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SUBPERIODIC TRIGONOMETRIC SUBSAMPLING: A

NUMERICAL APPROACH

Alvise Sommariva and Marco Vianello
∗

We show that Gauss-Legendre quadrature applied to trigonometric poly-
nomials on subintervals of the period can be competitive with subperiodic
trigonometric Gaussian quadrature. For example with intervals correspond-
ing to few angular degrees, relevant for regional scale models on the earth
surface, we see a subsampling ratio of one order of magnitude already at
moderate trigonometric degrees.

1. SUBSAMPLING FOR TRIGONOMETRIC QUADRATURE

In recent years some attention has been devoted in the numerical literature
to trigonometric approximation on subintervals of the period. Relevant topics are
the theory of Fourier extensions, where one of the main initial motivations was of
circumventing the Gibbs phenomenon (cf., e.g., [1, 2, 7]), and the theory of subpe-
riodic interpolation and quadrature, whose main motivation came from polynomial
approximation on domains related to circular/elliptical arcs, such as sections of
disk and sphere (cf., e.g., [6, 8, 10, 16]).

In this note, which is essentially of computational character, we focus on the
quadrature setting. For the reader’s convenience, we report the main result of [10]
concerning subperiodic trigonometric Gaussian quadrature. Below, we shall denote
by Tn the (2n + 1)-dimensional space of univariate trigonometric polynomials of
degree not exceeding n.
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Setting α = sin(ω/2), by the nonlinear transformation θ = 2 arcsin(αx),
x ∈ [−1, 1], we can write for any integrable f

(1)

∫ ω

−ω

f(θ) dθ =

∫ 1

−1

f(2 arcsin(αx))w(x) dx , w(x) =
2α

√
1− α2 x2

.

Then, we have the following result (cf. [10])

Theorem 1. Let be 0 < ω ≤ π and let {(xj , λj)}1≤j≤n+1 be the nodes and positive

weights of the algebraic Gaussian quadrature formula for the weight function w(x)
in (1).

Then

(2)

∫ ω

−ω

t(θ) dθ =

n+1∑
j=1

λjt(θj) , ∀t ∈ Tn ,

where θj = 2 arcsin(αxj) ∈ (−ω, ω), j = 1, 2, . . . , n+ 1.

Concerning algebraic Gaussian quadrature see, e.g., [13], [19, Ch. 5]. Ob-
serve that, since the weight function w(x) in (1) is even, the set of angular nodes
is symmetric, and that symmetric nodes have equal weight, cf. [13, Ch. 1].

Formula (2) has been termed Gaussian since it is exact on a space of dimension
2n+1 with n+1 nodes. Unlike algebraic Gaussian formulas the nodes and weights
cannot be tabulated in a reference subinterval, and have to be recomputed when
ω changes. In [9, 10] a Chebyshev moment-based algorithm has been used; an
alternative method could resort to the more general sub-range Jacobi polynomials
approach, studied in [15].

On the other hand, we can also simply write, for any integrable f ,

(3)

∫ ω

−ω

f(θ) dθ = ω

∫ 1

−1

f(ωx) dx ,

and think to apply the standard Gauss-Legendre formula to this integral. Of course,
we do not expect trigonometric exactness now, but which could be the number of
nodes that guarantees an error not far frommachine precision, for the trigonometric
basis {1, cos(kθ), sin(kθ), 1 ≤ k ≤ n} ? Perhaps not surprisingly, this number, can
be much lower than n+ 1 for “small” ω.

Indeed, we have chosen the number of nodes, say νε(n, ω), as the smallest
integer ν such that, denoting by {(ξj , wj)}, 1 ≤ j ≤ ν, the nodes and weights of
the Gauss-Legendre formula, we get∣∣∣∣∣∣

∫ 1

−1

cos(kωx) dx−

ν∑
j=1

wj cos(kωξj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣2 sin(kω)kω

−

ν∑
j=1

wj cos(kωξj)

∣∣∣∣∣∣ < ε ,

(4)

∣∣∣∣∣∣
∫ 1

−1

sin(kωx) dx −
ν∑

j=1

wj sin(kωξj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

ν∑
j=1

wj sin(kωξj)

∣∣∣∣∣∣ < ε , 1 ≤ k ≤ n ,
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with ε = 10−14 (sin(kωx) being an odd function). See Figure 2-right and Figure 3,
where the essential behavior of the ratio (n+1)/νε(n, ω) is displayed (the quantity
g̃ε(nω) is very close to νε(n, ω)).

