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THE NUMBER OF DISJOINT PERFECT MATCHINGS

IN SEMI-REGULAR GRAPHS

Hongliang Lu and David G.L. Wang∗

We obtain a sharp result that for any even n ≥ 34, every {Dn, Dn+1}-regular
graph of order n contains dn/4e disjoint perfect matchings, where Dn =

2dn/4e − 1. As a consequence, for any integer D ≥ Dn, every {D, D + 1}-
regular graph of order n contains (D−dn/4e+1) disjoint perfect matchings.

1. INTRODUCTION

Vizing’s theorem [25] states that the edge-chromatic number of any graph G
equals either the maximum degree ∆(G), or ∆(G) + 1. Despite the fact that an
(∆(G)+1)-edge-colouring of any graph can be found in polynomial time, Holyer [12]
showed that the problem of deciding whether G is ∆(G)-edge-colorable is NP-
complete, even if ∆(G) = 3. For any regular graph, its edge-chromatic number
equals its maximum degree if and only if the graph is 1-factorizable, i.e., its edge
set can be decomposed into perfect matchings. Seymour [22] provided an algebraic
viewpoint for the 1-factorization of graphs, by associating every perfect matching
with its {0, 1} characteristic function on edges. Among the considerable number
of conjectures involving edge-colorings of regular graphs, see Jensen and Toft’s
book [14], the 1-factorization Conjecture 1.1 has been being regarded as one of the
most famous one.

Conjecture 1.1 (The 1-factorization conjecture). Every regular simple graph of
even order and with degree at least half the order is 1-factorizable.
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Conjecture 1.1 was formulated by Chetwynd and Hilton [2], who, however,
pointed the origin of Conjecture 1.1 to Gabriel Dirac in the early 1950s; see [14]
for more references. In fact, it is easy to see that D-regular graphs of odd order
is not D-edge-colourable, and that D-regular graphs of even order with D < n/2
may still be not D-edge-colourable.

Chetwynd and Hilton [2] showed that every graph of even order n with min-
imum degree at least 6n/7 is 1-factorizable. An alternative proof can be found
in [4]. This bound was improved to (

√
7− 1)n/2, by the same authors [3], and

Niessen and Volkmann [16] independently. Plantholt and Tipnis [20] generalized
the above results to multigraphs. Chetwynd and Hilton [2] also noted that Roland
Häggkvist has announced that for every ε > 0, there exists N(ε) > 0 such that any
D-regular simple graph of even order n > N(ε) with D ≥ (1/2+ε)n is 1-factorable.
This asymptotic result is explicitly established by Perković and Reed [19] with an
algorithmic proof. The combined efforts of Hoffman and Rodger [11], De Simone
and Picinin de Mello [6], and De Simone and Galluccio [7] confirmed Conjecture 1.1
for D-regular graphs that are join of two graphs, and provided a polynomial time
algorithm for finding a D-edge-colouring of these graphs.

For any even integer n, define

Dn = 2
⌈ n

4

⌉
− 1 =


n

2
− 1, if n ≡ 0 (mod 4);

n

2
, if n ≡ 2 (mod 4).

Recently, Csaba et al. [5] confirmed Conjecture 1.1 for regular graphs of sufficiently
large order with degree at least Dn. Parallel to the study of 1-factorizations, one
is interested in the least number N(D) such that any D-regular graph of order n
has at least N(D) disjoint perfect matchings (abbreviated as DPMs). We call it
the DPM problem for regular graphs. Focusing on D-regular graphs of even order
n such that D ≥ n/2, Hilton [10] confirmed the existence of bD/3c DPMs, which
was improved remarkably by Zhang and Zhu [26] to the bound bD/2c.

Theorem 1.2 (Zhang and Zhu). Any D-regular graph of even order n such that
D ≥ n/2 contains at least bD/2c DPMs.

A graph is said to be {D, D + 1}-regular if the degree of every vertex is
either D or (D + 1). Following Akiyama and Kano [1, Section 5.2], a {D, D + 1}-
regular graph is said to be semi-regular. Semi-regular graphs, along with regular
graphs, have been paid much attention on graph factor problems. For example,
Thomassen [23] showed that every {r, r + 1}-graph has a {k, k + 1}-factor for any
1 ≤ k < r. Considering the DPM problem for semi-regular graphs, Hou [13]
obtained the following analogue of Theorem 1.2.

Theorem 1.3 (Hou). Every {D, D + 1}-regular graph of even order n such that
D ≥ n/2 contains at least (D − n/2 + bn/6c+ 1) DPMs.

In this paper, we improve Theorem 1.3 to the sharp result that every {D, D+
1}-regular graph of even order n ≥ 34 contains (D − dn/4e+ 1) DPMs; see Theo-
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rem 3.12. It is essentially a corollary of Theorem 3.11, whose proof occupies most
of this paper. For a comparison with Csaba et al.’s results, see the last section.

2. PRELIMINARY

In this paper, we consider finite undirected simple graphs without loops or
multiple edges. The number of vertices in a graph G is said to be the order of G,
denoted |G|. As usual, we denote the neighbor set of a vertex subset W of G
by NG(W ), or simply N(W ) if there is no confusion. One of the earliest corner-
stones in the matching theory is Hall’s theorem [9].

Theorem 2.4 (Hall). Let G = (X,Y ) be a bipartite graph. Then G has a matching
covering X if and only if |W | ≤ |N(W )| for every subset W of X.

The famous Tutte’s theorem [24] states that a graph G has a perfect matching
if and only if for any vertex subset S, the number of odd components of the graph
G − S is at most the order |S|. In this paper, we will use the following stronger
version of Tutte’s theorem, see Lovász and Plummer’s book [15, Exercise 3.3.18 (b)].
A graph G is said to be factor-critical if the subgraph G−u has a perfect matching
for every vertex v. Obviously the order of a factor-critical graph must be odd.

Theorem 2.5. Let G be a graph without perfect matchings. Then G has a vertex
subset S such that every component of the subgraph G− S is factor-critical, and

o(G− S) ≡ |S| (mod 2) and o(G− S) ≥ |S|+ 2,

where o(G− S) is the number of factor-critical components of the subgraph G− S.

We also need some known results judging the graph structure with aid of the
minimum degree. A graph that contains a Hamiltonian cycle is called Hamiltonian.
Next is a classical criterion for graph Hamiltonicity due to Dirac [8].

Theorem 2.6 (Dirac). Every graph with minimum degree at least half of its order
is Hamiltonian.

A graph is said to be Hamiltonian-connected if it contains a Hamiltonian
path between every two distinct vertices. Ore [17, 18] discovered a criterion for
this stronger property.

Theorem 2.7 (Ore). Let G be a 2-connected graph. If the degree sum of any two
non-adjacent vertices of G is larger than the order |G|, then G is Hamiltonian-
connected.

A graph is said to be bi-critical if the subgraph obtained by removing any
two distinct vertices has a perfect matching. Plummer [21] established a criterion
for the bi-criticality of graphs.
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Theorem 2.8 (Plummer). Let G be a graph of even order. If the degree sum of
any two non-adjacent vertices of G is larger than the order |G|, then the graph G
is bi-critical.

