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EXTENSION OF GENERALIZED

INTEGRO-EXPONENTIAL FUNCTION AND ITS

APPLICATION IN STUDY OF CHEN DISTRIBUTION

Tibor K. Pogány∗, Gauss M. Cordeiro, Muhammad H. Tahir, Hari
M. Srivastava

In 2000 Chen introduced a two-parameter lifetime model and has reported

only a few mathematical properties moments, quantile and generating func-

tions, among others. In this article, we derive a power series expansion for

newly introduced real upper parameter generalized integro–exponential func-

tion Eps (z) extending certain Milgram’s findings. By our novel results we

derive closed–form expressions for the moments, generating function, Rényi

entropy and power series for the quantile function of the Chen distribution.

1. INTRODUCTION

The lifetime models exhibiting either monotone (increasing and decreasing) or
non-monotone (bathtub and upside-down bathtub) failure rate properties have wide
applications inter alia in the fields of engineering, life-sciences, medicine and health
sciences, actuaries. The models exhibiting bathtub-shaped failure rate are very
important to study the lifetime of electro-mechanical, electronic and mechanical
products since they often show such kind of failure rate characteristic. The gamma,
Weibull, linear failure rate and their extensions are amongst the most popular
lifetime models. Chen [1] also proposed a useful lifetime model that exhibits most
of the failure rate behavior.
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A random variable (RV) T defined on a standard probability space (Ω,F ,P)
is said to have the two-parameter Chen distribution (abbreviated in the sequel as
’Chen distribution’) if its cumulative distribution function (CDF) F (x) and the
related probability density function (PDF) f(x) are, respectively, given by

F (x) =
(

1− exp
{
a(1− ex

β

)
})
· 1R+(x)

and

(1) f(x) = a βxβ−1 exp
{
xβ + a(1− ex

β

)
}
· 1R+

(x) ,

where a > 0 is the scale parameter, β > 0 is the shape parameter and 1S(x) stands
for the indicator of the event x ∈ S. That T follows the Chen distribution we shall
denote T ∼ Chen(a, β) throughout.

Xie et al. considered a slightly extended Chen’s model studying the RV
Ξ1 = αT, α > 0 which CDF reads [22, p. 280, Eq. (3)]

F1(x;α) = F
(x
α

)
=
(

1− exp
{
λα(1− e( xα )

β

)
})
· 1R+(x) ,

where λ, β > 0. Here, the scaling parameter α gives more flexibility with respect to
the Chen model, but choosing λα = a the probabilistic structure does not change
substantially; for α = 1 these distributions coincide. However, the mathematical
properties of the distribution were not studied in detail. Finally, it trivially follows
EΞγ1 = αγ ET γ for some general fractional γ, so the general moment identification
for T ∼ Chen(a, β) uniquely solves the problem for the model by Xie et al.

On the other hand, the RV Ξ2 = T 1/β , β > 0 behaves according to the
familiar (truncated) Gompertz distribution with the CDF

F2(x;α, β) = F
[(x
α

) 1
β
]
.

Indeed, the RV T ∼ Chen(a, β) is actually the βth power of the Gompertz distri-
bution. The integer order moments for the full support, non–truncated Gompertz
RV are established by Lenart [7, p. 257, Proposition 2] in terms of the so–called
generalized integro–exponential function considered by Milgram [11, p. 444, Eq.
(2.3)]

Ejs(z) =
(−1)j

j!

( ∂
∂s

)j
zs−1 Γ(1− s, z)(2)

=
1

Γ(j + 1)

∫ ∞
1

(lnx)jx−se−z x dx, j ∈ N0; s, z ∈ C ,(3)

where Γ(a, b) =
∫∞
b
xa−1 e−x dx stands for the upper incomplete Gamma function.

Lenart applied the case s = 1 for deriving the mean, variance, skewness and kurtosis
in terms of generalized hypergeometric function 3F3 and Meijer G function, but
derives also approximations for these values, see [7, p. 259 et seq.].
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In his introductory paper [1] Chen considered interval estimation and joint
confidence regions, maximum likelihood estimation, but mentioned that the kth
moment is actually expressible in terms of the integral Ψ(a; kβ−1), compare [1,
p. 161]. On the other hand, Xie et al. avoided to give any novel expressions for
moments only remarking that numerical integration can be used in calculating the
mean and the variance.

