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CHORDAL, INTERVAL, AND CIRCULAR-ARC
PRODUCT GRAPHS

Tatiana Romina Hartinger

For each of the four standard products of graphs, namely the Cartesian, the
strong, the direct, and the lexicographic product, we characterize when a
nontrivial product of two graphs is chordal, interval, or circular-arc, respec-
tively.

1. INTRODUCTION

A graph G is chordal if every cycle of length at least 4 in G has a chord,
interval if it is the intersection graph of a family of closed intervals on the real line,
and circular-arc if it is the intersection graph of a set of closed arcs on a circle. The
classes of chordal, interval, and circular-arc graphs are well known and well studied
in the literature. Every interval graph is both a chordal and a circular-arc graph;
both inclusions are proper. Chordal graphs and interval graphs are subclasses of
the class of perfect graphs. For more information on these graph classes we refer
the reader to [7, 14, 5, 8, 2, 15], for example.

In this paper we consider the four standard graph products: the Cartesian
product, the strong product, the direct product, and the lexicographic product. For
each of these four products, we completely characterize when a nontrivial product
of two graphs G and H is chordal, interval, or circular-arc, respectively. While
the characterizations for chordal and interval graphs are rather straightforward
and can be proved directly, the characterizations of circular-arc product graphs
are more involved and are derived using characterizations of 1-perfectly orientable
product graphs (for each of the four standard products) due to HARTINGER and
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MILANIC [11]. A graph is said to be 1-perfectly orientable if it admits an orientation
such that the out-neighborhood of every vertex induces a tournament. As shown by
URRUTIA and GAVRIL [22] and by SKRIEN [21], respectively, the class of 1-perfectly
orientable graphs generalizes both chordal graphs and circular-arc graphs.

Product graphs within various graph classes have been considered in several
papers; however, complete characterizations of graph theoretic properties within all
four standard products are often difficult to obtain. RAVINDRA and PARTHASARA-
THY [20] characterized Cartesian, direct, and lexicographic perfect product graphs;
the Cartesian case was also studied further by DE WERRA and HERTZ [4]. There
is no known characterization of perfect strong product graphs; partial character-
izations and sufficient conditions were obtained by RAVINDRA [19] (see also [1]).
Characterizations of line graphs and total graphs for various products were given by
RAO [17] and by RAO and VARTAK [18], of modulo m well covered lexicographic
product graphs by ORLOVICH [16], and of uniquely pairable Cartesian product
graphs by CHE [3]. The results of this paper contribute to the knowledge of char-
acterizations of graph classes within graphs decomposable with respect to one the
four standard graph products, by adding chordal, interval, and circular-arc graphs
to the list.

The paper is organized as follows. Section 2 includes the basic definitions, no-
tation, and preliminaries on 1-perfectly orientable product graphs and on circular-
arc graphs that will be used in some of the proofs. In Sections 3, 4, 5, and 6 we
deal, respectively, with Cartesian product graphs, lexicographic product graphs,
direct product graphs, and strong product graphs, and state and prove the cor-
responding characterizations of chordal, interval, and circular-arc graphs decom-
posable with respect to the considered product. The corresponding theorems are
Theorems 11, 13, 15, and 18, respectively.

2. PRELIMINARIES

All graphs considered in this paper are finite, simple, and undirected. The
neighborhood of a vertex v in a graph G is the set of all vertices adjacent to v
and will be denoted by Ng(v) (or simply by N(v) if the graph is clear from the
context). The degree of v is the size of its neighborhood. A leaf in a graph is
a vertex of degree 1. The closed neighborhood of v in G is the set Ng(v) U {v},
denoted by N¢g[v] (or simply by N[v] if the graph is clear from the context). For a
set S C V(QG), the subgraph of G induced by S is the graph, denoted by G[S], with
vertex set S and edge set {uv : u € S,v € S;uv € E(G)}.