We can give a qualitative explanation of such a behavior observing that the
functions cos(kωx), sin(kωx) are well-approximated by polynomials of degree not
much larger than kω on [−1, 1]. In fact, considering the Chebyshev expansions [18,
§3.3.2]

cos(kωx) =

∞∑
j=0

cj(−1)jJ2j(kω)T2j(x) , c0 = 1 , cj = 2 , j > 0 ,

(5) sin(kωx) =
∞∑
j=0

(−1)jJ2j+1(kω)T2j+1(x) , x ∈ [−1, 1] ,

together with a classical estimate for Bessel functions of the first kind [20, §2.9]
and Stirling’s formula

(6) |Js(kω)| ≤
(kω/2)s

s!
∼

(
ekω

2s

)s
1

√
2πs

, s → ∞ ,

we have that the Chebyshev cofficients decay very rapidly for 2j > ekω/2.

Now, we need to connect theoretically the “moment errors” in (4) with the
integration error for a generic function. This connection is given by the following
result, that was essentially proved in [22] in the multivariate polynomial setting
and we report here for convenience in a general univariate framework.

Theorem 2. Let S = 〈φ1, . . . , φN 〉 be an N -dimensional space of continuous uni-

variate functions in [a, b], where the basis {φi} is orthonormal with respect to a

measure λ on [a, b]. Let μ be a measure on [c, d] ⊆ [a, b] and {(tj , σj)}, 1 ≤ j ≤ M ,

the nodes and positive weights of a quadrature formula for μ, exact on constant

functions; define

(7) εi =

∫ d

c

φi(t) dμ−

M∑
j=1

σj φi(tj) , 1 ≤ i ≤ M , εmom = ‖{εi}‖2 .

Then, for every f ∈ C[a, b] the following quadrature error estimate holds

(8)

∣∣∣∣∣∣
∫ d

c

f(t) dμ−

M∑
j=1

σj f(tj)

∣∣∣∣∣∣ ≤ Cmin
φ∈S

‖f − φ‖∞,[a,b] + ‖f‖L2
λ
(a,b) εmom ,

where

C = 2μ([c, d]) +
√
λ([a, b]) εmom .
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Proof. First, observe that

(9)

∫ d

c

φ(t) dμ = 〈γ,m〉 , ∀φ ∈ S ,

γ = {γi}, m = {mi}, 1 ≤ i ≤ M , where

γi =

∫ b

a
φ(t)φi(t) dλ(∫ b

a
φ2
i (t) dλ

)1/2 , mi =

∫ d

c

φi(t) dμ ,

are the Fourier coefficients of φ in the λ-orthogonal basis {φi} and the μ-moments
of {φi} on [c, d], respectively. Moreover,

(10)
M∑
j=1

σj φ(tj) = 〈γ, m̃〉 , m̃i =
M∑
j=1

σj φi(tj) ,

where m̃ are the approximate moments, the 2-norm of the moment error being
denoted by εmom in (7).

Then we can write the “near exactness” estimate∣∣∣∣∣∣
∫ d

c

φ(t) dμ −

M∑
j=1

σj φ(tj)

∣∣∣∣∣∣ = |〈γ,m− m̃〉|

(11) ≤ ‖γ‖2 ‖m− m̃‖2 = ‖φ‖L2
λ
(a,b) εmom .