Obviously, the RV T ∼ Chen(a, β) generates the RVs Ξ1 and Ξ2 as well and
there are further mathematical properties which are not yet covered.

The rth moment of Chen RV is defined by

µ′r = ET r =

∫ ∞
0

xr f(x) dx = a β

∫ ∞
0

xr xβ−1 exp
{
xβ + a(1− ex

β

)
}

dx.

Substitute exp{xβ} 7→ x. So, the rth moment of T via (3) becomes

(4) µ′r = a ea
∫ ∞

1

e−a x (lnx)rβ
−1

dx = a ea Γ(rβ−1 + 1)Erβ
−1

0 (a), r > 0.

For the sake of simplicity, we will write p = rβ−1 > 0 in the sequel. 1

The rth incomplete moment is defined by

(5) mr(w) =

∫ w

0

xr f(x) dx = a ea
∫ w

1

e−a x (lnx)p dx, w > 0.

The moment generating function (MGF) of the Chen distribution is defined by

MT (s) = E e−sT =

∫ ∞
0

e−sT f(x) dx = a ea
∫ ∞

1

e−s(ln x)β
−1
−a x dx, s > 0.

Finally, the quantile function (QF) of T takes the form

Q(p; a, β) =
[
ln
{

1− ln(1− p)a
−1
}]β−1

· 1(0,1)(p) .

This paper is unfolded as follows. In Section 2, firstly we derive the triple power
series expansion of the generalized integro–exponential function Eps (z) for real p >
−1 and complex s, z ∈ C significantly extending the region of validity from the
nonnegative integer p ∈ N0 which is in detail presented and discussed by Milgram
[11].

One of the by–products of our result upon Eps (z) is the expression for non-
negative real order moment for the RV T behaving according to the Chen distri-
bution. Secondly, we extend Nadarajah’s derivative formula for the integer order
moments of RV T ∼ Chen(a, β) to the moments of non-negative real order, which
results form the Section 3. The incomplete moments are presented in Section 4. We
obtain the moment generating function in Section 5, while the Section 6 is devoted

1The parameter p denotes not necessarily the same throughout. However, there is no doubt
which role is playing in the situation considered.
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to the Rényi entropy expression, which was derived by using the results presented
upon Eps (z) in the Section 2. The computational power series expansion for the
quantile function is in the focus of considerations in the Section 7. The exposition
is closed in the Conclusion section 8.

The established analytical expressions containing special functions to deter-
mine some structural properties for Chen distribution which are suitable for com-
puting them directly instead of the classical approach, which was the numerical
integration of the related PDF. Analytical facilities available in programming soft-
wares like Ox, Mathematica, Maple and Matlab can substantially contribute to use
these results in practice. We end the exposition in Section 7 with certain concluding
remarks.

2. EXTENSION OF GENERALIZED INTEGRO–EXPONENTIAL
FUNCTION

Our main goal in this section is giving full consideration to the generalized
integro–exponential function having upper p parameter

(6) Eps (z) =
1

Γ(p+ 1)

∫ ∞
1

(lnx)px−se−z x dx, <(p) > −1; s, z ∈ C .

The derived power series form of this integral which upper parameter satisfies
<(p) > −1, becomes the main tool in yielding the moments and incomplete mo-
ments of positive real order for the Chen distributed RV T . By this result we
substantially extend the existing Milgram’s results for p ∈ N (for which compare
[11] and the references therein).

The first mathematical tool we need here is the Lin–Srivastava generalized
Hurwitz–Lerch Zeta (HLZ) function which series definition reads [8, p. 727, Eq.
(8)], [20, p. 489, Eq. (1.10)]

Φ(ρ,σ)
µ,ν (z, s, u) =

∑
n≥0

(µ)ρn
(ν)σn

zn

(n+ u)s
,

where µ ∈ C, ν, u ∈ C \ Z−0 , ρ, σ ∈ R+ and ρ < σ when z, s ∈ C (for further
convergence details see e.g. [20, p. 489]). Here

(λ)η =
Γ(λ+ η)

Γ(λ)
, λ ∈ C \ {0}

denotes the generalized Pochhammer symbol, where by convention (0)0 = 1. Thus,

(7) Φ
(0,1)
µ,1 (−a, p+ 1, 1) = lim

ρ→0
Φ

(ρ,1)
µ,1 (−a, p+ 1, 1) =

∑
n≥0

(−a)n

n! (n+ 1)p+1
.
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Next, we determine the power series of Eps (z). By setting (1 − x)−1 7→ x in the
integrand of (6), we obtain

Eps (z) =
(−1)p

Γ(p+ 1)

∫ 1

0

(1− x)−s−2 lnp(1− x) · exp
{
− z

1− x

}
dx.