Let us give an overview of notion and notations that we need in the sequel.
For any vertex subset S of V , we denote by G[S] the subgraph of G induced by S,
and write G− S = G[V (G)− S]. For a graph G and an edge set Ẽ, we denote by
G ∪ Ẽ the graph with vertex set V (G) ∪ V (Ẽ) and edge set E(G) ∪ Ẽ.

For any vertex subsets X and Y of a graph G, we denote by EG(X,Y )
the set of edges with one end in X and the other end in Y . It is clear that
EG(X,Y ) = EG(Y,X). Denote eG(X,Y ) = |EG(X,Y )|. As usual, we use the
notation

∂GX = EG(X, V (G)−X).

The degree of a vertex v in a graph G is denoted by degG(v). The minimum degree
of vertices of a vertex set X in a graph G is denoted by δG(X). As usual, we
denote δ(G) = δG(V (G)). When the symbol X or Y denotes a subgraph of G, we
use the same notation EG(X,Y ) to denote the edge set EG(V (X), V (Y )), and use
the similar convention δG(X) = δG(V (X)).

3. MAIN RESULT

Lemma 3.9 will be of considerable help in the proof of Theorem 3.11.

Lemma 3.9. Let d, k, s be integers such that d ≥ (s+ k)/2 + 1 and s ≥ k+ 1. Let
G′ = (S,U) be a bipartite graph with part orders |S| = s and |U | = s+ 1. Suppose
that the minimum degree δG′(U) is at least d, and that every vertex in the part S
has degree at most (d+2), with at most one vertex in S having degree (d+2). Then
for any vertex subset S′ ⊂ S of order k and for any vertex subset U ′ ⊂ U of order
(k + 1), the graph G′ − S′ − U ′ has a perfect matching.

Proof. By contradiction, suppose that there exist subsets S′ ⊂ S and U ′ ⊂ U
such that the subgraph H = G′ − S′ − U ′ has no perfect matchings. By Hall’s
Theorem 2.4, there exists a vertex set T ⊆ U − U ′ such that

(3.1) |NH(T )| ≤ |T | − 1.

Denote p = |NH(T )|. By using the hand-shaking theorem, we have

(3.2)
∑
u∈U

degG′(u) =
∑
v∈S

degG′(v) =
∑

v∈NH(T )∪S′
degG′(v) +

∑
v∈S−NH(T )−S′

degG′(v).

We shall estimate the three summations on both sides of Eq. (3.2) individually.
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From the premise that every vertex in the part U has degree at least d, we
infer that ∑

u∈U
degG′(u) ≥ d · |U | = d (s+ 1).

From the premise that every vertex in the part S has degree at most (d+ 2), with
at most one vertex having degree (d+ 2), we deduce that∑
v∈NH(T )∪S′

degG′(v) ≤ (d+ 2) + (d+ 1) · (|NH(T ) ∪ S′| − 1) = 1 + (d+ 1)(p+ k).

Note that the neighbors of all vertices in the set S − NH(T ) − S′ are in the set
U − T . Therefore, with the aid of Ineq. (3.1), we derive that∑

v∈S−NH(T )−S′
degG′(v) ≤ |S −NH(T )− S′| · |U − T |

= (s− p− k)(s+ 1− |T |) ≤ (s− p− k)(s− p).

Combining the above three inequalities with Eq. (3.2), we obtain that

(3.3) d (s+ 1) ≤ 1 + (d+ 1)(p+ k) + (s− p− k)(s− p).

To deal with Ineq. (3.3), we first figure out the domain of p. On the one
hand, we have T 6= ∅ in virtue of Ineq. (3.1). From the premise, every vertex in the
set T has at least d neighbors. Thus |NG′(T )| ≥ d and thereby

|NH(T )| ≥ |NG′(T )| − |S′| ≥ d− k.

On the other hand, from definition, we have T ⊆ U−U ′. Together with Ineq. (3.1),
we obtain

p ≤ |T | − 1 ≤ |U − U ′| − 1 = (s+ 1)− (k + 1)− 1 = s− k − 1.

Combining the above two inequalities, we find the domain

d− k ≤ p ≤ s− k − 1.

In view of the premises d ≥ (s+k)/2+1 and s ≥ k+1, and the above domain
of p, it is elementary to derive that the right hand side of Ineq. (3.3), considered as a
quadratic function in the variable p, attains its maximum at the value p = s−k−1.
Therefore, we can substitute p = s− k − 1 into Ineq. (3.3), which gives

d (s+ 1) ≤ 1 + (d+ 1)(s− 1) + (k + 1),

contradicting the premise d ≥ (s+ k)/2 + 1. This completes the proof.

Lemma 3.10. Let H be a graph with minimum degree at least dn/4e, consisting of
factor-critical components C1 and C2 with |C1| ≤ |C2|. LetM be a perfect matching
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of the complementary graph of H. Let M ′ be a perfect matching of the graph H∪M
such that the graph (H ∪M)−M ′ consists of factor-critical components C ′1 and C ′2
with |C ′1| ≤ |C ′2|. Suppose that

(3.4) EM (C1, C2)−M ′ 6= ∅.

Then we have V (C ′1) ⊂ V (C2). In other words, we have

V (C1) ∩ V (C ′1) = ∅ and V (C2) ∩ V (C ′2) 6= ∅.

Proof. Denote H ′ = (H ∪M)−M ′. Since the minimum degree δ(H) ≥ dn/4e, we
find

(3.5) |C1| ≥
n

4
+ 1.

For i, j ∈ [2], we denote
Vij = V (Ci) ∩ V (C ′j).

Then the desired results are V11 = ∅ and V22 6= ∅. See Fig. 3.1. In the colorful
version, one may see that the component C ′1 is in red, while the component C ′2 is
in blue.

C1 C2

C ′1

C ′2

V11

V12

V21

V22

C1

C ′1

V22

Figure 3.1: The decomposition of components of the graph H.

The vertex set V (Ci) which is connected in the graph H, is decomposed into
the subsets Vi1 and Vi2 in the graph H ′, one of which might be empty. Therefore,
we infer that

ECi
(Vi1, Vi2) ⊆ E(H)− E(H ′) ⊆ M ′.(3.6)

Let i, j ∈ [2]. From (3.6), we deduce that in the component Ci, every vertex (if
it exists) in the set Vij has at most one neighbor in the set Vij′ , where j′ 6= j.
Therefore, we have

(3.7) δH(Vij) ≥ δ(H)− 1 ≥
⌈ n

4

⌉
− 1, if Vij 6= ∅.
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It follows that

(3.8) |Vij | ≥
⌈ n

4

⌉
, if Vij 6= ∅.

By way of contradiction, assume that V11 6= ∅. First, we claim that

V (C ′1) = V (C1) and V (C ′2) = V (C2),

that is, V12 = V21 = ∅. In fact, if V12 6= ∅, then Ineq. (3.8) implies that

|C1| = |V11|+ |V12| ≥
n

4
+
n

4
=

n

2
.

Since |C1| ≤ |C2| = n − |C1| ≤ n/2, we infer that |C1| = n/2, i.e., the equality
in the above inequality holds. In particular, the odd component C1 is composed
of two vertex sets V11 and V12 of the same order, which is absurd! This proves
V12 = ∅, i.e., V (C1) = V11. Now, if V21 6= ∅, then Ineqs. (3.5) and (3.8) imply that

|C ′1| = |V11 ∪ V21| = |C1|+ |V21| ≥
(n

4
+ 1
)

+
n

4
>

n

2
.

