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JOINT APPROXIMATION OF ANALYTIC FUNCTIONS
BY SHIFTS OF THE RIEMANN AND PERIODIC

HURWITZ ZETA-FUNCTIONS

Antanas Laurinčikas and Renata Macaitienė ∗

We present some new results on the simultaneous approximation with given

accuracy, uniformly on compact subsets of the critical strip, of a collection

of analytic functions by discrete shifts of the Riemann and periodic Hurwitz

zeta-functions. We prove that the set of such shifts has a positive lower

density. For this, we apply the linear independence over the field of rational

numbers of certain sets related to the zeta-functions.

1. INTRODUCTION

Since Bohr and Courant works of the second decade of the later century,
it is well known that the set of values of the Riemann zeta-function ζ(s), s =
σ + it, is dense in C. A qualitative leap in the Bohr–Courant theory was made
by Voronin [28], who obtained an infinite-dimensional generalization of the Bohr–
Courant theorem [3]. More precisely, Voronin discovered the famous universality
property of the function ζ(s), which, roughly speaking, means that a wide class of
analytic functions can be approximated by shifts ζ(s + iτ), τ ∈ R. Let D = {s ∈
C : 1

2 < σ < 1}, K be the class of compact subsets of the strip D with connected
complements, and let H0(K) for K ∈ K denote the class of continuous nonvanishing
functions on K that are analytic in the interior of K. Then the Voronin theorem
[28] states that, for all K ∈ K, f ∈ H0(K), and ε > 0, the set of shifts ζ(s + iτ),
τ ∈ R, satisfying

sup
s∈K
|ζ(s+ iτ)− f(s)| < ε
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has a positive lower density. A similar statement is also true for discrete shifts
ζ(s+ ikh), k ∈ N0 = N ∪ {0}, with every fixed h > 0.

After Voronin’s work, it turned out that the majority of classical zeta- and
L-functions are universal in the Voronin sense. An example is the Hurwitz zeta-
function ζ(s, α) with parameter 0 < α ≤ 1 defined, for σ > 1, by the series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s

and analytically continued to the whole complex plane, except for a simple pole at
the point s = 1 with residue 1. The function ζ(s, α), differently from ζ(s), except
for the values α = 1 (ζ(s, 1) = ζ(s)) and α = 1

2 (ζ
(
s, 1

2

)
= (2s − 1)ζ(s)), has no

Euler’s product over primes, and this is reflected in the universality of ζ(s, α).

Denote by H(K) with K ∈ K the class of continuous functions on K that are
analytic in the interior ofK. Thus, H0(K) ⊂ H(K), K ∈ K. If α is a transcendental
or rational number 6= 1, 1

2 , then, for all K ∈ K, f ∈ H(K), and ε > 0, the set of
shifts ζ(s+ iτ, α), τ ∈ R, satisfying

sup
s∈K
|ζ(s+ iτ, α)− f(s)| < ε

has a positive lower density.

The universality of ζ(s, α) with algebraic irrational α remains an open prob-
lem. The universality of ζ(s, α) was considered in [9, 1, 17] and [12]. Discrete
versions of universality for ζ(s, α) on the approximation of analytic functions by
shifts ζ(s+ ikh, α) were obtained by Bagchi [1] (the case of rational α), Laurinčikas
and Macaitienė [18], Buivydas, Laurinčikas, Macaitienė, and Rašytė [6] (the case
of transcendental α and rational exp{ 2π

h }), and Laurinčikas [13] (the case of linear
independence over Q of the set

{
(log(m+ α) : m ∈ N0), 2π

h

}
).

A more interesting but more complicated is the joint universality of zeta- and
L-functions. In this case, the simultaneous approximation of a collection of analytic
functions by a collection of shifts of zeta- or L-functions is considered. It is clear
that, in this case, a certain kind of independence for a collection of zeta-functions is
necessary. In the case of Hurwitz zeta-functions, this can be ensured by algebraic
independence of the parameters α1, . . . , αr. Then [11, 19, 24], for all Kj ∈ K,
fj ∈ H(Kj), j = 1, . . . , r, and ε > 0, the set of shifts ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr),
τ ∈ R, satisfying the inequality

sup
1≤j≤r

sup
s∈Kj

|ζ(s+ iτ, αj)− fj(s)| < ε

has a positive lower density. In [12], the algebraic independence of the numbers
α1, . . . , αr was replaced by the weaker hypothesis that the set {log(m+ αj) : m ∈
N0, j = 1, . . . , r} is linearly independent over Q. Mishou [22] (r = 2) and Dubickas
[7] proved joint universality theorems for Hurwitz zeta-functions with dependent
transcendental parameters α1, . . . , αr.
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We have already mentioned the thesis [1], where the first discrete universality
theorem for Hurwitz zeta-functions with rational parameter was obtained. The pa-
per [26] is devoted to the joint discrete universality of a collection ζ(s, α1), . . . , ζ(s, αr)
with rational α1, . . . , αr and h > 0, whereas, in [15] the case of α1, . . . , αr for which
the set {

(log(m+ αj) : m ∈ N0, j = 1, . . . , r),
2π

h

}
is linearly independent over Q was considered. In [14] the latter set was replaced
by

{(hj log(m+ αj) : m ∈ N0, j = 1, . . . , r) , 2π}

with positive h1, . . . , hr.