By expanding the exponential and the binomial terms and interchange the sums
and the integral it follows

Eps (z) =
(−1)p

Γ(p+ 1)

∑
n,k≥0

(−1)k(−z)n

n!

(
−n− s− 2

k

) ∫ 1

0

xk lnp(1− x) dx︸ ︷︷ ︸
Jk(p)

.

This moves are enabled with the dominated convergence theorem having in mind

∣∣(−1)p Jk(p)
∣∣ ≤ ∫ 1

0

(
ln

1

1− x

)<(p)

dx = Γ (<(p) + 1) , <(p) + 1 > 0 .

The inner integral Jk(p) can be handled by substituting 1− e−x 7→ x :

Jk(p) =

∫ ∞
0

(1− e−x)k e−x (−x)p dx = (−1)p
k∑

m=0

(−1)m
(
k

m

) ∫ ∞
0

e−(m+1)x xp dx

= (−1)p
k∑

m=0

(
k

m

)
(−1)mΓ(p+ 1)

(m+ 1)p+1
= (−1)p

k∑
m=0

Γ(p+ 1)(−k)m
m! (m+ 1)p+1

,(8)

where both sums in (8) can be used for exact numerical evaluation. Moreover,
considering the last equation, we arrive at the more compactly written expression

(9) Jk(p) = (−1)pΓ(p+ 1) Φ
(0,1)
µ,1 (−k, p+ 1, 1), µ ∈ C,

where Φ
(0,1)
µ,1 (−k, p+ 1, 1) is the k–partial sum of the HL Zeta function (7).

Remark 2.1. It is worth to mention that the case of non-negative integer p for
Jk(p) is well documented. Namely, the formula (transformed into our setting)

(
d

dx

)p
1

(x+ 1)k−1
=

(−1)p p!

k!

k∑
m=0

(−k)m
m! (m+ x+ 1)p+1

, p ∈ N0

occurs in the monograph by the father of Hungarian probabilistic school Charles
(Károly) Jordan [5, p. 337]. Also consult [4, p. 139, Eq. (6.7.47)]. �
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The relation (9) leads to

Eps (z) =
∑
n,k≥0

(−1)k(−z)n

n!

(
−n− s− 2

k

)
Φ

(0,1)
µ,1 (−k, p+ 1, 1)

=
∑
n,k≥0

(s+ 2)n+k

k! (s+ 2)k

(−z)n

n!
Φ

(0,1)
µ,1 (−k, p+ 1, 1)

=
∑
k≥0

(s+ 2)k
k!

Φ
(0,1)
µ,1 (−k, p+ 1, 1)

∑
n≥0

(s+ 2 + k)n
(s+ 2)n

(−z)n

n!

=
∑
k≥0

(s+ 2)k
k!

Φ
(0,1)
µ,1 (−k, p+ 1, 1) 1F1(s+ k + 2; s+ 2;−z) ,

where the confluent hypergeometric function - Kummer’s function [6, p. 29, Eq.
(1.6.14)]

1F1(a; b;x) =
∑
n≥0

(a)n
(b)n

xn

n!
, x, a ∈ C; b ∈ C \ Z−0

is employed. Hence the desired result.

Theorem 2.2. For all <(p) > −1, s, z ∈ C, there hold true the triple power series
expansion formulae of the generalized integro–exponential function

(10) Eps (z) =
∑
k≥0

(s+ 2)k
k!

Φ
(0,1)
µ,1 (−k, p+ 1, 1) 1F1(s+ k + 2; s+ 2;−z) .

