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In this paper, we will consider the coincidence point problem for a pair of
single-valued operators satisfying to some contraction and expansion type
conditions. Existence, uniqueness and qualitative properties of the solution
will be presented. The results are based on some fixed point theorems for
nonlinear contractions in complete b-metric spaces. An application illustrates
the theoretical results.

1. INTRODUCTION

An extension of the Banach’s contraction principle was given, in the frame-
work of b-metric spaces (also called, in some papers, quasi-metric spaces or metric
type spaces), by S. Czerwik in [4]. For several fixed point results in this framework
see [1], [2], [7].

Let (X, d) and (Y, p) be two metric spaces and g,t : X — Y be two operators.
The coincidence point problem for ¢ and g means to find * € X such that t(z*) =
g(z*). We will denote by C'P(g,t) the coincidence point set for g and ¢.

The aim of this paper is to present, in the context of b-metric spaces, two
types of coincidence point theorems under some contraction and expansion type
conditions. The method is based on the application of some fixed point point
theorems of Ran-Reurings type in ordered b-metric spaces. Our coincidence results
are in connection with some nice previous theorems given in A. Buica [3], J. Garcia
Falset, O. Mlesnite [5], O. Mlesnite [8] and I. A. Rus [16].
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2. PRELIMINARIES

Throughout this paper N stands for the set of natural numbers, while N*
for the set of natural numbers except 0. By R; we will denote the set of real
non-negative numbers. We will recall now the definition of a b-metric space.

Definition 2.1. (Bakhtin [1], Czerwik [4]) Let X be a nonempty set and let s > 1
be a given real number. A functional d : X x X — R, is said to be a b-metric
if the usual axioms of the metric take place with the following modification of the
triangle inequality axiom d(z, z) < s[d(z,y) + d(y, )], for all z,y,z € X. A pair
(X, d) with the above properties is called a b-metric space.

Some examples of b-metric spaces are given in [2], [4], [7] and in many other
papers.

It is worth to mention that the b-metric structure produces some differences
to the classical case of metric spaces: the b-metric on a nonempty set X need not
be continuous, open balls in such spaces need not be open sets and so on.

In this context, we notice that a set Y C X is said to be closed if for any sequence
(2,,) in Y which is convergent to some x, we have that x € Y.

We also mention some continuity concepts. Let (X,d) and (Y,p) be two
b-metric spaces. Then f: X — Y is called:

a) continuous on X if for every x € X and any sequence (2, )nen in X which
converges to z in (X, d), the sequence (f(x,))nen converges to f(x) in (Y, p);

b) with closed graph if for every sequence (zp)nen in X which converges,
with respect to d, to an element z such that the sequence (f(zy))nen converges to
y in (Y, p) as n — oo, we have that z € X and y = f(x);

¢) uniformly continuous on X if for any € > 0 there is § = d(e) > 0 such that

z1,T2 € X and d(x1,z2) < § implies p(f(z1), f(z2)) < €.

d) orbitally continuous on X if (Vo € X)(V{z,} C O(z, f)) with z, = y €
X, n — oo, implies f(xz,) = f(y), n — oo, where O(z, f) = {f™(z) | n € N} is the
orbit of point z € X with respect to a mapping f.

Notice that any uniformly continuous mapping is continuous and any contin-
uous mapping is with closed graph.

If X is a nonempty set and f : X — X is a single-valued operator, then we
denote Fiz(f) :={x € X | « = f(x)} the fixed point set for f, by Graph(f) :=
{(z, f(z)) | x € X} the graph of the operator f.

If X,Y are two nonempty sets and f,g : X — Y are two mappings, then we
denote by

Cf,9) ={r e X | f(z) = g(x)}

the coincidence point set for f and g.
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3. RAN-REURINGS TYPE FIXED POINT THEOREMS FOR
NONLINEAR CONTRACTIONS

We will prove first some fixed point results which are important tools in our
coincidence point problem approach.

Our first result is an extension to the case of b-metric spaces of the well known
fixed point theorem given by Ran and Reurings and, in the same time, an extension
of Czerwik’s fixed point theorem for nonlinear contractions to the case of b-metric
spaces endowed with a partial order relation.

Recall that a function ¢ : Ry — R is said to be a comparison function (see
[17]) if it is increasing and ¢™(¢) — 0 as n — oo, for all ¢t > 0. Several examples of
comparison mappings can be found, for example, in [17] and [19].