Given two graphs G and H, their disjoint union is the graph G + H with
vertex set V(G) U V(H) (disjoint union) and edge set E(G) U E(H). We write
2G for G + G. The join of two graphs G and H is the graph denoted by G * H
and obtained from the disjoint union of G and H by adding to it all edges joining
vertex of G with a vertex of H. Given two graphs G and H and a vertex v of G, the
substitution of v in G for H consists in replacing v with H and making each vertex
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of H adjacent to every vertex in Ng(v) in the new graph. Two distinct vertices
u and v in a graph G are said to be true twins if Ng[u] = Ng[v]. The operation
of true twin addition to a graph G is defined as adding a new vertex w to G and
making it adjacent to some vertex v of G and all its neighbors. We say that a graph
G is true-twin-free if no pair of vertices of G are true twins. A vertex v in a graph
G is simplicial if its neighborhood forms a clique.

A cligue (resp., independent set) in a graph G is a set of pairwise adjacent
(resp., non-adjacent) vertices of G. The complement of a graph G is the graph G
with the same vertex set as GG in which two distinct vertices are adjacent if and only
if they are not adjacent in G. The fact that two graphs G and H are isomorphic to
each other will be denoted by G = H. Given a family F of graphs, we say that a
graph is F-free if it has no induced subgraph isomorphic to a graph of F. K,,, C,,
and P,, denote the n-vertex complete graph, cycle, and path, respectively. The claw
is the complete bipartite graph K4 3. A graph G is bipartite if its vertex set can be
partitioned into two independent sets, and co-bipartite if it is the complement of a
bipartite graph. For graph theoretic notions not defined here, see, e.g. [23].

We will recall the definitions of the four graph products studied in the re-
spective sections (Sec. 3-6). For each of the four considered products, we say that
the product of two graphs is nontrivial if both factors have at least 2 vertices. For
further details regarding product graphs and their properties, we refer to [9, 13].

2.1. Characterizations of 1-perfectly orientable product graphs

We now state the characterizations of 1-perfectly orientable graphs for each
of the four standard products due to HARTINGER and MILANIC. For a positive
integer k, we say that a k-linear forest is a disjoint union of paths each having
at most k vertices. In particular, 1-linear forests are exactly the edgeless graphs,
and 2-linear forests are exactly the graphs consisting only of isolated vertices and
isolated edges.

Theorem 1 ([11]). A nontrivial Cartesian product, GOH, of two graphs G and H
is 1-perfectly orientable if and only if one of the following conditions holds :

(i) G is edgeless and H is 1-perfectly orientable, or vice versa.
(ii) G and H are 2-linear forests.

Theorem 2 ([11]). A nontrivial lexicographic product, G[H], of two graphs G and
H is 1-perfectly orientable if and only if one of the following conditions holds:

(i) G is edgeless and H is 1-perfectly orientable.
(ii) G is 1-perfectly orientable and H is complete.
(iii) Every component of G is complete and H is co-bipartite.

A pseudoforest is a graph each component of which contains at most one
cycle.
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Theorem 3 ([11]). A nontrivial direct product, G x H, of two graphs G and H is
1-perfectly orientable if and only if one of the following conditions holds :

(i) G is a 1-linear forest and H is any graph, or vice versa.
(ii) G is a 2-linear forest and H is a pseudoforest, or vice versa.
(i) G is a 3-linear forest and H is a 4-linear forest, or vice versa.

A graph G is a co-chain graph if its vertex set can be partitioned into
two cliques, say X and Y, such that the vertices in X can be ordered as X =
{x1,...,2x)} so that for all 1 <7 < j < |X|, we have N[z;] C N[z;] (or, equiva-
lently, N(z;)NY C N(z;)NY). Such a pair (X,Y") will be referred to as a co-chain
partition of G. We say that a connected graph is 2-complete if it is not complete
and it is the union of two complete graphs. (Equivalently, if it can be obtained
from P3 by applying a sequence of true twin additions.)