Several joint universality theorems for zeta-functions are of mixed character:
the joint universality of collections consisting of zeta-functions with Euler’s product
and zeta-functions without such a product is investigated. The first result in this
direction belongs to a Japanese mathematician Mishou [21]. He proved a mixed
joint universality theorem for the functions ζ(s) and ζ(s, α) with transcendental α.
Discrete versions of the Mishou theorem were obtained in [4, 5, 16].

The Mishou theorem was generalized for various zeta-functions. Much atten-
tion was devoted to the so-called periodic zeta-functions. Let a = {am : m ∈ N} be
a periodic sequence of complex numbers. Then the periodic zeta-function ζ(s; a),
a generalization of ζ(s), is defined, for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

and can be meromorphically continued to the whole complex plane. Let b = {bm :
m ∈ N0} be another periodic sequence of complex numbers. Then the periodic
Hurwitz zeta-function ζ(s, α; b), a generalization of ζ(s, α), is given, for σ > 1, by
the series

ζ(s, α; b) =

∞∑
m=0

bm
(m+ α)s

and also has a meromorphic continuation to the whole complex plane. In [10],
the Mishou theorem was generalized for ζ(s; a) and ζ(s, α; b) with multiplicative
sequence a. In [8], a mixed joint universality theorem for ζ(s) and a collection of
periodic Hurwitz zeta-functions was proved. The aim of this paper is mixed joint
discrete theorems for the latter functions.

For j = 1, . . . , r, let αj , 0 < αj ≤ 1, be fixed parameters, let aj = {amj : m ∈
N0} be a periodic sequence of complex numbers with minimal period kj ∈ N, and
let ζ(s, αj ; aj) denote the corresponding periodic Hurwitz zeta-function. Moreover,
let

L (P, α1, . . . , αr, h, π) =
{(

log p : p ∈ P
)
,
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(
log(m+ αj) : m ∈ N0, j = 1, . . . , r

)
,

2π

h

}
, h > 0,

where P denotes the set of all prime numbers.

Theorem 1. Suppose that the set L (P, α1, . . . , αr, h, π) is linearly independent over
Q. Let K,K1, . . . ,Kr ∈ K, f ∈ H0(K), and f1 ∈ H(K1), . . . , fr ∈ H(Kr). Then,
for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε,

sup
1≤j≤r

sup
s∈Kj

|ζ(s+ ikh, αj ; aj)− fj(s)| < ε

}
> 0.

Here #A denotes the cardinality of a set A.

Theorem 1 can be generalized as follows. Let lj ∈ N, let ajl = {amjl : m ∈
N0} be a periodic sequence of complex numbers with minimal period kjl ∈ N for
l = 1, . . . , lj , j = 1, . . . , r, and let ζ(s, αj ; ajl) denote the corresponding periodic
Hurwitz zeta-function. Moreover, let kj be the least common multiple of the periods
kj1, . . . , kjlj , j = 1, . . . , r, and

Bj =


a0j1 a0j2 . . . a0jlj

a1j1 a1j2 . . . a2jlj

. . . . . . . . . . . .
akj−1,j1 akj−1,j2 . . . akj−1,jlj

 , j = 1, . . . , r.

Theorem 2. Suppose that the set L (P, α1, . . . , αr, h, π) is linearly independent
over Q and that rank(Bj) = lj, j = 1, ..., r. Let K,Kjl ∈ K, and let f ∈ H0(K),
fjl ∈ H(Kjl), j = 1, ..., r, l = 1, . . . , lj. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ ikh, αj ; ajl)− fjl(s)| < ε

}
> 0.

For h > 0, h1 > 0, . . . , hr > 0, define

L (P, α1, . . . , αr, h, h1, . . . , hr, π) =
{(
h log p : p ∈ P

)
,(

hj log(m+ αj) : m ∈ N0, j = 1, . . . , r
)
, 2π
}
.

Theorem 3. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly in-
dependent over Q and that rank(Bj) = lj, j = 1, . . . , r. Let K, Kjl, and f , fjl,
j = 1, . . . , r, l = 1, . . . , lj, be the same as in Theorem 2. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ ikhj , αj ; ajl)− fjl(s)| < ε

}
> 0.
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Clearly, Theorems 1 and 2 are corollaries of Theorem 3. Therefore, it suffices
to prove Theorem 3. We will also give some remarks on the proof of Theorem 2
(in fact, of Theorem 4, which is the main tool for the proof of Theorem 2), which
is shorter than that of Theorem 3.

It is not difficult to see that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly
independent over Q if the numbers α1, . . . , αr and eπ are algebraically independent
over Q and the numbers h, h1, . . . , hr are rational. By the Nesterenko theorem
[25] the numbers π and eπ are algebraically independent over Q. Therefore, in
Theorem 2, we can take, for example, αj = qjπ with rational qj such that qjπ < 1,
j = 1, . . . , r, and rational h. Obviously, it is always possible to choose the numbers
amjl such that rank(Bj) = lj , j = 1, . . . , r.