Theorem 3.1. Let X be a nonempty set endowed with a partial order <7 and
d: X x X — X be a complete b-metric with constant s > 1. Let f : X — X be an
operator which has closed graph with respect to d and is increasing with respect to
7=<7". Suppose that there exist a comparison function ¢ : Ry — Ry and an element
xo € X such that:

(1) d(f(x), f(y)) < pld(z,y)), for all x,y € X with x X y;
(i1) zo = f(20);
(iii) for every x,y € X there exists z € X which is comparable to x and y.

Then, f is a Picard operator, i.e., Fiz(f) = {x*} and the sequence of successive
approximations (f™(x))nen starting from any point © € X converges to x*.

Proof. Let xg € X such that g < f(xzg). Then g =< f™(x¢), for every n € N*.
Denote z,, := f™(z9), n € N*. Then we have:

(a) Tpy1 = f(zn), n €N

(b) all the elements of the sequence (z,,) are comparable with respect to =;

(¢) for each n € N* we have d(xy,, xn11) < " (d(x0, f(20))) — 0 as n — co.
Let € > 0. Since ¢"(e) — 0 as n — oo, there exists n(e) > 0 such that " (e) < 4—62,

s

for each n > n(e). Let g := f™) and y,, := ¢"(z0), m € N. Then we have

d(ynaym+1) = d(fn(e)Trl(x0)7 fn(e)m(g(xo))) < wn(E)m(d(xmg(xO))) — 0, n — oo.

Hence, for € > 0 there exists m(e) > 0 such that d(ym,Ym+1) < 2i’ for each
. s
m > m(e). Let B(Yme);€e) == {y € X | d(y,Ym()) < €. We will show that

9 B(Ym(e); €) — é(ym(s); €). Indeed, let u € B(ym(e); €). Then

d(g(u), ym(e)) < (d(g(u), g(ym(e))) + d(g(ym(e))v ym(e)))

(d(g(u)a g(ym(e))) + d(ym(e)+la ym,(e)))

If u, ypm(ey € X are comparable, then we can write directly

d(g(u)v g(ym(e))) < wn(E) (d(ua ym(e)))’
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if not then there exists z € X which is comparable with w, y,, ). Then

d(g(u), 9(Ym(e))) < s(d(g(w), g(2)) + d(9(2), 9(Ym(e))))
(@™ (d(u, 2)) + ™ (d(2, Ym(e))))-

IN

S
S

IN

Hence
d(.g(u)? ym(e)) < S[S ((pn(e) (d(uv Z)) + @n(e) (d(zv ym(e)))) + d(ym(e)Jrla ym(e))] <e
As a consequence, for every ¢,j € N with 4, > m(e), we get

d(yi,y;) < 8(d(¥Yi, Ym(e)) + AYs, Ym(e))) < 2s€,

which proves that the sequence (y,,) is Cauchy. By the completeness of the space
there exists * € X such that (y,,) — =* as m — oo. Since f has closed graph, it
follows that g has closed graph too and thus * € Fiz(g). Moreover,

Ym =g (x9) = =" as m — 0.

We will show now that for each z € X we have that ¢"(x) — z* as m — oc.
Let z € X. We have two cases:

1. If z and zo are comparable, then
d(g™(x), g™ (x0)) = d(f"(s)m(w), f"(s)m(xo)) < @"(E)m(d(x,xo)) — 0,m — oo.

2. If x and zy are not comparable, then there exists w € X which is compa-
rable to z and xy. Then, we have

d(g™(z), 9™ (w0)) < s(d(g™(2), 9" (w)) + d(g™(w), g™ (20)))
<s (gp”(e)m(d x,w)) + gﬁ”(e)m(d(w,xo))) —0,m — oo.

In both cases, we get that ¢™(x) — z* as m — oo, for each z € X.
We will show now that x* is a fixed point for f too. For each x € X, we have
lim f(¢g"(z)) = lim ¢"(f(z)) =" and ¢"(z) — 2™ as n — 0.
m—0o0 m—0o0

Since f has closed graph, we get that z* € Fixz(f). The uniqueness of the fixed
point follows in a similar way to Nieto et al.” fixed point theorem, see [9]-[11]. O

Remark 3.2. 1) In particular, if (X, d) is a complete metric space and ¢(t) = kt,
t € Ry (where k € [0,1)), then we obtain Ran-Reurings’ fixed point theorem, see
Theorem 2.1 in [15]. See also [9].