Theorem 4 ([11]). A nontrivial strong product, G H, of two graphs G and H is
1-perfectly orientable if and only if one of the following conditions holds:

(i) Every component of G is complete and H is 1-perfectly orientable, or wvice
versa.

(ii) Ewvery component of G is 2-complete and every component of H is co-chain,
or vice versa.

Since every chordal, interval, or circular-arc graph is 1-perfectly orientable,
Theorems 1-4 give necessary conditions that every chordal, interval, resp. circular-
arc product graph must satisfy. We will also need the following characterization
of 1-perfectly orientable nontrivial strong products of two connected true-twin-free
graphs. Given a non-negative integer n > 0, the raft of order n is the graph R,
consisting of two disjoint cliques on n + 1 vertices each, say X = {xg,z1,...,2n}
and Y = {yo,y1,- - ., Yn} together with additional edges between X and Y such that
for every 0 <1,j < n, vertex z; is adjacent to vertex y; if and only if i +5 > n+1.
The cliques X and Y will be referred to as the parts of the raft.

Lemma 5 ([11]). A nontrivial strong product, G X H, of two true-twin-free con-
nected graphs G and H is 1-perfectly orientable if and only if one of them is iso-
morphic to Ps and the other one belongs to {Rn,n > 1} U{R, * K1,n > 0}.

2.2. Preliminaries on circular-arc graphs

To prove our results, we also need some properties of circular-arc graphs,
which we now summarize. Given a circular-arc graph G and a representation of
G with arcs around a circle, a set of arcs whose union equals the entire circle is
said to cover the circle. Notice that if the set of arcs in the representation does not
cover the circle, the corresponding circular-arc graph G is an interval graph. The
following characterization of when a disjoint union of two graphs is circular-arc is
easy to see and well known.
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Lemma 6. The disjoint union G + H of two graphs G and H is a circular-arc
graph if and only if both G and H are interval graphs.

The following fact is well known, see, e.g., [5].
Fact 7. For every n > 4, every circular-arc graph is Cy, + K1 -free.

While a characterization of the class of circular-arc graphs by forbidden in-
duced subgraphs remains an open problem, in a recent study the first forbidden
structure characterization of circular-arc graphs was obtained [6]. The class of co-
bipartite circular-arc graphs, however, has been characterized in many ways (see,
e.g., [15, Section 7] and [5]). In particular, we now state a characterization of co-
bipartite circular-arc graphs due to Hell and Huang and its consequence, which we
will use in the characterization of the circular-arc nontrivial lexicographic product
graphs in Section 4.

Let G be a co-bipartite graph with a bipartition {U, U’} of its vertex set into
two cliques. An edge of G connecting a vertex from U with a vertex of U’ is said to
be a crossing edge of G. A coloring of the crossing edges of G with colors red and
blue is said to be good (with respect to {U,U’}) if for every induced Cy in G, the
two crossing edges in it are of the opposite color. The following characterization of
co-bipartite circular-arc graphs is a reformulation of [12, Corollary 2.3].

Theorem 8 ([12]). Let G be a co-bipartite graph with a bipartition {U,U'} of its
vertex set into two cliques. Then G is a circular-arc graph if and only if it has a
good coloring.

Lemma 9. The class of co-bipartite circular-arc graphs is closed under join.

Proof. Let G and H be co-bipartite circular-arc graphs, with bipartitions of their
vertex sets into two cliques U; and Us, and Vi and Va, respectively. Then F =
G * H is co-bipartite as well, with bipartition into two cliques W7 = U; U V; and
Wy = Us U Vo, We will now show that I’ admits a good coloring. By Theorem 8
this will imply that the join of G and H is circular-arc.