Remark 2.3. We point out that the closed form expression of Eps (z) in the case
of nonnegative integer p is reported by Milgram [11, p. 444, (2.7b)] in terms of the
Meijer G function [10], [6, p. 63, Eq. (1.12.51)]; also consult the adequate formulae
in [16, pp. 100–103, §2.5.1–2]. However, to the best of our knowledge, results for
general real positive p are not yet published. �

3. MOMENTS

Consider the random variable X defined on a standard probability space
(Ω,F ,P). Let X ∼ E (a), a > 0, that is, let X be exponentially distributed. Define
now the RV

Y = (lnX)p+, p > 0; (u)+ := max{0, u}.

Then, the expectation and the variance of Y are written as

E(Y ) = a

∫ ∞
1

e−ax (lnx)p dx = aEp0 (a) ,
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and

Var(Y ) = a

∫ ∞
1

e−ax (lnx)2p dx− a2

(∫ ∞
1

e−ax (lnx)p dx

)2

= aE2p
0 (a)− a2

[
Ep0 (a)

]2
,

where both expressions can be presented as power series based on Theorem 2.2.

Our next step is to obtain the rth moment of the random variable T ∼
Chen(a, β). Bearing in mind the related PDF (1) and substituting exp{xβ} 7→ x,
we have

ET r = a β

∫ ∞
0

xr+β−1 exp
{
xβ + a(1− ex

β

)
}

dx

= a ea
∫ ∞

1

(lnx)rβ
−1

e−ax dx = a eaErβ
−1

0 (a) .

By virtue of Theorem 2.2. the following result is inferred.

Theorem 3.4. Let the RV T ∼ Chen(a, β); a, β > 0;µ ∈ C. Then, the rth positive
order moment reduces to

(11) µ′r = ET r = a ea
∑
k≥0

(2)k
k!

Φ
(0,1)
µ,1

(
− k, rβ−1 + 1, 1

)
1F1(k + 2; 2;−a) .

3.1 The Grünwald–Letnikov approach

In this section, we complement to the any positive real order the derivative formula
result of Nadarajah [14, p. 115, Theorem 1] by deriving explicit algebraic formulae
for the kth moment of the Chen(a, β) distribution viz.

EΞk1 = nαk eλα
( ∂
∂s

)n−1 Γ(s, λα)

(λα)s

∣∣∣
s=0

,

for k/n = β positive rational number, being k, n ∈ N.2 Our below exposed
Grünwald–Letnikov fractional derivative results fill the gap between positive ra-
tional and real powers in moments’ order.

A more elegant approach in calculating I1(a, p) (and a fortiori the depending
moment) can be offered by including the Grünwald–Letnikov fractional derivative
operator of the order p > 0, which definition reads [17, §20], [6, p. 121 et seq.]

Dpx
[
f
]

= lim
n→∞

(
n

x− a

)p n∑
m=0

(p)m
m!

f

(
x−m x− a

n

)
, x > a.

2The traces of the derivation formula employed in [14] we follow back to McLachlan et al. [9, p.
26]; it concerns the Laplace–transform of the function x 7→ xν−1(lnx)m ·1(1,∞)(x); m ∈ N, ν > 0.
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We point out that several numerical algorithms are available for the direct compu-
tation of fractional expressions: see, for instance Diethelm et al. [3], Murio [13]
and Sousa [19].

As it is well–known [15] the Grünwald–Letnikov fractional derivative Dpx of
order p > 0 of the exponential function is

Dpx
[
eαx
]

= αpeαx ;

therefore
Dpt
[
et ln x

]
t=0

= (lnx)p xt
∣∣
t=0

= (lnx)p, x > 1.

So, we obtain

I1(a, p) =

∫ ∞
1

e−ax (lnx)p dx =

∫ ∞
1

e−ax Dpt
[
et ln x

]
t=0

dx

= Dpt
[∫ ∞

1

xt e−axdx

]
t=0

= Dpt
[

Γ(t+ 1, a)

at+1

]
t=0

.

Immediately, we have

Ep0 (a) =
1

Γ(p+ 1)
Dpt
[

Γ(t+ 1, a)

at+1

]
t=0

.

The by-product is the next fractional derivative representation formula of indepen-
dent interest.