It follows that |C ′2| < |C ′1|, contradicting the premise |C ′1| ≤ |C ′2|. This proves the
claim.

From Condition (3.4), there exists an edge

e′ ∈ EM (C1, C2)−M ′ ⊆ E(H ′).

From the claim, we see that

e′ ∈ EM (C1, C2) = EM (C ′1, C
′
2).

Combining the above two relations, we obtain

(3.9) e′ ∈ E(H ′) ∩ EM (C ′1, C
′
2) ⊆ EH′(C

′
1, C

′
2).

This is impossible since the components C ′1 and C ′2 are disconnected in the graphH ′.
This proves V11 = ∅.

It remains to show that V22 6= ∅. In fact, the opposite relation V22 = ∅ implies
that V (C ′2) = V (C1) and V (C ′1) = V (C2), resulting in the same contradiction (3.9).
This proves Lemma 3.10.

The main result of this paper is Corollary 3.12. Here out comes its essential
part.

Theorem 3.11. Let n ≥ 34. Then every {Dn, Dn + 1}-regular graph of order n
has at least dn/4e disjoint perfect matchings.
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Proof. Let n ≥ 34. For short, we denote D = Dn throughout this proof. Let G be
an {D,D+ 1}-regular graph with a familyM of the maximum number l of perfect
matchings.

By way of contradiction, we assume l ≤ dn/4e − 1. It follows that

(3.10) D − l ≥
⌈ n

4

⌉
.

Since n ≥ 34, by Ineq. (3.10), we have

(3.11) D − l ≥ 9.

Let H = G−M denote the graph obtained by removing all edges constituting the
matchings in the familyM. Then the graph H is {D− l, D− l+ 1}-regular. Thus
for any vertex v, we have

(3.12) D − l ≤ degH(v) ≤ D − l + 1.

By the choice of the family M, the graph H has no perfect matchings. By
Theorem 2.5, there is a vertex subset S such that the graph H − S consists of
factor-critical components C1, C2, . . . , Cq with

q ≥ s+ 2,(3.13)

q ≡ s (mod 2),(3.14)

ci ≡ 1 (mod 2), and(3.15)

1 ≤ c1 ≤ c2 ≤ · · · ≤ cq,(3.16)

where s = |S| and ci = |Ci|. By using Ineq. (3.12), we infer that

(3.17)

q∑
i=1

|∂HCi| = |∂HS| ≤ (D − l + 1) · s.

On the other hand, by counting the vertices in H, we find

(3.18) n = s+

q∑
i=1

ci,

Together with Ineqs. (3.16) and (3.13), we infer that n ≥ s+ q ≥ 2s+ 2, that is,

(3.19) s ≤ n

2
− 1.

Let i ∈ [q]. Since every vertex in the component Ci has at most (ci − 1)
neighbors inside itself, it has at least (D− ci + 1) neighbors outside. Thus we have

(3.20) |∂GCi| ≥ ci · (D − ci + 1).
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Along the same line, we can deduce

|∂HCi| ≥ ci · (D − l + 1− ci).

Regarding the right hand side of the above inequality as a quadratic function in
the variable ci, we obtain

|∂HCi| ≥ D − l, if 1 ≤ ci ≤ D − l;(3.21)

|∂HCi| ≥ 2(D − l − 1), if 3 ≤ ci ≤ D − l − 1; and(3.22)

|∂HCi| ≥ 3(D − l − 2), if 3 ≤ ci ≤ D − l − 2.(3.23)

In this proof, we often make effort to find the range of some order ci so as to use
the corresponding lower bound of the number |∂HCi| given by one of Ineqs. (3.21),
(3.22), and (3.23).

Assume that cq ≤ D− l, then Ineq. (3.16) implies that 1 ≤ ci ≤ D− l for all
i ∈ [q]. Thus, Ineqs. (3.17), (3.21), and (3.13) imply that

(D − l) · (s+ 2) ≤ (D − l) · q ≤
q∑

i=1

|∂HCi| ≤ (D − l + 1) · s.

Simplifying it, and by using Ineq. (3.10), we find s ≥ 2(D− l) ≥ n/2, contradicting
Ineq. (3.19). Therefore, we have cq ≥ D − l + 1. By using Ineq. (3.10) again, we
can deduce

(3.24) cq ≥ D − l + 1 ≥ n

4
+ 1.

Together with Eq. (3.18) and Ineq. (3.13), we infer that

n = s+

q−1∑
i=1

ci + cq ≥ s+ (q − 1) +
(n

4
+ 1
)
≥ 2s+

n

4
+ 2,

that is,

(3.25) s ≤ 3n

8
− 1.

Below we will handle the cases s = 1, s ≥ 2, and s = 0, individually. As will
be seen, the case s = 1 is relatively easy, the case s = 2 implies that s ≥ dn/4e,
and the case s = 0 is proved to be reducible to the previous cases.

Case 1. s ≥ 2.

First, we show that s ≥ dn/4e in this case, and figure out some basic relation
among the parameters.

Claim 1.1. Suppose that s ≥ 2. Then we have
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(i) s ≥ D − l ≥ dn/4e;

(ii) q = s+ 2;

(iii) ci = 1 for i ∈ [q − 1];

(iv) cq = n− 2s− 1 ∈ [n/4 + 1, n/2− 1 ].

(v) |∂HCq| ≤ s+ l −D, and the subgraph Cq is Hamiltonian-connected.

We shall show the above results one by one.

(i). In order to show the desired lower bound D− l of the number s, we suppose, to
the contrary, that s < D−l. If the component C1 consists of a single vertex, then all
neighbors of this vertex lie in the set S. As a consequence, by Ineq. (3.12), the set
S contains at least D− l vertices, a contradiction. Note that all the components Ci

are of odd order. Therefore, we have

(3.26) c1 ≥ 3.

It will be used to judge the condition when we apply Ineqs. (3.22) and (3.23).

From Ineq. (3.13), we see that q ≥ 4. Thus the notation Cq−3 is well defined.
Assume that cq−3 ≥ D − l. By Eq. (3.18) and Ineqs. (3.16) and (3.24), we have

n ≥ cq−3 + cq−2 + cq−1 + cq ≥ 3(D − l) + (D − l + 1),

contradicting Ineq. (3.10). Thus, we have Cq−3 ≤ D − l − 1. Together with
Ineq. (3.26), we find

(3.27) 3 ≤ ci ≤ D − l − 1, for all i ∈ [q − 3].

Therefore, by using Ineq. (3.22), we can deduce from Ineq. (3.17) that

(3.28) (D − l + 1)s ≥
q∑

i=1

|∂HCi| ≥
q−3∑
i=1

|∂HCi| ≥ 2(D − l − 1)(q − 3).

Assume that q ≥ s+ 3. Then Ineq. (3.28) implies D− l+ 1 ≥ 2(D− l− 1),
contradicting Ineq. (3.11). This proves that q ≤ s + 2. In view of Ineq. (3.13), we
derive that q = s+ 2. Consequently, Ineq. (3.28) implies that

s ≤ 2

(
1 +

2

D − l − 3

)
≤ 8

3
.

Therefore, we find s = 2 and q = 4.