2) If (X,d) is a complete metric space and the contraction condition holds
for all z,y € X, then (without the assumptions (ii) and (iii) in the above theorem)
we obtain Czerwik’s fixed point theorem in [4]. See also [7].
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Another result of this type can be established for a nonlinear contraction with
respect to a b-comparison function. In this case, an approximation result and an
apriori estimation for a solution can be additionally obtained.

Recall that a function ¢ : Ry — R is said to be a (b)-comparison function if:

(a) ¢ is increasing;

(ii) there exist kg € N, a € (0
terms ka such that ¢**1(t) < ap”

k>1

As a consequence of this definition, we have the following properties.

,1) and a convergent series of non-negative
(t) + vg, for k > ko and for any ¢ € R,.

Lemma 3.3. If ¢ : Ry — Ry is a (b)-comparison function, then:
(a) the series Z sP ok (t) converges for any t € Ry ;
k>0
(b) the mapping s : Ry — R defined by s(t) := Z sk ok (t) is increasing and
k>0
continuous at 0.

The following concept is also well-known in fixed point theory in ordered
structures.

Definition 3.4. Let X be a nonempty set, let 7 <7 be a partial order on X
and d be a b-metric on X with constant s > 1. Then the triple (X, <, d) is called
an ordered b-metric space if:

(i) ” 27 be a partial order on X;

(ii) d is a b-metric on X with constant s > 1;

(iil) for any sequence (x,, )nen monotone increasing and convergent in (X, d)
to x* € X, we have that z,, < z*, for all n € N.

Our second fixed point result, under a stronger condition on the function ¢,
is the following.

Theorem 3.5. Let (X, <,d) be an ordered b-metric space such thatd : X x X — X
is a complete b-metric with constant s > 1. Let f : X — X be an operator which
has closed graph with respect to d and is increasing with respect to "=X”. Suppose
that there exist a (b)-comparison function ¢ : Ry — Ry and an element xg € X
such that:

(i) d(f(x), f(y)) < p(d(z,y)), for all x,y € X with x = y;
(ii) xo = f (o).
Then:
(1) Fiz(f) # 0 and the sequence of successive approzimations (f™(x))nen, starting

from any point x € X which is comparable to xy, converges to a fixed point of f.
(2) If additionally, t — sp(t) — +00 as t — oo, then

d(f™ (o), x*(x0)) < ¢©"(tz,), for each n € N*,

where nli_}rgof"(xo) = x%(zg) € Fix(f) and t,, = sup{t € Ry |t — sp(t) <
sd(xo, f(w0))}
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Proof. (1) Let xy € X such that ¢ < f(xo). Then xg = f™(xo) for every n € N*.
Denote x,, := f™(xg), n € N*. Then we have:

(a) Tpy1 = f(xn), n € Nand (z,) is increasing;

(b) all the elements of the sequence (z,,) are comparable with respect to <;

(c) for each n € N* we have d(zp, Znt1) < " (d(x0, f(z0))) = 0 as n — oco.
Now we have

1 n+p—1
d(wn, nip) < 5 Y s"eF(dlwo, f(w0))-
k=n
If we denote S, Z s d(xo, f(20))), then we have that

1

d(mna$n+p) < 1 (Sn+p71 — Sn), Vne N, v pE N*.
By Lemma 3.3, we get that the sequence (z,,) is Cauchy and hence it converges to
an element 2*(xo) € X. Since f has closed graph, by (a), we immediately get that
x*(xo) € Fiz(f).
Moreover, if x < xg (or & > x9) the monotonicity condition on f implies that
f™(x) < f™(xo) (or reversely), for each n € N. By the contraction condition (i) we
get that

d(f"(x), f*(xo)) < " (d(z,z)) — 0 as n — oo.

Thus
d(f"(z),z") < s(d(f"(x), f"(z0)) + d(f"(20),27))
< s(™(d(z,x0)) + d(f"(x0),2™)) — 0 as n — oo,

which immediately yields that (f™(z))neny — 2* as n — oo, for every « € X which
is comparable to xg.

(2) For our last part of the proof, notice first that x,, < x*(zo), for all n € N.
Hence we obtain

d(@,, 2" (20)) = d(f"(x0), f" (2" (0))) < ¢"(d(wo, 2" (20))), for all n € N".