2. MAIN LEMMAS

We start with the definition of a certain topological group. Denote by γ the
unit circle on the complex plane and define two infinite-dimensional tori

Ω̂ =
∏
p

γp and Ω =

∞∏
m=0

γm,

where γp = γ for all primes p ∈ P, and γm = γ for all m ∈ N0. By the Tikhonov

theorem, Ω̂ and Ω with the product topology and pointwise multiplication are
compact topological Abelian groups. Moreover, let

Ω = Ω̂× Ω1 × · · · × Ωr,

where Ωj = Ω for j = 1, . . . , r. Then, by the Tikhonov theorem again, Ω is
a compact topological Abelian group. Denote by B(X) the Borel σ-field of the
space X. Then, on (Ω,B(Ω)), there exists a probability Haar measure mH , and
we have the probability space (Ω,B(Ω),mH). Denote by ω̂(p) the projection of
ω̂ ∈ Ω̂ to γp, p ∈ P and by ωj(m) the projection of ωj ∈ Ωj to γm, m ∈ N0. Let
ω = (ω̂, ω1, . . . , ωr) be elements of Ω.

For A ∈ B(Ω), define

QN,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
( (
p−ikh : p ∈ P

)
,(

(m+ α1)−ikh1 : m ∈ N0

)
, . . . ,

(
(m+ αr)

−ikhr : m ∈ N0

) )
∈ A

}
.

Lemma 1. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then QN,h converges weakly to the Haar measure mH as N →∞.

Proof. For k = (kp, kjm : kp, kjm ∈ Z, p ∈ P, m ∈ N0, j = 1, . . . , r), denote by gN,h(k)
the Fourier transform of QN,h. Then, we have that (see [8])

gN,h(k) =

∫
Ω

∏′

p

ω̂kp
r∏
j=1

∞∏′

m=0

ω
kjm
j (m)dQN,h,
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where the sign ′ means that only a finite number of integers kp and kjm are distinct
from zero. Thus, by the definition of QN,h,

gN,h(k) =
1

N + 1

N∑
k=0

∏′

p

p−ikpkh
r∏
j=1

∞∏′

m=0

(m+ αj)
−ikjmkhj

=
1

N + 1

N∑
k=0

exp

{
− ik

(∑′

p

hkp log p

+

r∑
j=1

∞∑′

m=0

hjkjm log(m+ αj)
)}

.(1)

Obviously,

(2) gN,h(0) = 1.

Now suppose that k 6= 0. Then we observe that

Ah(k)
def
= exp

−i
∑′

p

hkp log p+

r∑
j=1

∞∑′

m=0

hjkjm log(m+ αj)

 6= 1.(3)

Indeed, if the latter inequality were not true, then we would have

Ah(k) = e2πiv

for some v ∈ Z. Hence,

∑′

p

hkp log p+

r∑
j=1

∞∑′

m=0

hjkjm log(m+ αj)− 2πv1 = 0

for some v1 ∈ Z, and this contradicts the linear independence of the set
L (P, α1, . . . , αr, h, h1, . . . , hr, π). Thus, (3) is valid. Now, using (1) we find that,
in the case k 6= 0,

gN,h(k) =
1−AN+1

h (k)

(N + 1)(1−Ah(k))
.

Therefore, by (2) we have

lim
N→∞

gN,h(k) =

{
1 if k = 0,

0 if k 6= 0.

This proves the lemma because the right-hand side of the last equality is the Fourier
transform of the Haar measure mH .

We continue with a result from ergodic theory. Let

ah =
((
p−ih : p ∈ P

)
,
(
(m+ α1)−ih1 : m ∈ N0

)
, . . . ,

(
(m+ αr)

−ihr : m ∈ N0

))
,
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and, for ω ∈ Ω, define Φh(ω) = ahω. Since ah ∈ Ω, we have that Φh is a measurable
measure-preserving transformation of Ω. We recall that a set A ∈ B(Ω) is called
invariant with respect to Φh if the sets A and Φh(A) coincide mH -almost surely.
The transformation Φh is ergodic if the σ-field of invariant sets consists only of the
sets of mH -measure 1 or 0.

Lemma 2. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then the transformation Φh is ergodic.

Proof. For proving Lemma 1, we have already used the fact that a character χ of
Ω is of the form

χ(ω) =
∏′

p

ω̂kp(p)

r∏
j=1

∞∏′

m=0

ω
kjm
j (m), ω ∈ Ω.

Therefore, in view of (3), we have that, for k 6= 0,

(4) χ(ah) = Ah(k) 6= 1.

Let A be an invariant set of Φh, and let IA(ω) denote its indicator function. Now, if
χ is a nontrivial character of Ω, then, using (4), we find that the Fourier transform
ÎA(χ) of IA is equal to 0. If χ0 is the trivial character of Ω, then, putting ÎA(χ0) = u,
we obtain that, for every character χ of Ω,

ÎA(χ) = û(χ).