Now, take f ∈ C([a, b]), and let φ∗ be an element of minimum distance of S
from f in the uniform norm on [a, b], i.e. ‖f − φ∗‖∞,[a,b] = minφ∈S ‖f − φ‖∞,[a,b].
By a classical chain of inequalities in quadrature theory and (11) we get∣∣∣∣∣∣

∫ d

c

f(t) dμ−

M∑
j=1

σj f(tj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∫ d

c

f(t) dμ−

∫ d

c

φ∗(t) dμ

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ d

c

φ∗(t) dμ−

M∑
j=1

σj φ
∗(tj)

∣∣∣∣∣∣+
∣∣∣∣∣∣
M∑
j=1

σj φ
∗(tj)−

M∑
j=1

σj f(tj)

∣∣∣∣∣∣
≤

⎛⎝μ([c, d]) +

M∑
j=1

σj

⎞⎠min
φ∈S

‖f − φ‖∞,[a,b] + ‖φ∗‖L2
λ
(a,b) εmom .

By exactness of the quadrature formula on constant functions and the inequality

‖φ∗‖L2
λ
(a,b) ≤ ‖φ∗− f‖L2

λ
(a,b)+ ‖f‖L2

λ
(a,b) ≤

√
λ([a, b]) ‖f −φ∗‖∞,[a,b]+ ‖f‖L2

λ
(a,b) ,
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we finally obtain (8). �

In the present trigonometric framework Theorem 2 can be applied with S =
Tn and N = dim(Tn) = 2n+ 1, [a, b] = [−π, π], [c, d] = [−ω, ω], dμ = dλ = dθ; the
quadrature formula is the scaled Gauss-Legendre formula {(tj , σj)} = {(ωξj , ωwj)}
and M = νε(n, ω), cf. (3)-(4). In particular, the moment error can be bounded as

(12) εmom ≤ ε ω
√
2n+ 1 .

2. IMPLEMENTATION AND EXAMPLES

The key observation for an effective implementation of Gauss-Legendre quadrature
in the subperiodic trigonometric setting is the following. Consider the trigonometric
functions cos(ux), sin(ux), x ∈ [−1, 1], where u is a positive parameter (we are
clearly interested in u = nω). Define as gε(u) the minimum number of Gauss-
Legendre nodes such that

(13) E(u) = max

⎧⎨⎩
∣∣∣∣∣∣2 sin(u)u

−

gε(u)∑
j=1

wj cos(uξj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
gε(u)∑
j=1

wj sin(uξj)

∣∣∣∣∣∣
⎫⎬⎭ < ε

for a fixed ε > 0. It turns out, at least numerically, that gε is a nondecreasing

function of u > 0. Then, we have that the integer function νε in (4) is simply

(14) νε(n, ω) = gε(nω) .

Though we have not a rigorous proof but only numerical evidence of the
monotonicity of g (see e.g. Figure 1), this property appears quite natural. Indeed,
taking for example cos(ux), consider the classical Gauss-Legendre quadrature error
estimate with s + 1 nodes, namely 4E2s+1(cos(u ·); [−1, 1]), where Em(f ; [a, b]) =
minp∈Pm

‖f − p‖∞,[a,b] is the best uniform approximation error by polynomials of
degree m for f ∈ C[a, b]. Now, such an estimate is a nondecreasing function of u,
since, as it can be easily proved, Em(cos(u ·); [−1, 1]) = Em(cos(·); [−u, u]). The
same holds for sin(ux), and hence computing gε(u) from the Gauss-Legendre error
estimates would give a number of Gauss-Legendre nodes nondecreasing in u.

In practice, the direct computation of gε(u) by applying iteratively the Gauss-
Legendre formula is costly (especially at high frequencies), while resorting to the
Gauss-Legendre quadrature error estimates gives typically a substantial overesti-
mate of the number of nodes. Thus, we have chosen an alternative numerical
approach.

First, we have chosen ε = 10−14, in view of the numerical evidence that,
working in double precision, it is difficult to go much below such a threshold with
the moment errors in the whole ω range (a fact that has been observed also in [10]
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Figure 1: The integer valued functions gε(u) (blue) and g̃ε(u) (red) in the interval
[π/180, 100] (right: detail).

concerning subperiodic trigonometric Gaussian quadrature). Then, once and for all,
we have sampled gε(u) at a relatively small number of nodes in the interval [1, 500]
and constructed the cubic spline interpolant to such values, say s3(u) (observe that
u = nω = 500 corresponds to n in the hundreds even for ω = π). In practice, we
have sampled at 21 equispaced nodes in [1, 500] and the corresponding 21 values of
gε are the only information to be stored. Then we have taken

(15) g̃ε(u) = �s3(u)� , u ∈ (0, 500] ,

observing an average discrepancy |gε(u)− g̃ε(u)| of about 0.7 on a fine control mesh
in [π/180, 500] (the values being extrapolated by the first cubic for u < 1).