Assume that c1 ≤ D− l−2. By using Ineqs. (3.22) and (3.23), we can deduce
from Ineq. (3.17) that

2(D − l + 1) ≥ |∂HC1| ≥ 3(D − l − 2),
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contradicting Ineq. (3.11). From Ineq. (3.27), we deduce that

c1 = D − l − 1 ≥
⌈ n

4

⌉
− 1.

In view of Eq. (3.18) that n− 2 =
∑4

i=1 ci, we find

c1 = c2 = c3 = c4 =
n− 2

4
,

contradicting Ineq. (3.24). This completes the proof of the lower bound part s ≥
D − l in Claim 1.1 (i). By Ineq. (3.10) again, we obtain s ≥ dn/4e immediately.

(ii). Note that Eq. (3.18) and Ineqs. (3.13) and (3.16) give that

(3.29) n = s+

q−2∑
i=1

ci + (cq−1 + cq) ≥ s+ (q − 2) + 2cq−1 ≥ 2(s+ cq−1).

Together with the inequality s ≥ D− l confirmed in Claim 1.1 (i), and Ineq. (3.10),
we find that

cq−1 ≤
n

2
−D + l ≤ D − l.

Therefore, Ineqs. (3.17) and (3.21) give

(D − l + 1)s ≥
q∑

i=1

|∂HCi| ≥
q−1∑
i=1

|∂HCi| ≥ (D − l)(q − 1),

which can be recast as (D − l)(q − s− 1) ≤ s. By using Ineq. (3.19), we infer that

q − s− 1 ≤ s

D − l
≤ n/2− 1

n/4
< 2.

It follows that q ≤ s+ 2. In view of Ineq. (3.13), we derive that q = s+ 2.

(iii). Suppose to the contrary that cq−1 ≥ 3.

If cq−1 ≤ D − l − 1, then Ineqs. (3.17), (3.21) and (3.22) yield that

(D − l + 1)s ≥
q−2∑
i=1

|∂HCi|+ |∂HCq−1| ≥ (D − l)s+ 2(D − l − 1),

that is, s ≥ 2(D − l− 1) ≥ n/2− 2. Therefore, Ineq. (3.29) implies n ≥ 2(s+ 3) ≥
n+2, a contradiction. Therefore, we have cq−1 ≥ D−l. Together with Claim 1.1 (i)
that s ≥ D− l, we see that all the equalities in Ineq. (3.29) hold true. In particular,
one has cq = n/4, contradicting Ineq. (3.24). This confirms Claim 1.1 (iii).

(iv). Now, by Claim 1.1 (ii) and (iii), Eq. (3.18) reduces to

n = s+ (q − 1) + cq = 2s+ 1 + cq,
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which gives the desired formula for cq. By using Ineq. (3.10) and using s ≥ D − l
from Claim 1.1 (i), we find the desired upper bound n/2−1 of cq. The lower bound
has been shown in Ineq. (3.24). This proves Claim 1.1 (iv).

(v). From Claim 1.1 (iii) and Ineq. (3.21), we infer that |∂HCi| ≥ D − l for all
i ∈ [q − 1]. Together with Claim 1.1 (i), (ii), and Ineq. (3.17), we deduce that

|∂HCq| ≤ (D − l + 1)s− (q − 1)(D − l) = s+ l −D.

Together with Ineq. (3.12) and Claim 1.1 (i) and (iv), we infer that

δ(Cq) ≥ δH(Cq)− |∂HCq| ≥ (D − l)− (s+ l −D)
cq
2
.

By Theorem 2.7, the subgraph Cq is Hamiltonian-connected.

This completes the proof of Claim 1.1.

Claim 1.2. There exists a matching M0 ∈M such that

(3.30) |∂M0
Cq| ≥ 3.

By Claim 1.1 (iv), we see that n/4 + 1 ≤ cq ≤ D. Therefore, Ineq. (3.20)
implies that

|∂GCq| ≥ cq(D − cq + 1) ≥ D.

Assume that |∂MCq| ≤ 1 for all M ∈ M (if M 6= ∅). By using Claim 1.1 (v), we
deduce

s−D + l ≥ |∂HCq| = |∂GCq| −
∑

M∈M
|∂MCq| ≥ D − l,

which implies that s ≥ n/2 by Ineq. (3.10), contradicting Ineq. (3.19). Hence, there
exists a matching M0 ∈ M such that |∂M0

Cq| ≥ 2. Since the component Cq is of
odd order, the cardinality |∂MCq| is odd for all matchings M . Thus |∂M0

Cq| ≥ 3.
This proves Claim 1.2.

Denote U = ∪q−1
i=1V (Ci). From Claim 1.1 (iii), we see that the set U consists

of (s+ 1) isolated vertices in the graph H. Now the graph H has three parts S, U ,
and Cq. Denote by F the bipartite graph with vertex parts S and U , and with edge
set EH(S,U). It can be obtained alternatively from the graph H−Cq by removing
the edges among vertices in the set S.

By Claim 1.2, we can take a matching M0 ∈M subject to Ineq. (3.30). Since
the perfect matching M0 covers the vertices of the set U , we have

(3.31) s+ 1 = |U | = eM0(U, S) + eM0(U,Cq) + 2eM0(U,U).

For the same reason, we have

(3.32) s = eM0(S,U) + eM0(S,Cq) + 2eM0(S, S) ≥ eM0(S,U) + eM0(S,Cq).
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Subtracting Eq. (3.31) from Ineq. (3.32), and by using Ineq. (3.30), we obtain

−1 ≥ eM0(S,Cq)− eM0(U,Cq)− 2eM0(U,U) ≥ 3− 2eM0(U,Cq)− 2eM0(U,U).

It follows that

(3.33) eM0(U,U) ≥ 2− eM0(U,Cq).

Below we have three subcases to treat. In each of them, we will apply
Lemma 3.9 twice, taking k ∈ {0, 1} and d ∈ {D − l, D − l − 1}. Here we ver-
ify the condition d ≥ (s+ k)/2 + 1 and s ≥ k + 1, as

(3.34) D − l − 1 ≥ s+ 1

2
+ 1 and s ≥ 2 ≥ k + 1,

whose truth can be seen from Ineqs. (3.10), (3.25), and (3.11) directly. In this way,
we obtain two disjoint perfect matchings in the graph H ∪M0, contradicting the
choice the family M.

Subcase 1.1. Suppose that eM0
(U,Cq) ≥ 2.

Let e21, e22 ∈ EM0(U,Cq). Note that we use the first subscript 2 to indicate
we are in the subcase with the assumption eM0

(U,Cq) ≥ 2. See Fig. 3.2.

S

U

CqM ′2i P2 = M21 ∪M22

e21

e22

Figure 3.2: The perfect matchings M21 ∪M ′21 ∪ {e21} and M22 ∪M ′22 ∪ {e22}.

By Claim 1.1 (v), the component Cq has a Hamiltonian path, say, P2, from
the vertex V (e21) ∩ V (Cq) to the vertex V (e22) ∩ V (Cq). For i = 1, 2, since the
path P2−V (e2i) has an even number of vertices, it has a unique perfect matching,
say, M2i.

In Lemma 3.9, we take

d = D − l, k = 0, G′ = F, S′ = ∅, and U ′ = V (e21) ∩ U.