From this it easily follows that mH(A) = 1 or mH(A) = 0, that is, the transforma-
tion Φh is ergodic.

3. LIMIT THEOREMS

Denote by H(D), D = {s ∈ C : 1
2 < σ < 1}, the space of analytic functions

on D endowed with the topology of uniform convergence on compacta. This section
is devoted to limit theorems for

PN,h(A)
def
=

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α; a) ∈ A}, A ∈ B (Hκ(D))

as N → ∞, where α = (α1, . . . , αr), a = (a11, . . . , a1l1 , . . . , ar1, . . . , arlr ), κ =
l1 + · · · lr + 1, and

ζ(s+ ikh, α; a) =
(
ζ(s+ ikh), ζ(s+ ikh1, α1; a11), . . . , ζ(s+ ikh1, α1; a1l1), . . . ,

ζ(s+ ikhr, αr; ar1), . . . , ζ(s+ ikhr, αr; arlr )
)
.

On the probability space (Ω,B(Ω),mH), define the Hκ(D)-valued random element
ζ(s, α, ω; a) by

ζ(s, α, ω; a) =
(
ζ(s, ω̂), ζ(s, α1, ω1; , a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,
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ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
,

where

ζ(s, ω̂) =
∏
p

(
1− ω̂(p)

ps

)−1

and

ζ(s, αj , ωj ; ajl) =

∞∑
m=0

amjlωj(m)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

Let Pζ be the distribution of the random element ζ(s, α, ω; a), that is,

Pζ(A) = mH

{
ω ∈ Ω : ζ(s, α, ω; a) ∈ A

}
, A ∈ B (Hκ(D)) .

Theorem 4. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q and that rank(Bj) = lj, j = 1, . . . , r. Then PN,h converges weakly
to Pζ as N →∞.

The outline of the proof of Theorem 4 is the following. First of all, using
Lemma 1, we prove a limit theorem for a collection ζ

n
(s, α; a) consisting from

absolutely convergent Dirichlet series. To pass from ζ
n
(s, α; a) to ζ(s, α; a), we

aproximate ζ(s, α; a) by ζ
n
(s, α; a) in the mean. This approximation result, a limit

theorem for ζ
n
(s, α; a) and properties of weak convergence of probability measures

including the Prokhorov theory ([2], Section 6.1) allows to obtain a limit theorem
for ζ(s, α; a). The last part of the proof is devoted to identification of the limit
measure, and is based on Lemma 2. For clarity of the proof, we divide it into
several lemmas.

Thus, we start with a limit theorem for the probability measure defined by
means of absolutely convergent Dirichlet series. For a fixed number θ > 1

2 , define

vn(m) = exp

{
−
(m
n

)θ}
, m, n ∈ N,

and

vn(m,αj) = exp

{
−
(
m+ αj
n+ αj

)θ}
, m ∈ N0, n ∈ N.

Then we have (see [8]) that the series

ζn(s) =

∞∑
m=0

vn(m)

ms

and

ζn(s, αj ; ajl) =

∞∑
m=1

amjlvn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj ,
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are absolutely convergent for σ > 1
2 . Extend the function ω̂(p) to the set N by

ω̂(p) =
∏
pl|m
pl+1-m

ωl(p), m ∈ N,

and define

ζn(s, ω̂) =

∞∑
m=1

ω̂(m)vn(m)

ms

and

ζn(s, αj , ωj ; ajl) =

∞∑
m=0

amjlωj(m)vn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

Since |ω̂(m)| = 1 and |ωj(m)| = 1, the latter series are also absolutely convergent
for σ > 1

2 . We set

ζ
n
(s, α, ω; a) =

(
ζn(s, ω̂), ζn(s, α1, ω1; a11), . . . , ζn(s, α1, ω1; a1l1), . . . ,

ζn(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
.

Let the function un : Ω→ Hκ(D) be given by

un(ω) = ζ
n
(s, α, ω; a).

Since the series constituting ζ
n
(s, α, ω; a) are absolutely convergent for σ > 1

2 , we
have that the functions un are continuous. Therefore, they are (B(Ω),B(Hκ(D)))-
measurable, and hence the measure mH induces the unique probability measure
Pn = mHu

−1
n on (Hκ(D),B(Hκ(D))), where

Pn(A) = mHu
−1
n (A) = mH(u−1

n A), A ∈ B(Hκ(D)).

Moreover, if

ζ
n
(s+ ikh, α; , a) =

(
ζn(s+ ikh), ζn(s+ ikh1, α1; a11), . . . , ζn(s+ ikh1, α1; a1l1),

. . . , ζn(s+ ikhr, αr; ar1), . . . , ζn(s+ ikhr, αr; arlr )
)

and

PN,n,h(A) =
1

N + 1
#{0 ≤ k ≤ N : ζ

n
(s+ ikh, α; a) ∈ A}, A ∈ B (Hκ(D)) ,

then we have that

un
((
p−ikh : p ∈ P

)
,
(
(m+ α1)−ikh1 : m ∈ N0

)
, . . . ,

(
(m+ αr)

−ikhr : m ∈ N0

))
=

ζ
n
(s+ ikh, α; a),

and thus PN,n,h = QN,hu
−1
n . This, Lemma 1, the continuity of un, and Theorem 5.1

of [2] (If Pn, n ∈ N, and P are probability measures on (X,B(X)), u : X → X1 is
a continuous mapping, and Pn converges weakly to P , then also Pnu

−1 converges
weakly to Pu−1 as n→∞) lead to the following statement.
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Lemma 3. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then PN,n,h converges weakly to Pn as N →∞.