Proposition 3.5. Let a > 0, p > −1 and µ ∈ C. Then, we obtain

Dpt
[

Γ(t+ 1, a)

at+1

]
t=0

= Γ(p+ 1)
∑
k≥0

(2)k
k!

Φ
(0,1)
µ,1 (−k, p+ 1, 1) · 1F1(k + 2; 2;−a).

Using Proposition 3.5 and equation (4) the another rth moment expression
for Chen distribution follows.

Theorem 3.6. Let the situation be the same as in Theorem 2. Then, we have

(12) µ′r = a eaDrβ
−1

t

[
Γ(t+ 1, a)

at+1

]
t=0

.

Equations (11) and (12) are the main results of this section. Finally, the
central moments (µs) and cumulants (κs) for the Chen distribution are

µs =

s∑
k=0

(−1)k
(
s

k

)
µ′s1 µ

′
s−k; κs = µ′s −

s−1∑
k=1

(
s− 1

k − 1

)
κk µ

′
s−k, s ∈ N,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 ,

κ4 = µ′4 − 4µ′3µ
′
1 − 3µ′22 + 12µ′2µ

′2
1 − 6µ′41 , etc. The skewness γ1 = κ3 κ

−3/2
2 and

kurtosis γ2 = κ4 κ
−2
2 can be calculated from the third and fourth standardized

cumulants.
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4. INCOMPLETE MOMENTS

In order to establish the Chen distribution’s rth incomplete moment (5), we
follow the lines of method used in derivation of the auxiliary integral I1(a, p). Now,
we have to determine

H(q; a, p) =

∫ q

1

e−ax (lnx)p dx, q > 1.

Setting x = (1− y)−1 gives

H(q; a, p) = (−1)p
∫ 1−q−1

0

e−
a

1−y lnp(1− y)
dy

(1− y)2
.

Expanding the exponential term in power series, exchanging the order of integration
and summation, and then expanding the binomial in power series, we obtain

H(q; a, p) = (−1)p
∑
n,k≥0

(2)n+k

(2)n

(−a)n

n! k!

∫ 1−q−1

0

yk lnp (1− y) dy︸ ︷︷ ︸
Ak(q;p)

.

Letting y = 1− e−u in Ak(q; p) yields

Ak(q; p) = (−1)p
∫ ∞

0

(1− e−u)k e−u up du

= (−1)p
k∑

m=0

(−1)m
(
k

m

) ∫ 1−1/q

0

up e−(m+1)u du

= (−1)p
k∑

m=0

(−1)m

(m+ 1)p+1

(
k

m

)
γ(p, (q − 1)(m+ 1)/q) ,

where the lower incomplete gamma function γ(p, y) = Γ(p)−Γ(p, y) is used. Hence,

(13) H(q; a, p) =
∑
n,k≥0

k∑
m=0

(2)n+k

(2)n

(−1)m+n an

n! k!(m+ 1)p+1

(
k

m

)
γ
(
p, (1− q−1)(m+ 1)

)
.

Finally, by (5) and (13) we deduce the desired result.

Theorem 4.7. For all r, β, w > 0 the rth general order incomplete moment for
Chen distribution Chen(a, β) reads as follows:
(14)

mr(w) = a ea
∑
n,k≥0

k∑
m=0

(2)n+k

(2)n

(−1)m+n an
(
k
m

)
n! k!(m+ 1)rβ−1+1

γ(rβ−1, (1− w−1)(m+ 1)).
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The first incomplete moment m1(w) of T ∼ Chen(a, β) has several applica-
tions. The first one is related to the mean residual life and the mean waiting time
(also known as mean inactivity time) given by v1(t) = [1 −m1(t)][1 − F (t)]−1 − t
and V1(t) = t−m1(t)(F (t))−1, respectively. The mean residual life v1(t)represents
the expected additional life length for a unit which is alive at age t, whereas the
the mean waiting time V1(t) represents the waiting time elapsed since the failure
of an item on condition that this failure had occurred in (0, t).

The second application of m1(w) refers to the mean deviations about the
mean (δ1 = E|T − µ′1|) and about the median (δ2 = E|T −M |) of T given by

δ1 = 2µ′1 F (µ′1)− 2m1(µ′1) and δ2 = µ′1 − 2m1(M),

respectively, where =
[
ln
{

1 + ln 2a
−1
}]β−1

is the median of T , µ′1 = E(T ) can

follow from (11) and (12), and m1(w) can be determined from (14) with r = 1.