On the other hand, since d(zq, 2*(z9)) < s(d(xo, f(z0)) + d(f(x0), f(z*(z0)))) <
sd(zo, f(x0))+sp(d(zg, z*(20))) we immediately get that d(zq, 2*(z0)) < t,. Thus

d(zn, 2" (20)) < ©"(ts,), for each n € N*. O

Remark 3.6. The above results take also please if, instead of te closed graph
condition, we suppose the orbital continuity of the mapping. Moreover, a dual
result (for decreasing operators) takes place under dual conditions on the space
(axiom (iii) in Definition 3.4) and on the operator (hypothesis (ii) of te above
theorem).
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4. COINCIDENCE POINT RESULTS IN »-METRIC SPACES

We present first an auxiliary result in the context of b-metric spaces.

Lemma 4.1. Let (X,d) and (Y, p) be two complete b-metric spaces. Let f : X =Y
be an injective and continuous mapping such that f=% : f(X) — X is uniformly
continuous. Then f(X) is a closed subset of Y.

Proof. Let (yn)nen be a sequence of elements of f(X) such that (y,) converges
to y*. We will prove that y* € f(X). Since (y,) is Cauchy and f~! is uniformly
continuous it follows that (f~1(yn))nen is a Cauchy sequence too. Thus (f~*(yn))
converges to * € X. Finally, since f is continuous we can conclude that (y,)
converges to f(z*), which means that y* = f(z*) € f(X). O

The following result is a coincidence point theorem in a complete b-metric
spaces.
Theorem 4.2. Let (X,d) be a b-metric space with constant s1 > 1 and Y be

a nonempty set. Let p be a complete b-metric on Y with constant so > 1 and
g,t: X =Y be two operators. Suppose that the following assumptions take place:
(1) 9(X) C t(X);
(ii) g : X =Y is a @-contraction, i.e., ¢ : R — R, is a comparison function
and
d(g(z1), 9(x2)) < @(d(x1,22)), for all zy, x5 € X;

(i1i) t : X =Y is expansive, i.e.,
p(t(z1),t(x2)) > d(z1,32), for all 1,22 € X;

(iv) one of the following conditions hold:
(iv)-a) t : X =Y is continuous;
(iv)-b) t(X) is closed with respect to the b-metric p;
(iv)-c) the b-metrics d and p are continuous.
Then C(g,t) = {z*}.

Proof. By (iii) the operator t is an injection. Thus ¢ : X — #(X) is a bijection. Let
t=1:#(X) — X. By (iii), using the notation z; := t~(y1) and x5 := t~1(y2), we
have

At (1)t (y2)) < p(t(t (11)), t(t " (12))) = p(y1,92), for all y1,ys € H(X).

Thus ¢! is a nonexpansive mapping and hence ¢! is also uniformly continuous.

a) We suppose first that ¢ : X — Y is continuous. Then, by Lemma 4.1 we
obtain that ¢(X) is closed in (Y, p) and hence (¢(X), p) is complete too. Consider
now the function h : t(X) — t(X) defined by h := got~!. Notice that h is a
single-valued operator by the above remarks and it is a self operator by condition
(i). Moreover, h is a @-contraction since, for yi,ys € t(X), we have

p(h(y1), h(y2)) = (gt~ (1)), gt (12))) < ot (y1),t  (12)) < @(p(y1,42))-
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Thus, by Czerwik’s fixed point theorem (see [4] or [7]) there exists a unique y* €
t(X) with y* = h(y*). If we denote z* = t~1(y*), then we get y* = g(z*) = t(z*).
Hence z* € C(g,t). Uniqueness of the coincidence point follows by the uniqueness
of the fixed point of h.

b) The case when ¢(X) is closed with respect to the b-metric p follows in a
similar way.

¢) If t : X — Y is not necessarily continuous, suppose that the b-metrics d
and p are continuous. Notice that, in this case, the pair (¢(X), p) is complete in
(Y, p). Since t~1 is uniformly continuous we may define an operator t ! : (X) — X
by

- 1(y) it yet(X)
=y = Tim 7Y ya) iy € H(X) \ #(X),

where (y,) C t(X) is such that y,, — y asn — oo. It is easy to see (by the continuity
of the b-metrics d and p) that £~ is nonexpansive. Consider now the operator h
defined by h := got~!. Then as before we can prove that h : +(X) — t(X) and
it is a p-contraction. Hence, by Czerwik’s fixed point theorem we get that there
exists a unique y* € t(X) such that h(y*) = y*. Let us show that y* € t(X).
Since y* = h(y*) we get that y* = (got 1) (y*) € g(X) C t(X). Next, if we
denote z* = t~!(y*), then we obtain that y* = g(z*) = t(z*). Uniqueness of the
coincidence point follows as before by the uniqueness of the fixed point of h. O

The following theorem is a coincidence point theorem in an ordered complete
b-metric spaces.