In the graph F , by Ineq. (3.12), every vertex in the set S has degree at most
(D−l+1), and the minimum degree δF (U) is at least (D−l). In view of Ineq. (3.34),
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we infer from Lemma 3.9 that the graph F−V (e21) has a perfect matching, say,M ′21.
Now, we take

d = D − l − 1, k = 0, G′ = F −M ′21, S′ = ∅, and U ′ = V (e22) ∩ U.

Consider the graph F −M ′21. Since the matching M ′21 is perfect, by Ineq. (3.12),
every vertex in the set S has degree at most (D− l), and that the minimum degree
δF−M ′21(U) is at least (D−l−1). Again, Lemma 3.9 provides a perfect matchingM ′22

of the graph F − V (e22)−M ′21.

From definition, we obtain two disjoint perfect matchings

M ′′2i = M2i ∪M ′2i ∪ {e2i} (i = 1, 2),

of the graph H∪M0. As a consequence, the family (M−M0)∪{M ′′21, M
′′
22} consists

of (l + 1) disjoint perfect matchings, contradicting the choice of the family M.

Subcase 1.2. Suppose that eM0
(U,Cq) = 0.

In this case, by Ineq. (3.30), we have eM0
(S,Cq) ≥ 3. Thus we can choose

two edges e01, e02 ∈ EM0
(S,Cq). See Fig. 3.3.

S

U

CqM ′0i P0 = M01 ∪M02

e01

e′01 e′02

e02

Figure 3.3: The perfect matchings M0i ∪M ′0i ∪ {e0i, e
′
0i} (i = 1, 2).

By Claim 1.1 (v), the component Cq has a Hamiltonian path, say, P0, from
the vertex V (e01) ∩ V (Cq) to the vertex V (e02) ∩ V (Cq). Same to Subcase 1.1, for
i = 1, 2, we denote by M0i the unique perfect matching of the path P0 − V (e0i).
From Ineq. (3.33), we infer that eM0(U,U) ≥ 2. Thus, we can pick edges e′01, e

′
02 ∈

EM0(U,U). In Lemma 3.9, we take

d = D − l, k = 1, G′ = F, S′ = V (e01) ∩ S, and U ′ = V (e′01).

Same to Subcase 1.1, the graph F−V (e01)−V (e′01) has a perfect matching, say,M ′01.
Then, we take

d = D− l− 1, k = 1, G′ = F −M ′01, S′ = V (e02) ∩ S, and U ′ = V (e′02).
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Note that in the graph F −M ′01, the vertex in the set V (e01) ∩ S has degree at
most (D − l + 1), every other vertex in the set S has degree at most (D − l), and
that the minimum degree δF−M ′01(U) is at least (D − l − 1). Again, Lemma 3.9
offers a perfect matching M ′02 of the graph F − V (e02)− V (e′02). From definition,
we obtain two disjoint perfect matchings M0i ∪M ′0i ∪ {e0i, e

′
0i} (i = 1, 2) of the

graph H ∪M0, the same contradiction as in Subcase 1.1.

Subcase 1.3. Suppose that eM0
(U,Cq) = 1.

In this case, we can choose an edge e11 ∈ EM0(U,Cq). See Fig. 3.4.

S

U

CqM ′1i P1 = M11 ∪M12

e11

e12

e13

Figure 3.4: The perfect matchings M11 ∪M ′11 ∪ {e11} and M12 ∪M ′12 ∪ {e12, e13}.

From Ineq. (3.30), we infer that eM0
(Cq, S) ≥ 2, which allows us to pick an

edge e12 ∈ EM0
(Cq, S) such that V (e11)∩ V (e12) = ∅. Same to Subcase 1.1, let P1

be a Hamiltonian path from the vertex V (e11)∩V (Cq) to the vertex V (e12)∩V (Cq).
Denote by M1i the perfect matching of the path P1 − V (e1i) for i = 1, 2. Taking

d = D − l, k = 0, G′ = F, S′ = ∅, and U ′ = V (e11) ∩ U,

we infer from Lemma 3.9 that the graph F−V (e11) has a perfect matching, say,M ′11.
By Ineq. (3.33), we have eM0(U,U) ≥ 1. Let e13 ∈ EM0(U,U). Then, we put

d = D− l− 1, k = 1, G′ = F −M ′11, S′ = V (e12) ∩ S, and U ′ = V (e13).

Again, Lemma 3.9 results in a perfect matching M ′12 of the graph F − V (e11) −
V (e12)− V (e13). From definition, we obtain two disjoint perfect matchings

M11 ∪M ′11 ∪ {e11} and M12 ∪M ′12 ∪ {e12, e13}

are disjoint perfect matchings of the graph H ∪M0, the same contradiction.

This completes the proof for Case 1.
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Case 2. s = 1.

Before dealing with the other cases s = 1 and s = 0, we give some common
properties for these two cases. Let j ∈ [q]. Every vertex in the subgraph H[Cj ] has
at most s neighbors outside Cj . Therefore, by Ineq. (3.12), every vertex in H[Cj ]
has at least (D − l − s) neighbors inside Cj . In other words,

(3.35) δ(Cj) ≥ D − l − s ≥
⌈ n

4

⌉
− s.

It follows that

(3.36) cj ≥ δ(Cj) + 1 ≥ D − l − s+ 1 ≥
⌈ n

4

⌉
− s+ 1.

From Eq. (3.18) and that s ∈ {0, 1}, we have

n = s+

q∑
j=1

cj ≥ s+ q ·
(n

4
− s+ 1

)
q · n

4
.

It follows that q ≤ 3. From Ineq. (3.13) and Eq. (3.14), we infer that

(3.37) q = s+ 2.

From Claim 1.2, we see that the graph G has a perfect matching if s ≥ 2. In
fact, this is also true for s ∈ {0, 1}.

Claim 2.1. Let s ∈ {0, 1}. Then the graph G has a perfect matching, i.e., we have
l ≥ 1.

By Eq. (3.18) and Ineqs. (3.16), (3.35), and (3.37), we find

(3.38) n = s+

q∑
i=1

ci ≥ s+ (s+ 2) · c1 ≥ s+ (s+ 2) · (D − l − s+ 1).

Assume that l = 0. For s = 1, Ineq. (3.38) implies n ≥ 1 + 3D ≥ 1 + 3(n/2 − 1),
contradicting n ≥ 34. For s = 0, Ineq. (3.38) implies n ≥ 2(D + 1) = 4dn/4e ≥ n.
Thus the equality in Ineq. (3.38) holds. In particular, we have n ≡ 0 (mod 4) and
c1 = D + 1 = n/2 is even, contradicting Eq. (3.15). This proves Claim 2.1.

From Eq. (3.37), we have q = 3. We rename the components C1, C2, and C3

by T1, T2, and T3, so that

(3.39) eH(S, T3) = max
1≤i≤3

eH(S, Ci).

Denote |Ti| = ti. This case s = 1 will be handled by presenting a family of disjoint
perfect matchings larger thanM. To do this, we will discover a matching M ∈M
such that the graph H ∪M has two disjoint perfect matchings. Claims 2.2 and 2.3
will be of use.
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Claim 2.2. We have⌈ n
4

⌉
+ 1 ≤ ti ≤

n

2
− 3, for i = 1, 2, and⌈ n

4

⌉
≤ t3 ≤

n

2
− 3.

As a consequence, every component Tj (j = 1, 2, 3) is Hamiltonian-connected.