The third application of the first incomplete moment is to obtain the Bonfer-
roni and Lorenz curves, which are very useful in economics, reliability, demography,
insurance and medicine. For a given probability p, the Bonferroni and Lorenz curves
are given by B(p) = m1(π)/ (πµ′1) and L(π) = m1(π)/µ′1, and the π = Q(p; a, β) is
given in Section 1.

5. GENERATING FUNCTION

Recall that the MGF of Y is defined in the form

MY (s) = E(e−sY ), s > 0 .

Obviously

MY (s) = a

∫ ∞
1

e−s (ln x)p−ax dx, p := β−1 ,

where

MY (0+) = a;
d

ds

[
MY (s)

]
s=0

= a I1(a, p) .

However, in deriving a computational sum representation for the MGF the re-
stricted parameter range p > 1 should be used. Indeed, because

MY (s) = a
∑
n≥0

(−a)n

n!

∫ ∞
1

xne−s (ln x)p dx = a
∑
n≥0

(−a)n

n!

∫ ∞
1

en ln x−s (ln x)p dx ,

the integral expression in the addend converges for all n ∈ N0 only for p > 1. The
substitution lnx = t transforms the MGF of Y into

MY (s) = a
∑
n≥0

(−a)n

n!

∫ ∞
0

e(n+1)t−s tp dt(15)

=
a

p p
√
s

∑
k≥0

Γ
(
p−1(1 + k)

)
k! ( p
√
s )k

∑
n≥0

(n+ 1)k (−a)n

n!
.(16)
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Observe the formula [4, p. 149, Eq. 6.12.3.] (also see [21, p. 336, 48])∑
n≥0

∑
k≥0

(n+ α)k xn

n!
=

(
d

dt

)k (
eαt+xet

)
t=0

= ex Pk(x), k ∈ N0 ,

where Pk(x) is a polynomial in x of degree deg(Pk) = k, see [4, p. 149, Eq. 6.12.3.].
Hence,

MY (s) =
a

p p
√
s

∑
k≥0

Γ
(
p−1(1 + k)

)
k! ( p
√
s )k

(
d

dt

)k (
et−aet

)
t=0

.

Moreover, re–writing (16) into

MY (s) =
a

p p
√
s

∑
n≥0

(−a)n

n!

∑
k≥0

Γ
(
p−1(1 + k)

)
k!

(n+ 1
p
√
s

)k
,

we arrive at the double series formula

MY (s) =
a

p p
√
s

∑
n≥0

(−a)n

n!
1Ψ0

[
(p−1, p−1);−;

n+ 1
p
√
s

]
,

where the generalized Fox–Wright function notation is used [6, p. 56, Eq. (1.11.14)]

1Ψ0

[
(a, b);−; z

]
=
∑
n≥0

Γ(a+ bn) zn

n!
, z, a ∈ C, b > 0 .

The series converges [6, p. 56, Eq. (1.11.15)] for all b > −1 which obviously holds
true.

Theorem 5.8. For all a, β, s > 0, the MGF of the RV T ∼ Chen(a, β) possesses
the series representation:

MT (s) = aβ ea s−β
∑
n≥0

(−a)n

n!
1Ψ0

[
(β, β);−;

n+ 1

sβ

]
.

Remark 5.9. The same derivation method is senseless for s < 0 since the con-
vergence issues in (15). On the other hand for rational values of the parameter
b there exists a representation of 1Ψ0 in terms of generalized hypergeometric pFq
functions, see [12]. �

6. RÉNYI ENTROPY

The entropy of a random variable X with density function f(x) is a measure
of variation of the uncertainty. For any real parameter λ > 0 and λ 6= 1, the Rényi
entropy for the random variable T ∼ Chen(a, β) is given by

(17) IR(λ) =
1

1− λ
ln

(∫ ∞
0

fλ(x) dx

)
.
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According to (1) we write

fλ(x) = (aβ)λ eaλ x(β−1)λ exp
{
λxβ − λa ex

β
}
.

