that all edges between U2 and U3 are of colour
c3. In this case, G[U2 ∪ U3, c3] is connected and of diameter at most 2. Take also
G[M, c3] and G[{c} ∪ (L1 \M), c4] to finish the proof.

Let us now briefly discuss a way of defining (c3, c4)-layer mappings. Pick two
colours c1, c2 ∈ [4], and take c3, c4 to be the remaining two colours. List all vertices
as v1, v2, . . . , vn. To each vertex, we shall assign two nonnegative integers, D1(vi)
and D2(vi), initially marked as undefined. We apply the following procedure.

Step 1 Pick the smallest index i such that D1(vi) or D2(vi) is undefined. If there is
no such i, terminate the procedure.

Step 2 For j = 1, 2, if Dj(vi) is undefined, pick an arbitrary value for it.

Step 3 For j = 1, 2, if Dj(vi) was undefined before the second step, for all vertices
u in the same cj-component of vi set Dj(u): = dcj (vi, u) +Dj(vi). Return to
Step 1.

Upon the completion of the procedure, set P = {(D1(v), D2(v)): v ∈ [n]} and
L:P → P(n) as L(x, y): = {v ∈ [n]: (D1(v), D2(v)) = (x, y)}.

Claim. The mapping L above is well-defined and is a (c3, c4)-layer mapping.
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Proof. Observe that each time we pick vi whose value(s) are to be defined, we end
up defining D1 on one c1-component or D2 on one c2-component or both. Hence,
for every vertex v, the values D1(v), D2(v) change precisely once from undefined to
a nonnegative integer value. Hence, (D1(v), D2(v)) are well-defined and take values
in N2

0, so P and L are well-defined and L(A) forms a partition of [n] as A ranges
over P . Finally, consider an edge xy coloured by c1. Let D1(x) be defined with vi
chosen in Step 2 (possibly x = vi). Since xy is of colour c1, these are in the same c1-
component, and hence D1(x) = dc1(vi, x)+D1(vi) and D1(y) = dc1(vi, y)+D1(vi).
Therefore,

|D1(x)−D1(y)| = |(dc1(vi, x) +D1(vi))− (dc1(vi, y) +D1(vi))|
= |dc1(vi, x)− dc1(vi, y)|≤ dc1(x, y) = 1

hence, if χ(xy) = c1, then |D1(x)−D1(y)|≤ 1. Similarly, we get the corresponding
statement for the colour c2. It follows that if A,B ∈ P are such that |A1−B1|, |A2−
B2|≥ 2, then if x ∈ L(A), y ∈ L(B), we have (D1(x), D2(x)) = A, (D1(y), D2(y)) =
B, so xy is coloured by c3 or c4, as desired.

4.1. Monochromatically connected case

Proposition 26. Suppose that χ is a 4-colouring of E(Kn) such that every colour
induces a connected subgraph of Kn. Then χ satisfies Conjecture 6 with constant
80.

Proof. Suppose to the contrary, in particular every colour has diameter greater
than 80. Our main goal in the proof is to find a pair of vertices x, y with a control
over their 1-distance and 2-distance. We need both distances sufficiently large so
that we can make a use of distant sets in (3, 4)-layer mappings, and also bounded
by a constant so that if a vertex is on small 1-distance from x, it is also on small
1-distance from y and vice-versa.

More precisely,

Lemma 27. Suppose that there are vertices x′, y′ such that d1(x′, y′), d2(x′, y′) ≥ 7.
Then χ satisfies Conjecture 6 with constant 2 max{d1(x′, y′), d2(x′, y′)}+ 12.

Proof. Pick any point z 6= x′, y′. Apply the procedure for defnining (3, 4)-layer
mapping starting from x′. Note that the (3, 4)-layer is uniquely defined as all
colours are connected. If we obtain a 7-distant set of size at least 3, we obtain a
contradiction to Lemma 25, which maybe used due to the diameter assumption.
Hence, the distances corresponding to x′, y′, z cannot give such a set, so we must
have one of

d1(x′, z) ≤ 6 or |d1(x′, y′)−d1(x′, z)|≤ 6 or d2(x′, z) ≤ 6 or |d2(x′, z)−d2(x′, y)|≤ 6.
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In particular, we must have d1(x′, z) ≤ d1(x′, y′) + 6 or d2(x′, z) ≤ d2(x′, y′) + 6.
Thus, monochromatic balls B1(x, d1(x′, y′) + 6) and B2(x, d2(x′, y′) + 6) cover all
the vertices.