From Ineq. (3.36), we obtain the desired lower bound of t3 directly. Assume
that ti = dn/4e for some i ∈ {1, 2}. Let S = {v∗}. By Ineq. (3.12), every vertex in
the component Ti is a neighbor of the vertex v∗. Thus eH(S, Ti) ≥ ti. Therefore,
by Ineq. (3.39), we have

degH(v∗) =

3∑
j=1

eH(S, Tj) ≥ eH(S, Ti) + eH(S, T3) ≥ 2ti = 2
⌈ n

4

⌉
.

By Ineq. (3.12), we find l = 0, contradicting Claim 2.1. Hence, both integers t1
and t2 have the lower bound dn/4e+ 1.

By the lower bounds of ti that just obtained, we infer that

t3 = |G− S − T1 − T2| ≤ n− 1−
(n

4
+ 1
)
−
(n

4
+ 1
)

=
n

2
− 3,

the desired upper bound of t3. Along the same line, we have

t1 = |G− S − T2 − T3| ≤ n− 1−
(n

4
+ 1
)
− n

4
=

n

2
− 2.

If t1 = n/2− 2, i.e., if the equality in the above inequality holds, then t2 = n/4 + 1
and t3 = n/4, having different parities. But this is impossible since the order of
every component Ti has odd parity. This confirms the desired upper bound of t1.
The desired upper bound of t2 can be shown in the same fashion.

Let j ∈ [3]. By Ineq. (3.35), we have

2δ(Tj) ≥ 2
(n

4
− 1
)
≥ tj + 1.

By Theorem 2.7, every component Tj is Hamiltonian-connected. This proves
Claim 2.2.

Claim 2.3. There is a matching M ∈M such that eM (T1, T2) ≥ 2.

We estimate the number of edges between the sets T1 ∪ T2 and S ∪ T3. On
the one side, from Ineqs. (3.12) and (3.39), we infer that

|∂H(S ∪ T3)| =

2∑
i=1

eH(S, Ti) ≤
2

3

3∑
i=1

eH(S, Ti) =
2

3
degH(v∗) ≤ 2

3
(D + 1− l).
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Therefore, we have

|∂G(S ∪ T3)| = |∂H(S ∪ T3)|+ |∂G−E(H)(S ∪ T3)| ≤ |∂H(S ∪ T3)|+ |S ∪ T3| · |M|

≤ 2

3
(D + 1− l) + (n− t1 − t2) · l.(3.40)

On the other hand, assume that Claim 2.3 is false. Then eM (T1, T2) ≤ 1 for every
matching M ∈M. It follows that

eG(T1, T2) = eH(T1, T2) + eG−E(H)(T1, T2) = 0 +
∑

M∈M
eM (T1, T2) ≤ |M| = l.

Therefore, we have

|∂G(T1 ∪ T2)| =
∑

v∈T1∪T2

degG(v)−
2∑

i=1

∑
v∈Ti

degTi
(v)− 2eG(T1, T2)

≥ D · (t1 + t2)−
2∑

i=1

ti(ti − 1)− 2l.(3.41)

Combining Ineqs. (3.41) and (3.40) with the identity ∂(T1 ∪ T2) = ∂(S ∪ T3),
we infer that

(3.42)
2

3
(D + 1− l) + (n− t1 − t2) · l−

(
D · (t1 + t2)−

2∑
i=1

ti(ti − 1)− 2l

)
≥ 0.

Since the coefficient of l in the left hand side of (3.42) is −2/3+(n−t1−t2)+2 > 0,
and since the coefficient of D in the left hand side is 2/3 − (t1 + t2) < 0, we can
substitute l by its upper bound (n − 2)/4, and substitute D by its lower bound
n/2− 1 into Ineq. (3.42), which gives

(3.43) f(t1) + f(t2) +
(n2

4
+
n

6
− 2

3

)
≥ 0,

where

f(t) = t2 +
(
−3n

4
+

1

2

)
t.

From the domain of ti (i = 1, 2) obtained in Claim 2.2, and since n ≥ 34, it is
elementary to derive that the quadratic function f(ti) has upper bound f(n/4+1).

From Ineq. (3.43), we obtain

2f
(n

4
+ 1
)

+
(n2

4
+
n

6
− 2

3

)
≥ 0,

which reduces to n ≤ 28, a contradiction to the premise n ≥ 34. This proves
Claim 2.3.
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By Claim 2.3, we can suppose that e1, e2 ∈ EM (T1, T2). By Claim 2.2, the
component Ti has a Hamiltonian path Pi from the vertex V (Ti) ∩ V (e1) to the
vertex V (Ti)∩ V (e2). Thus we obtain a Hamiltonian cycle C1 = (P1, e2, P2, e1) of
the subgraph T1 ∪T2 ∪{e1, e2}. Since both the orders t1 and t2 are odd, the length
(t1 + t2) of the cycle C1 is even. See Fig. 3.5.

On the other hand, from Ineqs. (3.39) and (3.12), we have

eH(S, T3) ≥ 1

3
degH(v∗) ≥ 1

3

⌈ n
4

⌉
.

Since n ≥ 34, we have eH(S, T3) ≥ 3. Let v31 and v32 be two neighbors of the
vertex v∗ in the component T3. By Claim 2.2 again, the component T3 has a
Hamiltonian path P3 from the vertex v31 to the vertex v32. This gives a Hamiltonian
cycle C2 = (P3, v32v

∗v31) of the subgraph H[S ∪ V (T3)]. Since the order t3 is odd,
the length t3 + 1 of the cycle C2 is even.

v∗

v31

v32

e1

e2

T1 T2 T3

P1 P2 P3C1 C2

Figure 3.5: The perfect matching union M1 ∪M2.

Note that the union of the even cycles C1 and C2 can be decomposed into two
disjoint perfect matchings, say, M1 and M2, of the graph H ∪M . Then the family
(M∪ {M1,M2}) −M consists of (l + 1) disjoint perfect matchings, contradicting
the choice of M. This completes the proof for Case 2.

Case 3. s = 0.

From Eq. (3.37), we infer that q = 2. In other words, the graph H consists
of factor-critical components C1 and C2. Claim 3.1 will be used several times for
solving Case 3.

Claim 3.1. For any matching M ∈ M and for any perfect matching M ′ of the
graph H ∪M , the graph (H ∪M)−M ′ consists of two factor-critical components
of orders at least dn/4e+ 1.

Let M ∈ M, and let M ′ be a perfect matching of the graph H ∪M . From
the choice of the family M, we infer that the subgraph (H ∪ M) − M ′ has no
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perfect matchings. By Theorem 2.5, there is a vertex set S′ such that the graph
H ′ − S′ consists of q′ factor-critical components. If S′ 6= ∅, then one may consider
the family (M−M)∪{M ′} of disjoint perfect matchings instead of the familyM,
as in the previous proofs for Cases 1 and 2. Therefore, we can suppose that S′ = ∅.
Along the same lines, we are led to q′ = 2. In analog with Ineq. (3.36), we find
each component has order at least dn/4e+ 1. This proves Claim 3.1.

From Ineq. (3.20), we infer that

(3.44)
∑

M∈M
eM (C1, C2) = eG(C1, C2) ≥ ci(D − ci + 1) = ci ·

(
2
⌈ n

4

⌉
− ci

)
.