Similarly, we obtain a limit theorem for

PN,n,h,ω(A) =
1

N + 1
#{0 ≤ k ≤ N : ζ

n
(s+ ikh, α, ω; a) ∈ A}, A ∈ B (Hκ(D)) ,

where, for ω ∈ Ω,

ζ
n
(s+ ikh, α, ω; a) =

(
ζn(s+ ikh, ω̂), ζn(s+ ikh1, α1, ω1; a11), . . . ,
ζn(s+ ikh1, α1, ω1; a1l1), . . . , ζn(s+ ikhr, αr, ωr; ar1), . . . ,
ζn(s+ ikhr, αr, ωr; arlr )

)
.

Lemma 4. Under the hypotheses of Lemma 3, PN,n,h,ω also converges weakly to
Pn as N →∞.

Proof. We follow the proof of Lemma 3 and apply the invariance of the Haar mea-
sure mH .

Furthermore, we will approximate ζ(s, α; a) by ζ
n
(s, α; a). For this, we need a

metric on H(D) inducing its topology. It is well known that there exists a sequence
of compact subsets {Kv : v ∈ N} ⊂ D such that

D =

∞⋃
v=1

Kv,

Kv ⊂ Kv+1 for all v ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kv for some
v ∈ N. For g1, g2 ∈ H(D), define

%(g1, g2) =

∞∑
v=1

2−v
sup
s∈Kv

|g1(s)− g2(s)|

1 + sup
s∈Kv

|g1(s)− g2(s)|
.

Then % is a metric on H(D) inducing its topology of convergence on compacta.
Now, let

g
m

= (gm0, gm11, . . . , gm1l1 , . . . , gmr1, . . . , gmrlr ) ∈ H(D), m = 1, 2.

Then

%κ(g
1
, g

2
) = max

(
%(g10, g20), max

1≤j≤r
max

1≤l≤lj
%(g1jl, g2jl)

)
is a metric on Hκ(D) inducing its topology.

Lemma 5. We have

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%κ

(
ζ(s+ ikh, α; a), ζ

n
(s+ ikh, α; a)

)
= 0

for all h, α, and a.
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Proof. From the definition of the metric %κ we have that it suffices that

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

% (ζ(s+ ikh), ζn(s+ ikh)) = 0

and

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

% (ζ(s+ ikhj , αj ; ajl), ζn(s+ ikhj , αj ; ajl)) = 0

for all j = 1, . . . , r, l = 1, . . . , lj . However, the first equality was obtained in the
proof of Lemma 3 in [4], and the second equality is Theorem 4.1 of [18].

We also need an analogue of Lemma 5 for ζ(s, α, ω; a) and ζ
n
(s, α, ω; a). Let

ζ(s+ ikh, α, ω; a) =
(
ζ(s+ ikh, ω̂), ζ(s+ ikh1, α1, ω1; a11), . . . ,
ζ(s+ ikh1, α1, ω1; a1l1), . . . , ζ(s+ ikhr, αr, ωr; ar1), . . . ,
ζ(s+ ikhr, αr, ωr; arlr )

)
.

Lemma 6. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then, for almost all ω ∈ Ω,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%κ

(
ζ(s+ ikh, α, ω; a), ζ

n
(s+ ikh, α, ω; a)

)
= 0.

Proof. In the proof of Lemma 6 of [4], it is obtained that, for almost all ω̂ ∈ Ω̂,

(5) lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

% (ζ(s+ ikh, ω̂), ζn(s+ ikh, ω̂)) = 0.

Moreover, the linear independence of the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) im-
plies that of the sets {hj log(m+ αj) : m ∈ N}, j = 1, . . . , r. Therefore, repeating
the proof of Lemma 4 of [5], we find that, for almost all ωj ∈ Ωj ,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

% (ζ(s+ ikhj , αj , ωj ; ajl), ζn(s+ ikhj , αj , ωj ; ajl)) = 0

for all j = 1, . . . , r, l = 1, . . . , lj . This and (5) prove the lemma.

To obtain the weak convergence for Pn,h, Theorem 4.2 of [2] will be applied.

For convenience of a reader, we state it as a separate lemma. Denote by
D−→ the

convergence in distribution.
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Lemma 7. Suppose that the space (X, %) is separable, and Yn, X1n, X2n, ... are X-
valued random elements defined on the probability space with the measure µ. Let

Xkn
D−−−−→

n→∞
Xk for each k ∈ N, and Xk

D−−−−→
k→∞

X. If, for every ε > 0,

lim
k→∞

lim sup
n→∞

µ {% (Xkn, Yn) ≥ ε} = 0,

then Yn
D−−−−→

n→∞
X.