Theorem 4.3. Let (X,d) be a b-melric space with constant s1 > 1, Y be a
nonempty set and "=<7 be a partial order relation on X and on Y. Let p be a
complete b-metric on Y with constant so > 1 and g,t : X — Y be two operators.
Suppose that the following assumptions take place:

(1) 9(X) C H(X);
(i) there exists a comparison function ¢ : R — Ry such that

p(g(z1),9(x2)) < p(d(z1,22)), for all z1,22 € X with x1 < x;
(iti) t : X =Y is increasing with respect to < and expansive, i.e.,
p(t(w1),t(z2)) > d(w1,22), for all 1,22 € X;

(iv) g has closed graph with respect to d and p and it is increasing with respect
to =;
v) one of the following conditions hold:
(v) f 9
(v)-a) t : X =Y is continuous;
(v)-b) t(X) is closed with respect to the b-metric p;
(v)-c) the b-metrics d and p are continuous;

(vi) there exists xg € X such that t(zo) = g(xo);
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(vii) for every y,w € Y there exists z € Y which is comparable to y and w.
Then C(g,t) = {z*}.

Proof. By (iii) the operator ¢ is an injection. Thus t : X — #(X) is a bijection.
Hence, using again (iii) for t1 : ¢(X) — X, we have

At (1), t 7 (y2)) < p(t(t (1)), 6t (y2))) = p(y1,92), for all y1,ys € H(X).

Thus ¢! is a nonexpansive mapping and hence ¢! is uniformly continuous. More-
over, t~! is also increasing.

a) We suppose first that ¢t : X — Y is continuous. Then, by Lemma 4.1
we obtain again that ¢(X) is closed in (Y, p) and hence (¢(X), p) is complete too.
Consider now the function h : ¢(X) — #(X) defined by h := got~1. Notice that
h is single-valued and increasing by the above remarks and it is a self operator by
condition (i). Additionally, if we denote yo := ¢(xg), then we have yg =< h(yo).
Moreover, for y;,ys € t(X) with y; < y2, we can prove that

p(h(y1), h(y2)) < w(p(y1,y2))-

Indeed, let y1,y2 € t(X) such that y; < yo. Then, there exist z1,29 € X such that
y1 = t(z1) and yo = t(z2). Since t~! is increasing we get that t=1(y1) < ¢t~ (ya2).
Then, by (ii) and (iii), we get

p(h(y1), h(y2)) < o(d(t™ (1), t ™ (12))) < 0(p(y1, y2)).

Then, by Theorem 3.1, there exists a unique y* € ¢(X) such that y* = h(y*). As a
consequence, if we denote z* :=t~!(y*), then we obtain y* = g(z*) = t(z*).

b) The case when ¢(X) is closed with respect to the b-metric p follows in a
similar way:.

c) If t : X — Y is not necessarily continuous, suppose that the b-metrics d
and p are continuous. Notice that the pair (¢(X), p) is complete in (Y, p). Since
t~1 is uniformly continuous we may define an operator 1 : t(X) — X by

» t=1(y) if yet(X)
T y) = nhﬁnéotil(yn) if yet(X)\tX),

where (y,,) C t(X) is such that y,, — y asn — oco. It is easy to see (by the continuity
of the b-metrics d and p) that t~1 is nonexpansive. Consider now the operator h
defined by h := got~1. Then, as before, we can prove that h : ¢(X) — t(X) and it
satisfies the following relation

p(h(y1), h(y2)) < @(p(y1,y2)), for all y1,ys € L(X) with y1 < ya.

*

Hence, again by Theorem 3.1 there exists a unique y* € #(X) such that ﬁ(y*) =y*.
Let us show that y* € ¢(X). Since y* = h(y*) we get that

y* = (got Ny € g(X) C t(X).
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Now, if we denote z* = ¢t~ (y*), then we obtain that

Finally notice that uniqueness follows by the assumption (vii). O

A data dependence theorem for the coincidence point problem is the following
result.