Since c1 ≤ c2, we have c1 ≤ n/2. If c1 = n/2, then the integer n/2, as the order of
the factor-critical component, is odd. Then Ineq. (3.44) becomes∑

M∈M
eM (C1, C2) ≥ ci ·

(n
2

+ 1− ci
)

=
n

2
.

Otherwise, by Ineq. (3.36), we have n/4+1 ≤ c1 ≤ n/2−1. In this case, Ineq. (3.44)
implies ∑

M∈M
eM (C1, C2) ≥ ci ·

(n
2
− ci

)
≥ n

2
− 1.

Anyway, the sum on the left hand side of Ineq. (3.44) is at least n/2 − 1. Conse-
quently, by Claim (2.1) that l ≥ 1, and by the assumption l ≤ dn/4e − 1, there
exists a matching M0 ∈M such that

eM0(C1, C2) ≥ n/2− 1

l
≥ 2.

Since the order c1 is odd, and the matching M0 is perfect, the integer eM0
(C1, C2)

must be odd. Thus, the above lower bound can be enhanced to

(3.45) eM0(C1, C2) ≥ 3.

Let e0 ∈ eM0(C1, C2). Since each of the components Ci is factor-critical, the
subgraph Ci − V (e0) has a perfect matching, say, M0i. Thus, the graph H ∪M0

has the perfect matching

M ′0 = M01 ∪M02 ∪ {e0}.

We further denote

H ′ = (H ∪M0)−M ′0, and

F = H ′ ∪M ′0 = H ∪M0.

By Claim 3.1, we can suppose that the graph H ′ consists of factor-critical compo-
nents C ′1 and C ′2, such that

(3.46)
n

4
+ 1 ≤ |C ′1| ≤ |C ′2|.
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Denote
Vij = V (Ci) ∩ V (C ′j).

From Ineq. (3.45) and the definition of the matching M ′0, one may verify Condition
(3.4) directly. Thus, by Lemma 3.10, we infer that

(3.47) V (C ′1) ⊂ V (C2).

On the other hand, from Ineqs. (3.36) and (3.46), we infer that

(3.48) |V22| = n− c1 − |C ′1| ≤ n−
(n

4
+ 1
)
−
(n

4
+ 1
)

=
n

2
− 2.

From Ineqs. (3.7) and (3.48), we infer that

(3.49) δH(V22) ≥ n

4
− 1 ≥ |V22|

2
.

From Relation (3.47), we see that V22 6= ∅. By Ineq. (3.8) and the premise n ≥ 34,
we find |V22| ≥ 9. By Dirac’s Theorem 2.6, we conclude that the subgraph H[V22]
is Hamiltonian. Let H22 be a Hamiltonian cycle of the subgraph H[V22].

We will find another perfect matching in the graph F in Claim 3.3, based on
Claim 3.2.

Claim 3.2. The graph F contains two edges

e1 ∈ EM0−e0(C1, V22) and e′1 ∈ EH(C ′1, V22),

such that V (e1) ∩ V (e′1) = ∅.

Recall that every factor-critical graph is 2-edge-connected. Since the compo-
nent C2 is factor-critical, we infer that

(3.50) eH(C ′1, V22) ≥ 2.

To show Claim 3.2, it suffices to show that

(3.51) eM0−e0(C1, V22) ≥ 2.

From the definition M ′0 = M01 ∪M02 ∪ {e0}, we see that

EM0
(C1, C2) ∩M ′0 = {e0}.

From the definition H ′ = (H ∪M0)−M ′0, we can deduce that

EM0
(C1, C2)− e0 ⊂ E(H ′).

By Relation (3.47), we can enhanced the above relation to

EM0(C1, C2)− e0 ⊂ E(C ′2).
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Consequently, we have

EM0(C1, C2)− e0 ⊆ E(C ′2) ∩ EM0−e0(C1, C2) = EM0−e0(C1, V22).

Hence, the desired Ineq. (3.51) follows from Ineq. (3.45). This proves Claim 3.2.

Let e1 and e′1 be two edges subject to Claim 3.2. The factor-criticality of
the component C1 implies that the subgraph C1 − V (e1) has a perfect matching,
say, M11, in the graph H. For the same reason, the subgraph C ′1 − V (e′1) has a
perfect matching, say, M ′11, in the graph H ′.

Claim 3.3. The graph F has a perfect matching M ′′ such that

EM0
(C1, C2)−M ′′ 6= ∅ and(3.52)

EM ′0
(C ′1, C

′
2)−M ′′ 6= ∅.(3.53)

We will treat two cases according to whether the equality in Ineq. (3.48) holds
or not. Assume that the equality in Ineq. (3.48) does not hold. Then the strict
inequality in Ineq. (3.49) holds. By Theorem 2.8, the subgraph H[V22] is bi-critical.
In particular, the subgraph H[V22]−V (e1)−V (e′1) has a perfect matching, say, M12.

Therefore, the graph F has the perfect matching M ′1 = M11 ∪M ′11 ∪M12 ∪
{e1, e

′
1}. See Fig. 3.6.

C1

C ′1

V22

M11

M ′11

M12
e1

e′1

Figure 3.6: The perfect matching M ′1 = M11 ∪M ′11 ∪M12 ∪ {e1, e
′
1}.

It follows that

EM0
(C1, C2) ∩M11 = {e1}, and(3.54)

EM ′0
(C ′1, V22) ∩M ′11 = {e′1}.(3.55)

In this case, we define M ′′ = M ′1. From Ineq. (3.45) and Eq. (3.54), we obtain
Ineq. (3.52). It remain to verify Ineq. (3.53). Recall from Relation (3.6) that
EH(C ′1, V22) ⊆M ′0, we deduce that

EH(C ′1, V22) ⊆ EM ′0
(C ′1, V22).



Disjoint perfect matchings in semi-regular graphs 33

Together with Ineq. (3.50), we infer that

eM ′0(C ′1, V22) ≥ eC2(C ′1, V22) ≥ 2.

In view of Eq. (3.55), we infer that EM ′0
(C ′1, V22)−M ′1 6= ∅. This verifies Ineq. (3.53).

Now, suppose that the equality in Ineq. (3.48) holds. Then

|V22| =
n

2
− 2 and c1 = |C ′1| =

n

4
+ 1.

In follows that the number n/4 is an integer. Consider the underlying graph F .
On one hand, every vertex has degree at least n/4 + 1. Since ∂FC1 ⊂M0, we infer
that the component C1 is isomorphic to the complete graph Kn/4+1, and that every
vertex in C1 sends an edge to the component C2 in the matching M0. It follows
that

(3.56) eM0
(C1, C2) =

n

4
+ 1.

Assume that EM0
(C1, C

′
1) 6= ∅. Then we can suppose that e2 ∈ EM0

(C1, C
′
1).

Since the component C1 is factor-critical, the subgraph F [C1 − V (e2)] has a per-
fect matching, say, M21. Since the component C ′1 is factor-critical, the subgraph
F [C ′1 − V (e2)] has a perfect matching, say, M ′21. Let M22 be a perfect matching
taken from the Hamiltonian cycle H22 of the subgraph H[V22]. Therefore, the
graph F has the perfect matching M ′2 = M21 ∪M ′21 ∪M22 ∪ {e2}. See Fig. 3.7.