Claim. There are x, y such that d1(x, y) ∈ {21, 22} and d2(x, y) ≥ 14.

Proof of the claim. Suppose contrary, for every x, y such that d1(x, y) ∈ {21, 22},
we must have d2(x, y) ≤ 13. Pick any y1, y2 ∈ [n] such that χ(y1y2) = 1. We
claim that d2(y1, y2) ≤ 26. Suppose on the contrary that d2(y1, y2) > 26. Since the
1-diameter is greater than 22, we can find x ∈ [n] such that d1(x, y1) = 22, which
further implies that d2(x, y1) ≤ 13. Take a minimal 1-path (x = u0, . . . , u22 =
y1). If d1(x, y2) ∈ {21, 22}, then we would have d2(x, y2) ≤ 13, which, together
with d2(x, y1) ≤ 13, would result in a contradiction. Therefore, we must have
d1(x, y2) = 23. A similar argument applied to u1 instead of x gives d1(u1, y1) = 21,
d1(u1, y2) = 20). But the triangle inequality implies that |d1(x, y2)−d1(u1, y2)|≤ 1,
which is a contradiction.
Hence, taking any x ∈ [n] the balls

B2(x, 26), B3(x, 1), B4(x, 1)

cover the vertex set. However, these have diameter at most 52, which is a contra-
diction.

Take x, y given by the claim above. Since the subgraph G[2] is connected,
there is a minimal 2-path (x = u0, u1, . . . , ur, ur+1 = y) between x and y, with
r ≥ 14. Look at the vertices z1 = u7, z2 = u14, . . . , zk = u7k with k such that
7 ≤ r − 7k ≤ 13.
Consider x, y, zi for some 1 ≤ i ≤ k and check whether we can define a (3, 4)-layer
mapping so that these three points become a 7-distant set. Apply the procedure
for defining (3, 4)-layers mapping, starting from x, i.e. we want to see whether
(0, 0), (d1(x, y), d2(x, y)) and (d1(x, zi), d2(x, zi)) are 7-distant. If they are 7-distant,
Lemma 25 gives us a contradiction. Since

d1(x, y) ≥ 21, d2(x, y) ≥ 14

7 ≤ d2(x, zi) = 7i ≤ 7k < d2(x, y)− 6

we must have either d1(x, zi) ≤ 6 or |d1(x, zi) − d1(x, y)|≤ 6 (implying d1(x, zi) ∈
{15, . . . , 28}). Similarly, if we start from y instead of x in our procedure, we see that
either d1(y, zi) ≤ 6 or |d1(y, zi) − d1(x, y)|≤ 6 (implying d1(y, zi) ∈ {15, . . . , 28})
must hold.
Observe that for the vertex z1 we must have d1(x, z1) ≤ 6. Otherwise, we would
have 15 ≤ d1(x, z1) ≤ 28 and d2(x, z1) = 7, resulting in a contradiction by
Lemma 27 (applied to the pair x, z1). For every zi we must have either the first
inequality (d1(x, zi) ≤ 6) or the second (15 ≤ d1(x, zi) ≤ 28), and we have that the
first vertex among these, namely z1, satisfies the first inequality. Suppose that there
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was an index i such that zi+1 obeys the second inequality, and pick the smallest
such i. Then, by the triangle inequality, we would have

9 ≤ d1(zi+1, x)− d1(x, zi) ≤ d1(zi, zi+1) ≤ d1(zi+1, x) + d1(x, zi) ≤ 34

and d2(zi, zi+1) = 7, so Lemma 27 applies now to the pair zi, zi+1 and gives a
contradiction. Hence, for all i ≤ k we must have the first inequality for zi. But
then zk and y satisfy the conditions of Lemma 27, giving the final contradiction,
since 7 ≤ d2(y, zk) < 14 and

15 ≤ d1(y, x)− d1(x, zk) ≤ d1(y, zk) ≤ d1(y, x) + d1(x, zk) ≤ 28.