By setting y = ex
β

, the integral in (17) reduces to

A = β−1(aβ)λ eaλ
∫ ∞

1

yλ−1 (ln y)(1−β−1)(λ−1) e−aλydy.

Using the notation (2) of generalized integro–exponential function by Milgram, we
obtain

A = β−1
(
aβ ea

)λ
E

(1−β−1)(λ−1)
1−λ (aλ) .

Having in mind Theorem 2.2, we deduce:

Theorem 6.10. For all a, β, λ > 0; λ 6= 1; µ ∈ C, the Rényi entropy for Chen(a, β)
distribution is

IR(λ) =
1

1− λ
ln
(
β−1

(
aβea

)λ · E(1−β−1)(λ−1)
1−λ (aλ)

)
,

where the power series form of E(·) is described in (10).

7. QUANTILE FUNCTION

Let us present the QF Q(p) := Q(p; a, β) given in the display () in the form
of a Maclaurin series, modestly narrowing the range of p. The power series for the
QF is very important to obtain a power series for the cumulant generating function
and then the saddle-point approximations for the sum and mean of independent
and identically distributed (IID) Chen(a, β) random variables.

To achieve the desired formula we expand the first the power of the QF in
several steps. Firstly, being p ∈ (0, 1) we have

Qβ(p) = ln

(
1 +

1

a

∑
k≥1

pk

k

)
=
∑
n≥1

(−1)n−1

nan

(∑
k≥1

pk

k

)n
;

here the second expansion holds true for any p ∈
(
0, 1− e−a

)
. It is known that the

power series raised positive integer power n implies the structure(∑
k≥1

pk

k

)n
=
∑
m≥n

( ∑
k1,··· ,kn≥1
k1+···+kn=m

1

k1 · · · kn

)
pm =:

∑
m≥n

cm p
m ,

whence

Qβ(p) =
∑
n,m≥0

(−1)n cm+n+1

(n+ 1) an+1
pm+n+1 =

p

a

∑
r≥0

(−1)r cr+1

ar

r∑
j=0

(−1)j aj

r − j + 1
pr.

Thus, we establish the following result.
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Theorem 7.11. For all a, β > 0 and for all p ∈
(
0, 1− e−a

)
, there holds

(18) Q(p; a, β) =
(p
a

) 1
β

(
1 +

∑
r≥1

(−1)r cr+1

ar

r∑
j=0

(−1)j aj

r − j + 1
pr

) 1
β

,

where

c` =
∑

k1,··· ,kn≥1
k1+···+kn=`

1

k1 · · · kn
, ` ≥ n .

Now, it remains to derive the β−1 power of the sum in (18) for which we
suggest numerical in-built routines. In turn, having more elastic formula, writing

down the first few terms in the power series of the a−
1
β p

1
β Q(p; a, β), one yields

Q(p; a, β) =
(p
a

) 1
β

[
1 +

a− 1

2aβ
p+

(5β + 3)a2 − 6(β + 1)a+ 5β + 3

24a2β2
p2 + O(p3)

]
.

On the other hand to earn the power series expansion, the Bürmann–Lagrange
formula can also be used, see e.g. [18, Eq. (1.1) et seq.].

Further, the following power series can be obtained in Mathematica for the
QF Q(p) = Q(p; a, β) in (7), which holds for all p ∈ (0, 1),

(19) Q(p) =
∑
j≥0

fj p
j+1/β ,

where f0 = a−1/β , f1 = (1 − a)a−1−1/β/(2β), f2 = [3β−1(1 − a)2 + 5a2 − 6a +
5]a−2−1/β/(24β), etc.

Equation (19) reveals that the QF of the Chen distribution can be expressed
as a power series. Then, several mathematical quantities of this distribution can
be given in terms of integrals over (0, 1). In fact, if W (·) be any integrable function
in the real line, we can write

(20)

∫ ∞
0

W (x) f(x)dx =

∫ 1

0

W

(∑
j≥0

fj p
j+1/β

)
dp.

Equations (19) and (20) are the main results of this section since we can obtain
from them various structural properties for Chen distribution using the integral on
the right-hand side for special W (·) functions, which can be simpler than if they
are based on the left-hand integral.