Theorem 4.4. Let (X,d) be a b-metric space with constant s1 > 1, Y be a
nonempty set and "=” be a partial order relation on Y. Let p be a complete b-
metric on Y with constant so > 1 and g,t : X — Y be two operators satisfying all
the assumptions of Theorem 4.2. Denote by x* the unique coincidence point of g
and t. Let g1,t1 : X — Y be two operators having at least one coincidence point
x7 € X. We also suppose that:

(i) t1 : X = Y is injective, t1(X) C t(X) and t(X) is a closed subset of
(Y, p);
(ii) there exist m1,m2,m3 > 0 such that

p(g(x), g1(x)) < m, for all x € X;
p(t(x), t1(x)) < m2, for all z € X;
At (y), 17 (y) < s, for all y € t1(X);
(1) the function v : Ry — Ry, v(t) := t — sap(t) satisfies the condition
lim ~(t) = co.
t—o0
Then, the following estimation holds

d(z”,x7) < s2(¥(n1,n3) +n2),

where 1 : Ri — Ry is given by
D, m3) = sup{t 2 0 |t — s200(t) < s5((113) + 1)}

Proof. Let us consider h : t(X) — t(X) defined by h := got=! and h; : t;(X) —
t1(X) defined by hy := g1 o t;'. Denote y* = t(2*) = g(x*) and yi = t1(z}) =
91(27). Then y* and yj are fixed points for h and respectively hy and, by the proof
of Theorem 4.2, the operator h is a ¢-contraction. Then, we have the following
estimation

where 1 > 0 is given by the following relation

p(h(y7), hi(yi)) = p((got (i), (g1 ot M) (W)
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< sa(p((got™) (Y1), (9o ti ) + p((g oty (WD), (91 ot ) (w7))
< sa(p(d(t™H (y1) 1 (1)) +m) < s2(p(n3) +m) = 1.
Hence
Py, y7) — s20(p(y™, 7)) < 83(0(n3) + ).
We conclude that

Py y1) < W, ms) = sup{t > 0 ¢ — s200(t) < s3(0(m3) +m)}-
Since t is expansive, we get that

d(z*, x7) < p(t(z”), t(27))
2(p(t(x"), ti(27)) + p(t1(27), t(7)))
2(

(
P(Y*, Y1) + m2)-

IA A IA

s
s
As a conclusion d(z*, x7) < sa(¥(m,n3) +12). O

A well-posedness result for the coincidence problem is given in the next theorem.

Definition 4.5. Let (X, d) and (Y, p) be two b-metric spaces with constants s; > 1
and respectively s > 1. Let g,t : X — Y be two operators. By definition, the
coincidence problem for g and t is well-posed if:

(i) Clg,t) = {z"};

(ii) for any sequence (2, )nen in X for which p(g(zn),t(z,)) — 0 as n — oo,
we have that z,, — 2* as n — oo.

Theorem 4.6. Let (X,d) be a b-metric space with constant s1 > 1, Y be a
nonempty set and "=X” be a partial order relation on'Y . Let p be a complete b-metric
on Y with constant s > 1 and g,t : X — Y be two operators satisfying all the
assumptions of Theorem 4.2. Additionally suppose that the mapping ¢ : Ry — Ry,
P(t) =t — s3p(t) is a bijection such that v~ (u,) — 0 as u, — 0, for n — oc.
Then the coincidence problem for g and t is well-posed.

Proof. By Theorem 4.2 we have that C(g,t) = {z*}. Let (z,)nen be a sequence in
X such that p(g(zn),t(xn)) = 0 as n — co. Then, we have

< sap(t(xn), g(20)) + 53
< sop(t(wn), g(2n)) + s50(d(2n, %))
Thus
d(wp,2*) = s3p(d(zn, 27)) < s2p(t(zn), g(2n))
and so

d(xp,x*) < b (sap(t(zn), g(z,))) — 0 as n — oo. O
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We will study now the Ulam-Hyers stability of the coincidence point problem.
For a general study of this problem in generalized metric spaces see I.A. Rus [18].

Definition 4.7. Let (X, d) and (Y, p) be two b-metric spaces with constants s; > 1
and respectively sy > 1. Let g,t : X — Y be two operators. By definition, the
coincidence problem for g and ¢ is Ulam-Hyers stable if there exists an increasing
function ¢ : Ry — R4 continuous in 0 with ¢(0) = 0 such that for each ¢ > 0 and
each e-solution ¥ € X of the coincidence problem for g and ¢ (i.e., p(t(Z), g(Z)) <€),
there exists a solution z* € X of the coincidence problem for g and ¢ such that

d(a*, &) < ¥(e).

Theorem 4.8. Let (X,d) be a b-metric space with constant s1 > 1, Y be a
nonempty set and "=X” be a partial order relation on'Y . Let p be a complete b-metric
on Y with constant s > 1 and g,t : X — Y be two operators satisfying all the
assumptions of Theorem 4.2. Additionally, suppose that the mapping v : Ry — Ry,
v(t) =t — s3p(t) is strictly increasing and onto. Then the coincidence problem for
g and t is Ulam-Hyers stable.