C1

C ′1

V22

M21

M ′21

M22

e2

Figure 3.7: The perfect matching M21 ∪M ′21 ∪M22 ∪ {e2}.

In this case, we define M ′′ = M ′2. By Ineq. (3.45) and the fact M ′2 ∩M0 =
{e2}, we verify Ineq. (3.52). By Ineq. (3.50) and the fact M ′2 ∩M ′0 = ∅, we verify
Ineq. (3.53).

Otherwise, all edges with one end in the component C1 must have the other
end in the set V22. By Eq. (3.56), we have eM0

(C1, V22) ≥ n/4 + 1. Recall from
Claim 3.2 that e′1 ∈ EM ′0

(C ′1, V22). With the assumption |V22| = n/2 − 2, we
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may choose an edge e3 ∈ EM0(C1, V22) such that the subgraph H22−V (e3)−V (e′1)
consists of two paths of even orders. Consequently, the subgraphH22−V (e3)−V (e′1)
has a perfect matching, say, M32. Since the subgraph C1 is factor-critical, the
subgraph C1−V (e3) has a perfect matching, say, M31. Therefore, the graph F has
the perfect matching M31 ∪M ′11 ∪M32 ∪ {e3, e

′
1}. See Fig. 3.8.

C1

C ′1

V22

M31

M ′11

M32
e3

e′1

Figure 3.8: The perfect matching M31 ∪M ′11 ∪M32 ∪ {e3, e
′
1}.

In this case, we define M ′′ = M3. By Ineq. (3.45) and the fact M3 ∩M0 =
{e3}, we verify Ineq. (3.52). By Ineq. (3.50) and the fact M3∩M ′0 = {e′1}, we verify
Ineq. (3.53). This proves Claim 3.3.

Let M ′′ be a perfect matching of the graph F chosen subject to Ineqs. (3.52)
and (3.53). By Claim 3.1, we can suppose that the graph H ′′ = F −M ′′ consists
of the factor-critical components C ′′1 and C ′′2 such that

(3.57)
⌈ n

4

⌉
+ 1 ≤ |C ′′1 | ≤ |C ′′2 |.

Claim 3.4. We have V (C ′′1 ) ⊆ V22.

By Lemma 3.10 and Ineq. (3.52), we obtain

(3.58) V (C ′′1 ) ⊂ V (C2).

On the other hand, we apply Lemma 3.10 by replacing the triple (H, M, M ′) in its
statement by the triple (H ′, M ′0, M

′′). Let us check the conditions of Lemma 3.10
one by one. First, from the definition H ′ = (H ∪M0) −M ′0, the graph H ′ has
minimum degree δ(H) ≥ dn/4e, consists of factor-critical components C ′1 and C ′2
with |C ′1| ≤ |C ′2|, and has no intersection with the perfect matching M ′0. Second,
from definition, the graph

(H ′ ∪M ′0)−M ′′ = F −M ′′ = H ′′
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consists of factor-critical components C ′′1 and C ′′2 with |C ′′1 | ≤ |C ′′2 |. Therefore, by
Lemma 3.10 and Ineq. (3.53), we obtain

(3.59) V (C ′′1 ) ⊂ V (C ′2).

Combining Relations (3.58) and (3.59), we find

V (C ′′1 ) ⊆ V (C2) ∩ V (C ′2) = V22.

This proves Claim 3.4.

By Claim 3.4, the vertex set V22 is partitioned into two parts as

V22 = V (C ′′1 ) ∪W,

where the vertex set W is defined by the above decomposition. Note that all the
orders c2, |C ′1|, and |C ′′1 | are odd. From definition, we find the order

|W | = c2 − |C ′1| − |C ′′1 |

is odd, which implies that W 6= ∅. By Relation (3.6), we have

EH(W, C ′1) ⊆ ∂C2
(C ′1) ⊆ M ′0.

Similarly, we have
EH(W, C ′′1 ) ⊆ ∂C2

(C ′′1 ) ⊆ M ′′.

By the above two relations, we find that every vertex in the set W has at most two
neighbors outside W in the component C2. By Ineq. (3.12), every vertex in W has
degree at least dn/4e − 2. It follows that |W | ≥ dn/4e − 1. By Ineq. (3.57), we
infer that

(3.60) |V22| = |C ′′1 |+ |W | ≥
(n

4
+ 1
)

+
(n

4
− 1
)

=
n

2
,

contradicting Ineq. (3.48).

This completes the proof of Theorem 3.11.

In Theorem 3.11, both the integer Dn and the bound dn/4e are sharp.

Sharpness of Dn. When n/2 is odd, consider the disjoint union of two cliques of
order n/2. When n/2 is even, consider the graph obtained from the disjoint union
of cliques of orders (n/2− 1) and (n/2 + 1) by deleting a Hamiltonian cycle in the
larger clique.

Sharpness of dn/4e. In virtue of Theorem 3.11, it suffices to clarify the existence
of a {Dn, Dn + 1}-regular graph of order n having exactly dn/4e disjoint perfect
matchings. Let K be the complete bipartite graph with part orders |A| = n/2− 1
and |B| = n/2 + 1. When n/2 is odd, such a qualified graph can be obtained
from K by adding a perfect matching that covers the vertex set V (B). Otherwise
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n/2 is even. Let M be a maximal matching of the graph K. The graph obtained
from the graph K −M by adding a minimal edge set that covers the vertex set
V (M)− V (A) is qualified.

From Theorems 2.6 and 3.11, one may see the following result.

Theorem 3.12. Let n ≥ 34 be an even integer, and let D ≥ Dn. Then ev-
ery {D, D + 1}-regular graph of order n contains (D − dn/4e+ 1) disjoint perfect
matchings.

4. CONCLUDING REMARKS

Csaba et al.’s result is a breakthrough to the 1-factorization conjecture. Since
any Hamilton cycle decomposes to a pair of edge-disjoint perfect matchings, the
maximum number of edge-disjoint Hamilton cycles relates closely to the DPM prob-
lem. We remark some main relations between Csaba et al.’s results and Theorems
3.11 and 3.12.

1. The frame of Csaba et al.’s work has a global assumption, that is the suffi-
ciently largeness of the graph order n. No clue from [5] shows how large the
order n could be. In comparison, the lower bound of graph order is 34 in
Theorems 3.11 and 3.12.

2. Even one is restricted to sufficiently large n only, Csaba et al.’s results do
not imply Theorem 3.11. Csaba et al. showed that any graph of order n
with minimum degree δ ≥ n/2 contains at least N = regeven(n, δ)/2 edge-
disjoint Hamilton cycles, where regeven(n, δ) denotes the degree of the largest
even-regular spanning subgraph one can guarantee in a graph of order n with
minimum degree δ. Such a graph has at least 2N DPMs. Concentrating on
the DPM problem, it is still unclear that whether there is a graph with more
than 2N DPMs.

As to {Dn, Dn + 1}-regular graphs, this vague situation becomes completely
clear by the sharpness of Theorem 3.11. In particular, the sharp bound dn/4e
in Theorem 3.11 implies the fact that the maximum number of DPMs could
be an odd integer, and thereby at least (2N + 1) DPMs.

3. Yet another difference is that Csaba et al.’s result requires every vertex has
degree at least n/2, while Theorem 3.11 allows the minimum degree to be
n/2− 1.
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