Lemmas 3 and 5 are two important ingredients for application of Lemma 7,
however, we need the third one, i.e., the weak convergence of Pn as n→∞, where
Pn is the limit measure in Lemma 3. For this, we apply the Prokhorov theory con-
necting the notions of tightness and relative compactness of families of probability
measures. We recall that the family of probability measures {P} on (X,B(X)) is
tight if, for every ε > 0, there exists a compact subset K = K(ε) ⊂ X such that
P (K) > 1 − ε for all P ∈ {P}, and {P} is relatively compact if every sequence
{Pn} ⊂ {P} contains a subsequence {Pnm} such that Pnm converges weakly to cer-
tain probability measure P on (X,B(X)) as m→∞. The Prokhorov theorem says
that if the family {P} is tight, then {P} is relatively compact. Thus, it is sufficient
to prove the tightness for {Pn : n ∈ N}. On the other hand, the tightness of {Pn}
is closely related to discrete mean squares of the functions ζn(s) and ζn(s, αj ; ajl).
Therefore, we state the Gallagher lemma which connects continuous and discrete
mean squares of certain functions.

Lemma 8. Let T0 and T ≥ δ > 0 be real numbers, and T be a finite set of points
in the interval [T0 + δ

2 , T0 + T − δ
2 ], and

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Suppose that f is a complex-valued continuous function on [T0, T + T0] that has a
continuous derivative on (T0, T + T0). Then

∑
t∈T

N−1
δ (t)|f(t)|2 ≤ 1

δ

∫ T0+T

T0

|f(x)|2dx+

(∫ T0+T

T0

|f(x)|2dx

∫ T0+T

T0

|f ′(x)|2dx

) 1
2

.

The proof of the lemma is given in [23], Lemma 1.4.

Now, we are in position to prove the tightness of {Pn}.

Lemma 9. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then the family {Pn : n ∈ N} is tight.

Proof. By Lemma 3, we have that PN,n,h converges weakly to Pn as N → ∞.
Let Xn = Xn(s) = (Xn(s), Xn,1,1(s), ..., Xn,1,l1(s), ..., Xn,r,1(s), ..., Xn,r,lr (s)) be
an Hκ(D)-valued random element having the distribution Pn, and let θN be a
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discrete random variable defined on a certain probability space with the measure
µ and distribution

µ{θN = k} =
1

N + 1
, k = 0, 1, . . . , N.

Similarly to ζ
n
(s+ ikh, α; a), define the Hκ(D)-valued random element

XN,n,h = XN,n,h(s)
= (XN,n,h(s), XN,n,h1,1(s), ..., XN,n,h1,l1(s), ..., XN,n,hr,1(s), ..., XN,n,hr,lr (s))
= ζ

n
(s+ iθNh, α; a).

Then Lemma 3 implies the relation

(6) XN,n,h
D−−−−→

N→∞
Xn.

Let Mv and Mvjl be positive numbers, and let Kv be the compact set from the
definition of the metric %. Then we have

µ

{
sup
s∈Kv

|XN,n,h(s)| > Mv or ∃j, l : sup
s∈Kv

|XN,n,hj ,l(s)| > Mvjl

}
≤

µ

{
sup
s∈Kv

|XN,n,h(s)| > Mv

}
+

r∑
j=1

lj∑
l=1

µ

{
sup
s∈Kv

|XN,n,hj ,l(s)| > Mvjl

}
≤

1

(N + 1)Mv

N∑
k=0

sup
s∈Kv

|ζn(s+ ikh)|+

+

r∑
j=1

lj∑
l=1

1

(N + 1)Mvjl

N∑
k=0

sup
s∈Kv

|ζn(s+ ikhj , αj ; ajl)|.(7)

The series for ζn(s) and ζn(s, αj ; ajl) are absolutely convergent for σ > 1
2 , therefore,

for 1
2 < σ < 1, the mean squares

sup
n∈N

lim sup
T→∞

T∫
0

∣∣∣ζ(m)
n (σ + it)

∣∣∣2 dt

and

sup
n∈N

lim sup
T→∞

T∫
0

∣∣∣ζ(m)
n (σ + it, αj ; ajl)

∣∣∣2 dt,

m = 0, 1, are bounded. This and Lemma 8 show that the discrete mean squares

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

|ζn(σ + ikh)|2
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and

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

|ζn(σ + ikhj , αj ; ajl)|2

are bounded for 1
2 < σ < 1 as well. Hence, by the integral Cauchy formula, we find

that

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kv

|ζn(σ + ikh)| ≤ Cv <∞

and

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kv

|ζn(σ + ikhj , αj ; ajl)| ≤ Cvjl <∞.