Proof. By Theorem 4.2 we have that C(g,t) = {z*}. Let ¢ > 0 and & € X such
that p(t(2), g(Z)) < e. Then we have

d(z*, &) < p(t(z"), t(Z))
< sa(p(t(27), 9(2)) + p(9(2), £()))
< s3(p(t(z"), 9(z*)) + plg(a*), 9(Z))) + s2¢
< s2p(d(x*,Z)) + sq€
Hence
d(z*,z) — sz(d(z*,T)) < sqe
and so

d(z*, %) <y (sqe). O

The last result of this section is another coincidence point theorem of Ran-
Reurings type. The result is a slight extension of Theorem 1 in [13] and a gener-
alization of Theorem 3 in [8].

Theorem 4.9. Let (X, d) be a b-metric space with constant A > 1,'Y be a nonempty
set and "=7” be a partial order relation on'Y . Let p be a b-metric on'Y with constant
s > 1 and g,t : X — Y be two operators with closed graph. Suppose that the
following assumptions take place:

(1) 1(X) € g(X);
(i1) (t(X), p) is a complete subset of Y;
(iii) there exists a comparison function ¢ : Ry — Ry such that

p(t(x), t(y)) < w(p(g(x),g(y))), for all x,y € X with g(x) < g(y);

(iv) there exists xo € X such that g(xo) € t(X) and g(zo) = t(zo);
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(v) t is increasing with respect to g, i.e.,
x1,29 € X and g(x1) X g(x2) = t(x1) < t(xs).

Then, there exists ©* € X such that g(a*) = t(z*) and the sequence z, defined by
9(znt1) = t(zn) (where n € N and zp := xg € X ) converges to x* as n — oo.
If, in addition:
(vi) for every y,w € Y there exists z € Y which is comparable to y and w;
(vii) g is an injection,
then C(t,g) = {x*} and the sequence (zn)nen defined by g(zni1) = t(zn), starting
from any point zy € X converges to x*.

Proof. Let zo € X such that g(xg) =< t(zo). Let us define f := to g~!. Then, we
have for f the following properties:
1) f is a single-valued operator on ¢(X);
(X)) = H(X);
3) f has closed graph;

2) f
)

4) p(f(y1), f(y2)) < w(p(y1,92)), for all y1,y2 € £(X) with y1 =< yo;
)
)

5) f is increasing on t(X);

6) If yo := g(zo), then yo = (tog~")(yo) = f(%o)-

By Theorem 3.1, we obtain that f is a Picard operator. Thus Fiz(f) = {y*}.
Then (t o g=1)(y*) = y*. Thus, if we denote x* := g~ 1(y*), then we have t(z*) =
g(z*) = y*, showing that z* is a coincidence point for ¢ and g. Moreover, the
sequence Yp+1 = f(yn) (where n € N), starting from yo := g(z) € t(X) converges
to y* as n — oo, while the sequence z, defined by ¢(z,+1) = t(z,) (where n € N
and zg := xg € X) converges to z* as n — 00.

The uniqueness of the coincidence point follows by (vi) and (vii). Indeed,
by the first part of this theorem there exist z* € X and y* € t(X) such that
t(z*) = g(z*) = y*. Suppose that there exist u* € X and v* € #(X) such that
t(u*) = g(u*) = v*. We have two cases:

Case 1. If g(z*) and g(u*) are comparable, i.e., g(z*) < g(u™) or reversely.

Let f : t(X) — t(X), f(y) := t o g~ !(y) with the above six properties.

Suppose, for example, that g(z*) < g(v*). Then ¢(z*) < t(u*) and so

p(y",v") = p(f(y"), f(v)) < @lply™,v")).

By the properties of the comparison function ¢ we get that p(y*,v*) = 0. Thus
y* = v* which implies g(z*) = g(u*). By the injectivity of g we get that x* = u*.
Case 2. Suppose that g(z*) and g(u*) are not comparable. Then, there exists
z € Y such that z is comparable to g(z*) and g(u*). Suppose g(z*) < z < g(u*).
Thus y* < 2z < v*. Consider f : t(X) — t(X), f(y) :=to g (y). Then, since f is
increasing, we get that f™(y*) < f™(z) =2 f™(v*), for all n € N*.