The corresponding quadrature errors are displayed in Figure 2-left, where we
see that using g̃ε(u) instead of gε(u) they remain below 0.5 10−13. No substantial
improvement in the performance has been observed by increasing the number of
sampled values or taking the left-hand side of the interval smaller than 1. For
higher frequencies, the number gε(u) is well-approximated by linear regression, and
we have seen a good behavior of quadrature taking

(16) g̃ε(u) = 0.54u+ 21 , u > 500 .

In Figure 2-right we have displayed the ratio

(17) ρn(ω) =
n+ 1

g̃ε(n, ω)

for n = 1, . . . , 200 at different values of ω, where can see a remarkable subsampling
effect correspondingly to the smaller angular intervals. For example, at ω = π/36,
corresponing to an angular interval of 10 degrees, we can subsample by a factor
5 already for trigonometric degree n = 60. A contour plot of the same ratio as a
bivariate function of (ω, n) is shown in Figure 3.

Observe that from the empirical formula (16) we expect in practice a sub-
sampling effect (at least for large k) only for 0.54ω < 1, that is ω < 1.85 or
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Figure 2: Left: the error E(u) in (13) (log scale) computed with gε(u) (blue) and
g̃ε(u) for u ∈ [π/180, 500]. Right: the ratio (n+ 1)/g̃ε(nω) up to trigonometric de-
gree 200 at (from top to bottom) ω = π/36, π/18, π/9, π/6, π/3, π/2 (corresponding
to an angular interval of 10, 20, 40, 60, 120, 180 degrees).

equivalently ω < 0.59 π (which is in good accordance with the observed behavior).
On the other hand, the asymptotic analysis in (5)-(6) would suggest a little more
restrictive range, namely ω < 4/e ≈ 1.47 or equivalently ω < 0.46 π.

In order to make some meaningful examples, we have modified the Matlab
function trigauss in the software package [9], in such a way that Gauss-Legendre
quadrature is chosen as soon as g̃ε(nω) < n+ 1. When a generic angular interval
[α, β], with β−α ≤ 2π, is concerned, the variable is simply shifted as θ′ = θ− (α+
β)/2, with θ′ ∈ [−ω, ω], ω = (β − α)/2.
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Figure 3: Contour plot of the ratio (n + 1)/g̃ε(nω) for n = 1, . . . , 300, ω ∈
[π/180, π/3] (left) and detail for ω ∈ [π/180, π/18] (right).

2.1 Circular sections We start from the following simple observation: a
multivariate polynomial of total degree n restricted to an arc of a circle is a uni-
variate trigonometric polynomial of degree n. This fact has allowed to construct
algebraic cubature formulas on several multivariate domains related to circular
arcs, cf. e.g. [8, 10, 12, 16]. Applications arise, for example, in the field of optical
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design [3].

Several instances of disk sections, such as circular segments, sectors, zones,
lenses, can be treated in the general framework of linear blending of arcs. We do
not go into details here, addressing the interested reader to [8], but we only recall
that all such cases fall into the class of domains

Ω = τ([0, 1]× [α, β]) , β − α ≤ 2π ,

(18) τ(t, θ) = (τ1(t, θ), τ2(t, θ)) , τi(t, θ) ∈ P1 ⊗ T1 , i = 1, 2 ,

where the blending transformation τ has constant sign Jacobian |det(Jτ)| = ±det(Jτ) ∈
P1 ⊗ T2, and thus

(19)

∫
Ω

f(x, y) dxdy =

∫ 1

0

∫ β

α

f(τ(t, θ)) |det(Jτ(t, θ))| dθdt .