This completes the proof.

4.2. Intersecting monochromatic components

Proposition 28. Suppose that χ:E(Kn) → [4] be a 4-colouring with the prop-
erty that, whenever C and C ′ are monochromatic components of different colours,
and one of them has diameter at least 80 (in the relevant colour), then C and C ′

intersect. Then χ satisfies Conjecture 6 with constant 80.

Proof. Suppose to the contrary, we have a colouring χ that satisfies the assumptions
but for which the conclusion fails. By Lemma 20, we have that at least two colours
have monochromatic diameters greater than 80. Further, by Proposition 26 we
have a colour with at least two components. W.l.o.g. there is a 1-component C1 of
1-diameter at least 80, and colour 2 has at least two components.
Next, we find a pair of vertices x, y with the property that 7 ≤ d1(x, y) ≤ 9 and
x, y are in different 2-components. We do this as follows. Since C1 intersects all
2-components, we have vertices x1, x2 ∈ C1 which are in different 2-components.
Looking at any 1-path from x1 to x2, we can find two consecutive vertices z1, z2

which are in different 2-components. Pick an arbitrary vertex y with d1(z1, y) = 8.
Then one of the pairs z1, y or z2, y satisfies the desired properties.
Pick any vertex z outside B1(x, 16). We now apply our procedure for defining
(3, 4)-layers mapping with vertices listed as x, y, z, . . . . Note that may assume that
|D1(x)−D1(y)|, |D1(x)−D1(z)|, |D1(y)−D1(z)|≥ 7 (recall theD1, D2 notation from
the procedure), since d1(x, y) ∈ {7, 8, 9}, and z is either in a different 1-component
from x and y, or at distance at least 7 from both. Hence, we get a 7-distant
set, unless d2(x, z) ≤ 6 or d2(y, z) ≤ 6. Therefore, if there are no 7-distant sets,
B1(x, 16), B2(x, 6) and B2(y, 6) cover the vertex set and we get a contradiction. On
the other hand, if there z such that {D(x), D(y), D(z)} is a 7-distant set, we may
apply Lemma 25 to get obtain another contradiction, since its assumptions can be
satisfied, as we shall now see. Indeed, since the 1-diameter of C1 is at least 80, we
may find X ∈ P such that |X1 − D1(x)|, |X1 − D1(y)|, |X1 − D1(z)|≥ 5. On the
other hand, for the same condition for colour 2, it is similarly satisfied if there is a
2-component of 2-diameter at least 28, or if there are at least four 2-components.
Hence, if the condition fails, taking the 2-components results in contradiction.
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4.3. Final steps

In the final part of the proof, we show how to reduce the general case to the
case of intersecting monochromatic components.

Theorem 29. Conjecture 6 holds for 4 colours and we may take 80 for the diameter
bounds.

Proof. Let χ be the given 4-colouring of E(Kn). Our goal is to apply Proposition 28.
We start with an observation.

Observation 30. Suppose that C is a c-component, that is disjoint from a c′-
component C ′ with c′ 6= c. Then for every pair of vertices x, y ∈ C we have
dc(x, y) ≤ 6 or dc′(x, y) ≤ 6 or the colouring satisfies Conjecture 6 with the constant
80.

Proof of the Observation 30. Pick x, y ∈ C with dc(x, y) ≥ 7 and take arbitrary z ∈
C ′. Apply our procedure for generating c3, c4-layers mapping to the list x, y, z, . . . ,
with c3, c4 chosen to be the two colours different from c, c′. Since z is in different
c- and c′-components from x, y, these three vertices result in a 7-distant set, unless
dc′(x, y) ≤ 6, as desired.