Let y1,y2 € t(X) with y; < yo. By the monotonicity of f we obtain that
f™(y1) < f™(y2), for all n € N*. Now, by induction, we get

p(f" (1), " (y2)) < ¢"(p(y1,y2)), for all n € N*.
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Applying the above relation we get

p(y*,v*) = p(f"(y"), " (v"))
s(p(f"(y"), f"(2)) + p(f"(2), f"(v7)))
s(e"(p(y", 2)) + " (p(2,0"))) = 0 as n — oo.

Thus y* = v*. As before, by the injectivity of g we obtain x* = u*. The rest of the
cases can be treated similarly. O

5. AN APPLICATION

Let us consider, as an illustration of the previous results, an integral equation
of the following form:

W T(z(s)) = /Osg(p,x(p))dp, for s € [0,a] (with « > 0),

where:
(i) T:Ry — R4 and T(0) = 0;
(ii) g: [0,a] x Ry — R4

are two continuous mappings.
If we consider

X =Ci([0,a]) ={z:[0,0] =R | 2(0) =0, z(s) >0, Vse€0,a]}

and the operators t,G : X — X given by

ta(s) == T(x(s)) and G(s) := / (s (0))dp,

then our problem can be re-written as a coincidence point problem of the following
form
tr =Gz, x € X.

Notice that on C ([0, «]) we can define a partial order relation by
x <c¢ y if and only if z(s) < y(s), V s € [0,q]
and a Bielecki type norm given by

|zl g := max (|z(s)|e”"%), where 7 > 0,
s€[0,a]

with respect to which the space X is complete.
We have the following existence and uniqueness result for (1).



Fixed point and coincidence point theorems in b-metric spaces with applications 213

Theorem 5.1 Consider the functional-integral equation (1). We suppose
that:

(i) T:Ry =Ry and g:[0,a] x Ry — Ry are two continuous mappings;

(ii) T is onto, increasing and expansive;

(iii) there exist T > 0 and a function ¥ : Ry — Ry such that for arbitrary
q > 1 we have ¥(qt) < q(t), for all t € Ry, the function o(t) = Liy(t) is a
comparison function and

[f(s,u) — f(s,v)] <¥(Jlu—2v]), Vse0,a] andV u,v € Ry with u < v;

(iv) f(s,-): Ry — Ry is increasing, for all s € [0, a];
(v) there exists xg € C1([0,a]) a lower solution of (1), i.e.,

T(zo(s)) < / " g(p.2o(p))dp, for s € [0, al.

Then, the functional-integral equation (1) has a unique solution in Cy([0,a]).

Proof. Consider the space X endowed with the partial order < and the Bielecki
type norm ||z||p and the operators ¢, G defined as above. Then, we have:

(a) G(X) C {(X) = X;
(b) for z,y € X with z <¢ y, for each s € [0, o] and any 7 > 0 we successively
obtain

|Gz(s) — Gy(s)| < /0 |f(p,2(p)) — f(p,y(p))ldp < /0 Y(|z(p) — y(p)|)dp

1
< [ ot —ylpyp < Sslla = ylp)e
= (e~ yllm)e™.

Thus |Gz — Gyl < ¢(llz —yllB), V 2,y € X, with z <¢ y.
(c) t and G are continuous and increasing with respect to <¢;
(d) there exists ¢y € X such that txg <¢ Gxo.

Thus, all the conditions of Theorem 4.2 are satisfied and the conclusion follows
by Theorem 4.2. [J

Remark 5.2. In particular, if T(u) := €* — 1 then the assumptions on T of the
above theorem are satisfied and under the conditions on g given in Theorem 4.1
there exists a unique solution z* € C ([0, a]) of the equation

(9 = / g(p,z(p))dp + 1, for s € [0,a] (with a > 0).
0

See [5] for more details concerning this example.
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6. FURTHER RESEARCH DIRECTIONS

Fixed point theorems of Ran-Reurings type are a very useful tool for prov-
ing coupled fixed point theorems of Gnana Bhaskar-Lakshmikantham type, see [6].
For this approach see, for example, [13, 14].
Following this idea, an useful approach in the coupled coincidence theory
is based on the above coincidence theorems. More precisely, if we consider the
following coupled coincidence problem: find (z,y) € X x X satisfying

(where X is a nonempty set and g : X — X and T': X x X — X are two given
operators), then the above problem could be transposed in a coincidence problem
of the following form

G(z,y) = S(z,y),
where G, 5 : X x X — X x X are given by the following expressions

G(z,y) = (9(z),9(y)) and S(z,y) := (T(z,y),T(y,x)).
This will be the subject of our forthcoming work.
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