Now, if f ∈ P2
n, then (f ◦ τ) |det(Jτ)| ∈ Pn+1 ⊗ Tn+2, and we can construct

a cubature formula with polynomial exactness, simply as a product formula of
Gauss-Legendre quadrature in the radial direction with exact trigonometric Gaus-
sian quadrature in the angular direction. On the other hand, we can substitute the
exact trigonometric Gaussian quadrature with the nearly-exact Gauss-Legendre for-
mula in (13). In special cases, |det(Jτ)| can be independent of one of the variables,
as with circular sectors, |det(Jτ)| = Rt, or circular segments, |det(Jτ)| = R2 sin2(θ)
(R being the circle radius), cf. [8, 10].

As an example, we have taken two circular sectors of the unit disk

τ = (t cos(θ)), t sin(θ)) , t ∈ [0, 1] , θ ∈ [−ω, ω] ,

corresponding to angles 2ω = π/3 (60 angular degrees) and 2ω = π/18 (10 angular
degrees). Here, the subsampling ratio at the same degree of exactness n is ρn(ω)
in (17). Near exactness in the cubature of polynomials of the form (ax+ by + 2)n,
where a and b are uniform random variables in [−1, 1], is shown in Figure 4-top
(averages of 100 random samples), whereas the subsampling ratios are displayed in
Figure 4-bottom.

bf2.2 Spherical sections We present now examples concerning numerical cu-
bature on special sections of the unit sphere S2, a subject that has received some
attention in the recent literature, cf. e.g. [4, 5, 16, 17]. Consider the spherical
coordinates

(20) (x, y, z) = σ(θ, ϕ) = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)) ,

where θ is the azimuthal angle and ϕ the polar angle, (θ, ϕ) ∈ [−π, π]× [0, π], and
a “geographic rectangle”, that is

(21) Ω = σ([α1, β1]× [α2, β2]) , [α1, β1] ⊆ [−π, π] , [α2, β2] ⊆ [0, π] .
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Figure 4: Top: relative cubature error for random polynomials of degree 2, · · · , 60
on a circular sector with angle of 60 degrees (left) and 10 degrees (right), by exact
trigonometric Gaussian quadrature (blue squares) and nearly-exact Gauss-Legendre
subsampling (red stars). Bottom: subsampling ratio for the 60 degree arc (circles)
and the 10 degree arc (triangles).

To compute the corresponding surface integral we can write∫
Ω

f(x, y, z) dS =

∫ β1

α1

∫ β2

α2

f(σ(θ, ϕ) | sin(ϕ)| dϕ dθ ,

(22) =

∫ β1

α1

∫ β2

α2

f(σ(θ, ϕ) sin(ϕ) dϕ dθ .

Observing that if f ∈ P3
n(S

2), then (f ◦ σ) sin(ϕ) ∈ Tn ⊗Tn+1, we can construct a
cubature formula with polynomial exactness and cardinality (n+1)(n+2), simply
as a product formula of exact trigonometric Gaussian quadrature in the two angles.

Notice that spherical caps are special cases of geographic rectangles, where the
azimuthal angle corresponds to a complete circle. Consider indeed (up to rotations)
a polar cap with an arc of length 2ω, that is described in spherical coordinates as

(23) Ω = σ([−π, π]× [0, ω]) .
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Here symmetry can be used to reduce the number of nodes of the original formulas
to n2/2 +O(n) (cf. [16, 17]).

Now, we can substitute the exact trigonometric Gaussian quadrature with
the nearly-exact Gauss-Legendre formula in (13); in this case, a “product effect”
in the subsampling arises, at least for ω1, ω2 < 0.59 π (see the empirical considera-
tions after (17)). Indeed, the subsampling ratio at the same degree of exactness n
becomes ρn(ω1) ρn+1(ω2), cf. (17), where ω1 = (β1 − α1)/2 and ω2 = (β2 − α2)/2,
since both the variables are involved. In the case of a spherical (polar) cap (23),
subsampling acts only on the polar angle.

We make some examples concerning geographic rectangles of the earth sur-
face, from a continental to a regional scale (notice that a scaling of the Cartesian
variables by the earth radius is implicit). In the first example we have consid-
ered two spherical (polar) caps, one corresponding to latitudes over 60oN (arc of
60 degrees, ω = π/6) and the second to latitudes over 85oN (arc of 10 degrees,
ω = π/36).