Let ε be an arbitrary positive number, Mv = Cv2
v+1ε−1 and Mvjl = Cvjl2

v+1(κ−
1)ε−1. Then, in view of (7),

sup
n∈N

lim sup
N→∞

µ

{
sup
s∈Kv

|XN,n,h(s)| > Mv or ∃j, l : sup
s∈Kv

|XN,n,hj ,l(s)| > Mvjl

}
≤

ε

2v+1
+

ε

2v+1
=

ε

2v
.

Therefore, (6) gives

(8) sup
n∈N

µ

{
sup
s∈Kv

|XN (s)| > Mv or ∃j, l : sup
s∈Kv

|Xn,hj ,l(s)| > Mvjl

}
≤ ε

2v
.

Define the set

Hκ
ε =

{
(g, g11, ..., g1l1 , ..., gr1, ..., grlr ) ∈ Hκ(D) :

sup
s∈Kv

|g(s)| ≤Mv, sup
s∈Kv

|gjl(s)| ≤Mvjl, j = 1, ..., r, l = 1, ..., lj , v ∈ N
}
.

Then Hκ
ε is a compact set in Hκ(D), and by (8),

µ {Xn ∈ Hκ
ε } ≥ 1− ε

∞∑
v=1

1

2v
= 1− ε

for all n ∈ N, or, by the definition of Xn,

Pn(Hκ
ε ) ≥ 1− ε

for all n ∈ N.

As we have mentioned above, the tightness of {Pn} together with Lemmas 3
and 5 is sufficient for proving the weak convergence for PN,h. However, having in
mind the identification of the limit measure, we define, for ω ∈ Ω,

PN,h,ω(A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω; a) ∈ A}, A ∈ B (Hκ(D)) ,

where ζ(s + ikh, α, ω; a) is defined similarly to ζ
n
(s + ikh, α, ω; a), and prove the

following lemma.
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Lemma 10. Suppose that the set L (P, α1, . . . , αr, h, h1, . . . , hr, π) is linearly inde-
pendent over Q. Then, on (Hκ(D),B(Hκ(D))), there exists a probability measure
P such that PN,h and PN,h,ω both converge weakly to P as N →∞.

Proof. By Lemma 9 and the Prokhorov theorem, the sequence {Pn} is relatively
compact. Therefore, there exists a subsequence {Pnm} ⊂ {Pn} such that Pnm
converges weakly to a certain probability measure P on (Hκ(D),B(Hκ(D))) as
m→∞. In other words,

(9) Xnm

D−−−−→
m→∞

P.

Define the Hκ(D)-valued random element

XN,h = XN,h(s) = ζ(s+ iθNh, α; a).

Then, using Lemma 5 and a Chebyshev-type inequality, we obtain that, for every
ε > 0,

lim
n→∞

lim sup
N→∞

µ
{
%κ

(
XN,h, XN,n,h

)
≥ ε
}

= 0.

This, (6) and (9) show that all hypotheses of Lemma 7 are satified, therefore,

XN,h
D−−−−→

N→∞
P,

that is, PN,h converges weakly to P as N →∞. The latter relation also shows that
the measure P is independent of the subsequence {Pnm}. Therefore, we obtain that

(10) Xn
D−−−−→

n→∞
P.

This means that, as N →∞, PN,h converges weakly to the limit measure P of Pn
as n→∞.

It remains to prove the weak convergence for PN,h,ω. Let

XN,n,h,ω = XN,n,h,ω(s) = ζ
n
(s+ iθNh, α, ω; a).

and

XN,h,ω = XN,h,ω(s) = ζ(s+ iθNh, α, ω; a).

Then, using Lemmas 4 and 6, and the relation (10), and repeating the above
arguments, we obtain that PN,h,ω also converges weakly to P as N →∞.

Proof of Theorem 4. In virtue of Lemma 10, it remains to show that P = Pζ . For
this, we will use Lemma 2 which ensure the application of the classical Birkhoff-
Khintchine ergodic theorem (see, e.g., [27]). Moreover, Lemma 10 for PN,h,ω, and
the equivalent of weak convergence of probability measures in terms of continuity
sets (see, Theorem 2.1 of [2]) will be employed.



Joint approximation of analytic functions by shifts of the Riemann . . . 523

On the probability space (Ω,B(Ω),mH), define the random variable ξ by

ξ(ω) =

{
1 if ζ(s, α, ω; a) ∈ A,
0 otherwise,

where A is the continuity set of the measure P , that is, P (∂A) = 0, where ∂A
denotes the boundary of A. Clearly, we have that the expectation

(11) E(ξ) =

∫
Ω

ξdmH = Pζ(A).

Since PN,h,ω converges weakly to P , we have that

(12) lim
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω; a) ∈ A} = P (A).

From the Birkhoff–Khintchine theorem, we find that

(13) lim
N→∞

1

N + 1

N∑
k=0

ξ(Φkh(ω)) = E(ξ).

Moreover, by the definitions of ξ and Φh,

1

N + 1

N∑
k=0

ξ(Φkh(ω)) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω; a) ∈ A}.

This, (13), and (11) show that

lim
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω; a) ∈ A} = Pζ(A),

and by (12) we obtain that P = Pζ .