Corollary 31. Suppose that we have a c-component C, that is disjoint from a
c′-component C ′ with c′ 6= c and has c-diameter at least 30. Then the colouring χ
satisfies Conjecture 6 with the constant 80.

Proof. By the Observation 30 we are either done, or any two vertices x, y ∈ C
with dc(x, y) > 6 satisfy dc′(x, y) ≤ 6. Furthermore, given any two vertices
x, y ∈ C, since the c-diameter of C is at least 30, we can find z ∈ C such that
dc(x, z), dc(y, z) ≥ 7, so by triangle inequality dc′(x, y) ≤ 12 holds for all x, y ∈ C.
Now, take an arbitrary vertex v ∈ C, let c′′, c′′′ be the two remaining colours, and
consider the sets

Bc′(v, 12), Bc′′(v, 1), Bc′′′(v, 1).

Given any u ∈ [n], if vu is coloured by any of c′, c′′ or c′′′, it is already in the sets
above. On the other hand, if uv is of colour c, then v ∈ C so dc′(u, v) ≤ 12, thus
u ∈ B(c′)(v, 12). Thus, these sets cover the vertex sets and have monochromatic
diameters at most 24, so we are done.

Finally, we are in the position to apply Proposition 28 which finishes the
proof of the theorem.

5. CONCLUDING REMARKS

Apart from the main conjectures 1 (and its equivalent 8) and 6, here we pose
further questions. Recall the section 2 that contains the auxiliary results. There
we first discussed Lemmas 10 and 11, which were variants of the main conjectures
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Figure 1: An example of a 3-colouring of Kn with a matching of size 3 removed
that cannot be covered by two monochromatic components.

with different underlying graph instead of Kn. Recall that Lovasz-Ryser conjecture
is also about different underlying graphs. Another natural question would be the
following.

Question 32. Let G be a graph, and let k be fixed. Suppose that χ:E(G) →
[k] is a k-colouring of the edges of G. For which G is it possible to find k − 1
monochromaticly connected sets that cover the vertices of G? What bounds on
their diameter can we take?

Notice that if there is an independent set {v1, . . . , vk}, then we can colour
all edges from vi by colour i, and we cannot cover the vertices with fewer than k
monochromatic componenets. On the other hand, in the case of complete multi-
partite graphs and two colours, this was the only way to avoid having the graph
monochromatically connected. Observe that for the case of three colours, we may
have other graphs and colourings where two monochromatic components do not
suffice. Consider the following example.

Pick n + 6 vertices labelled as v1, v2, . . . , v6 and u1, u2, . . . , un. Define the
graph G to be the complete graph on these vertices with three edges v1v2, v3v4 and
v5v6 removed. Define the colouring χ:E(G)→ [3] as follows.

• Edges of colour 1 are v1v3, v3v5, v1v5, v4v6 and v1ui, v3ui, v5ui for all i.

• Edges of colour 2 are v2v4, v2v5, v4v5, v1v6 and v2ui, v4ui for all i.

• Edges of colour 3 are v2v3, v2v6, v3v6, v1v4 and v6ui for all i.

• Edges of the form uiuj are coloured arbitrarily.

It is easy to check that this colouring has no covering of vertices by two monochro-
matic components. Is this essentially the only way the conjecture might fail for
such a graph?
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Question 33. Let G = Kn \ {e1, e2, e3} be the complete graph with a matching of
size three omitted. Suppose that χ:E(G) → [3] is a 3-colouring of the edges such
that no two monochromatic components cover G. Is such a colouring isomorphic
to an example similar to the one above? What about K2n with a perfect matching
removed?

Finally, recall that the one of the main contributions in the final bound in
Theorem 7 came from Lemma 13 and that in general the Ramsey approach of
Lemma 12 would give much worse value. It would be interesting to study the right
bounds for this problem as well.

Question 34. For fixed l, what is the maximum size of a set of vertices S of Gl
such that Gl[S] is a path? What about other families of graphs of bounded degree?
In particular, for fixed l and d, what is the maximum size of a set of vertices S of
Gl such that Gl[S] is a connected graph of degrees bounded by d?
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