The results are collected in Figure 5. Near exactness in the cubature of
polynomials of the form (ax+by+cz+3)n, where a, b, c are uniform random variables
in [−1, 1], is shown in Figure 5-top (averages of 100 random samples). We recall that
the cardinality of the formulas in [17] is approximately (n+1)(n+2)/2 whereas that
of the formula in [16] is approximately (n+ 1)2/2, both leading to a subsampling
ratio with respect to the present formula (whose cardinality is (n+1)g̃ε((n+1)ω/2)
since the ϕ-interval half-length is ω/2) of approximately 1

2ρn+1(ω/2); see Figure
5-bottom. To have an idea, on the smaller cap for polynomial degree 30 we use 279
versus the 496 nodes of [17], and for degree 60 we use 610 versus 1891 nodes.

For the second example, we have taken two geographic rectangles. The first
(24)

Ω1 = σ

([
−
125

180
π,−

67

180
π

]
×

[
41

180
π,

65

180
π

])
, ω11 ≈ 0.506 , ω12 ≈ 0.209 ,

corresponds in standard longitude-latitude to 67oW - 125oW , 25oN - 49oN , a vaste
rectangle approximately containing the contiguous continental USA, whereas the
second
(25)

Ω2 = σ

([
−
109

180
π,−

102

180
π

]
×

[
49

180
π,

53

180
π

])
, ω21 ≈ 0.061 , ω22 ≈ 0.035 ,

is the rectangle 102oW - 109oW , 37oN - 41oN , corresponding to Colorado.

The results are collected in Figure 6. The random polynomials are as in
the cap example. The product effect is clearly visible in Figure 6-bottom, and is
stronger for the smaller rectangle (Colorado). To have an idea, on the Colorado
rectangle for polynomial degree 30 we use 81 versus the 992 nodes of [16], and for
degree 60 we use 110 versus 3782 nodes (the subsampling ratio is of about one order
of magnitude already for degree 25).

It is worth stressing that the fact of being on a sphere is not essential, since
such results would have been obtained for example also on rectangles of the torus,
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with angular intervals (in the usual poloidal-toroidal coordinates) of the same length
of those in (24)-(25). On the other hand, nearly-exact Gauss-Legendre subsampling
can be adopted also for product formulas on solid sections, for example spherical
sectors whose base is a cap or more generally a geographic rectangle, keeping the
corresponding subsampling ratios.
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Figure 5: Top: relative cubature error for random polynomials for degree 2, · · · , 60
on polar caps with latitude over 60oN (left) and 85oN (right), by exact trigono-
metric Gaussian quadrature (blue squares) and nearly-exact Gauss-Legendre sub-
sampling (red stars). Bottom: subsampling ratio for the 60oN (circles) and the
85oN cap (triangles).

3. CONCLUSIONS AND FUTURE WORK

This numerical paper is only a first step towards the comprehension of the subsam-
pling phenomenon in subperiodic trigonometric approximation and quadrature. We
have shown that nearly-exact Gauss-Legendre quadrature can be competitive with
exact subperiodic trigonometric Gaussian quadrature [10], especially when product
formulas are involved. We plan to adopt such nearly-exact quadrature formulas in
all our codes for algebraic cubature onmultivariate domains constructed via circular
arcs, such as sections of disk, sphere, torus [9].
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Figure 6: Top: relative cubature error for random polynomials for degree 2, · · · , 60
on geographic rectangles corresponding to USA (left) and Colorado (right), by
exact trigonometric Gaussian quadrature (blue squares) and nearly-exact Gauss-
Legendre subsampling (red stars). Bottom: subsampling ratio for USA (circles)
and Colorado (triangles).

On the other hand, some preliminary tests have revealed that a similar sub-
sampling phenomenon seems to arise directly with subperiodic trigonometric Gaus-
sian quadrature, in the sense that nearly-exact quadrature seems to require less
nodes than the exact one, depending on the length of the angular interval. Or
equivalently, that near-exactness seems to occur up to a higher trigonometric de-
gree than the nominal exactness one.

This phenomenon, as well as a comparison with the popular quadrature
methods based on prolate spheroidal wave functions (cf., e.g., [21] and references
therein), deserve future investigation.
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