For proving of universality, we additionally need the explicit form of the
support of the measure Pζ . We recall that the support of Pζ is a minimal closed set

Sζ ⊂ Hκ(D) such that Pζ(Sζ) = 1. If g ∈ Sζ , then, for every open neighbourhood

G of g, the inequality Pζ(G) is satisfied.

Let S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Lemma 11. Under hypotheses of Theorem 4, the support of Pζ is the set S ×
Hκ−1(D).

Proof. We reduce the support of Pζ to the product of supports of marginal measures

on (H(D),B(H(D))) and (H lj (D),B(H lj (D))), j = 1, ..., r. We write

Hκ(D) = H(D)×H l1(D)× · · · ×H lr (D).
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The space H(D) is separable, and therefore [2] the σ-field B(Hκ(D)) coincides with

B(H(D))× B(H l1(D))× · · · × B(H lr (D)),

that is, it coincides with the σ-field generated by the sets

A = A0 ×A1 × · · · ×Ar,

where A0 ∈ B(H(D)) and Aj ∈ B(H lj (D)), j = 1, . . . , r. Let m̂H be the probability

Haar measure on (Ω̂,B(Ω̂)), and let mjH denote the probability Haar measure on
(Ωj ,B(Ωj)), j = 1, . . . , r. Then we have that the measure mH is the product of the
measures m̂H ,m1H , . . . ,mrH . Therefore,

Pζ(A) = mH

{
ω ∈ Ω : ζ(s, α, ω; a ∈ A

}
= m̂H

{
ω̂ ∈ Ω̂ : ζ(s, ω̂) ∈ A0

}
×

m1H

{
ω1 ∈ Ω1 : (ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1)) ∈ A1

}
× · · ·×

mrH

{
ωr ∈ Ωr : (ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )) ∈ Ar

}
.(14)

It is known [8] that the support of

Pζ(A0) = m̂H

{
ω̂ ∈ Ω̂ : ζ(s, ω̂) ∈ A0

}
is the set S. Since rank(Bj) = lj and the set {log(m + αj) : m ∈ N} is linearly
independent over Q, by Lemma 11 of [15] the support of the measure

Pζ,αj (Aj) = mjH

{
ωj ∈ Ωj : (ζ(s, αj , ωj ; aj1), . . . , ζ(s, αj , ωj ; ajlj )) ∈ Aj}

is the whole H lj (D), j = 1, . . . , r. Therefore, by (14) and the minimality property
of the support we obtain that the support of Pζ is the set

S ×H l1(D)× · · · ×H lr (D) = S ×Hκ−1(D).

We observe that, in the case h = h1 = . . . = hr, the proof of Theorem 4
is simpler, and we do not need Lammas 2, 4, and 6. Indeed, in [8], under the
hypothesis that the numbers α1, . . . , αr are algebraically independent over Q, it is
proved that

1

T
meas

{
τ ∈ [0;T ] : ζ(s+ iτ, α; a) ∈ A

}
, A ∈ B (Hκ(D)) ,

as T →∞, converges weakly to the limit measure P of P̂n as n→∞, P coincides
with Pζ , and the support of Pζ is the set S×Hκ−1(D). However, the algebraic in-
dependence of the numbers α1, . . . , αr is only used to prove the linear independence
of the set

{(log p : p ∈ P), (log(m+ αj) : m ∈ N0, j = 1, . . . , r)} .
Clearly, the linear independence of the set L (P, α1, . . . , αr, h, π) implies that of the
former. Therefore, PN also converges weakly to Pζ as N →∞, and the support of

Pζ is the set S ×Hκ−1(D).
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4. PROOF OF UNIVERSALITY

Proof of Theorem 3. By the Mergelyan theorem [20] on the approximation of an-
alytic functions by polynomials there exist polynomials p(s) and pjl(s) such that

(15) sup
s∈K
|f(s)− ep(s)| < ε

2

and

(16) sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|fjl(s)− pjl(s)| <
ε

2
.

In view of Lemma 11,
(
ep(s), p11, . . . , p1l1 , . . . , pr1, . . . , prlr

)
is an element of the

support of the measure Pζ . Define

G ε
2

=
{
g0, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ∈ H(D) :

sup
s∈K
|g0(s)− ep(s)| < ε

2
, sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|gjlj (s)− pjl(s)| <
ε

2

}
.

Then Pζ(G ε
2
) > 0. In the definition of Gε, let us take f(s) instead of ep(s) and

fjl(s) instead of pjl(s) and denote the obtained set by Ĝε. Then, by Theorem 4,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ ikhj , αj ; ajl)− fjl(s)| < ε
}

≥ Pζ(Ĝε) ≥ Pζ(G ε
2
) > 0

because G ε
2
⊂ Ĝε by (15) and (16).

Remark 1. The function ζ(s) in Theorem 3 can be replaced by Dirichlet L-
functions, zeta-functions of Hecke eigen forms, L-functions from the Selberg class,
Matsumoto zeta-functions, or periodic zeta-functions with multiplicative coefficients.

Acknowledgement. The authors thank the referee for useful suggestions con-
cerning Theorem 4.
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