Provide a power series for the Chen MGF from (20) given by

MT (s) = E(e−sT ) =

∫ 1

0

exp

{
− s

∑
j≥0

fj p
j+1/β

}
dp,
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rewriting it into

(21) MT (s) =

∫ 1

0

exp

{
− s f0 p

β−1 ∑
j≥1

gj p
j

}
dp,

where gj = fj f
−1
0 for j ≥ 1.

Next, we use the exponential partial Bell polynomials [2] given by

(22) exp

{
u
∑
j≥1

xj
tj

j!

}
=
∑
n,k≥0

Bn,k
n!

tn uk,

where

Bn,k = Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1! c2! · · · (1!)c1(2!)c2 · · ·
xc11 xc22 · · · ,

and the summation takes place over all integers c1, c2, . . . ≥ 0, which verify c1 +
2c2 + 3c3 + · · · = n and c1 + c2 + c3 + · · · = k. These polynomials can be computed
in Mathematica using the BellY[n,k,{x1,. . . ,n-k+1}] function and in Maple using the
IncompleteBellB(n, k, z[1], z[2], . . . , z[n = k+1]) function.

Using (22) and then integrating in (21), we can obtain an infinite power series
for the MGF of T given by

(23) MT (s) =
∑
k≥0

(−f0)k

{∑
n≥0

Bn,k(g1, 2g2, · · · , (n− k + 1)!gn−k+1)

(n+ k β−1 + 1)n!

}
sk.

For asymptotic applications, we require in (23) a polynomial of fourth degree.

We define the cumulant generating function (CGF) of T byKT (s) = lnMT (−s).
The saddle–point approximations are the main applications of the CGF in statistics
and provide highly accurate approximation formulae for the density of the sum and
mean of IID random variables. Let T1, · · · , Tn be IID Chen distributed random
variables with common CGF KT (s). Let Sn =

∑n
j=1 Tj and

K
(j)
T (λ) =

(
d

dλ

)j
KT (λ), j ≥ 1.

We define λ̂ from the (usual nonlinear) equation K
(1)
T (λ̂) = x/n and

y =
x− nK(1)

T (λ)√
nK

(2)
T (λ)

.

The density functions of Sn and Zn = Sn/n follow from Daniels’ saddle–point
approximations as

fSn(x) =
exp{nKT (λ̂)− xλ̂}√

2nπK
(2)
T (λ̂)

{
1 + MT (λ̂) + O(n−2)

}
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and

fY n(y) =

{
n

2πK
(2)
T (λ̂)

}1/2

exp[n{KT (λ̂)− λ̂y}]
{

1 +A(λ̂) + O(n−2)
}
,

where A(λ) = (3γ2(λ)− 5γ1(λ)2) (24n)−1 and

γ1(λ) =
K

(3)
T (λ)[

K
(2)
T (λ)

]3/2 , γ2(λ) =
K

(4)
T (λ)[

K
(2)
T (λ)

]2 ,
are the third and fourth standardized cumulants of T , respectively.

8. CONCLUSIONS

We provide explicit expressions for the moments of positive real order, incom-
plete moments of the same range, moment generating function, mean deviations,
Bonferroni and Lorenz curves, and Rényi entropy for the two-parameter lifetime
model introduced by Chen in 2000 [1]. The related RV Ξ1 by Xie et al. [22] turns
out to be only linearly connected to the Chen model, so establishing its statistical
characteristics is a trivial procedure.

Finally, Nadarajah’s moment related differential formula [14] for positive ra-
tional order moments related to Chen’s model is complemented to positive real order
moments by using either real analytical methods or Grünwald–Letnikov fractional
derivative. Besides, our formulae are obtained by using inter alia Lin–Srivastava
generalized Hurwitz-Lerch Zeta, confluent hypergeometric (Kummer’s), and Fox–
Wright generalized confluent hypergeometric functions. They are manageable with
the use of up-to-date in built computer routines with analytic and numerical capa-
bilities to which several of our formulae are prepared.

Finally, the following question occurs (posed by the unknown referee): ”Is it
possible to compare the values of moments of a random variable with Chen distribu-
tion with the values obtained by Monte-Carlo simulations for some different values
of the distribution’s parameters?” However, in this stage of the research we cannot
answering without further study.

Acknowledgement. The authors are grateful to the unknown referee for helpful
comments, which finally encompass the article.
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