By Theorem 8 there exists a good coloring of G and a good coloring of H.
Every crossing edge of F' is exactly of one of the following four types: a crossing
edge of G, a crossing edge of H, a Uy, Vh-edge, or a Us, Vi-edge. We construct a
good coloring of F' as follows: the crossing edges of G or of H are colored as in
(some fixed) good colorings of G, resp. H, every Uy, Va-edge is colored red, and
every Us, Vi-edge is colored blue. Since every induced Cy in F' either lies entirely
in one of G and H, or it is formed by two non-adjacent vertices in G and two
non-adjacent vertices in H, the so obtained coloring is indeed a good coloring of
F. O

In the following lemma we summarize the known characterizations of interval
(resp., circular-arc) forests. A caterpillar is a tree T such that the removal of
all degree-one vertices yields a path. A caterpillar forest is a disjoint union of
caterpillars. A bipartite claw is the graph obtained from the claw by subdividing
each of its edges exactly once.
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Lemma 10 ([14, 10]). Let F be a forest. Then, the following are equivalent:
1. F is an interval graph,
2. F is a circular-arc graph,
3. F is a caterpillar forest,
4. F contains no induced bipartite claw.

Proof. Let F be a forest. Clearly, if F' is interval then it is circular-arc. Now,
assume F' is circular-arc. Since F' contains no cycle, the set of arcs in any circular-
arc representation of F' cannot cover the circle, which implies that F' is interval.
The fact that F' is interval if and only if it contains no induced bipartite claw
follows from the characterization of interval graphs from [14]. The fact that F is
a caterpillar forest if and only if F' contains no induced bipartite claw was proved
in [10].

3. THE CARTESIAN PRODUCT

The Cartesian product GOH of two graphs G and H is the graph with vertex
set V(G) x V(H) in which two distinct vertices (u,v) and (u/,v") are adjacent if
and only if

(a) u=u' and v is adjacent to v' in H, or
(b) v =" and u is adjacent to v’ in G.

The Cartesian product of two graphs is commutative, in the sense that
GOH = HOG. In the following theorem we characterize when a nontrivial Carte-
sian product of two graphs GG and H is chordal, interval, or circular-arc, respectively.

Theorem 11. A nontrivial Cartesian product, GCOH, of two graphs G and H is:
e chordal if and only if G is edgeless and H is chordal, or vice versa,
e interval if and only if G is edgeless and H s interval, or vice versa,
e circular-arc if and only if one of the following conditions holds:
(i) G is edgeless and H s an interval graph, or vice versa,
(ii) G2 H = Ks.

Proof. First we characterize the chordal case. If G is edgeless and H is chordal,
then GOH is isomorphic to a disjoint union of |V(G)| copies of H. Thus, since
chordal graphs are closed under disjoint union, the stated condition is sufficient.
To show necessity, assume now that GLJH is chordal. Both graphs G and H must
be chordal since they are induced subgraphs of GLJH. Suppose that none of G
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and H is edgeless. In that case, GLOH contains an induced Ks[(OKs = Cy and is
therefore not chordal, a contradiction. Thus, at least one of G and H is edgeless.

Suppose now that GUH is interval. Both graphs, G and H, must be interval
since they are induced subgraphs of GOH. Since GLH is interval, it is chordal, and
thus, by the above, one of G and H, say GG, must be edgeless. Conversely, if G is
edgeless and H is interval, the Cartesian product GOH is isomorphic to a disjoint
union of copies of H, and therefore interval.

For the circular-arc case, it is clear that any of the conditions (z) and (i7)
is sufficient for GLJH to be a circular-arc graph. To prove necessity, suppose that
GUOH is circular-arc. If one of G and H, say G, is edgeless, then, since the product
is nontrivial, it is isomorphic to the disjoint union of |V (G)| > 2 copies of H. By
Lemma 6 and an inductive argument on the number of components of G, we infer
that H is interval. Suppose now that both G and H have an edge. Since GUH is
circular-arc, it is also 1-perfectly orientable. By Theorem 1, G and H are 2-linear
forests. If one of G and H contains at least 2 edges, then GUH contains 2C} as an
induced subgraph. This would imply the existence of an induced Cy + K7, contrary
to Fact 7. A similar reasoning shows that each of G and H has a unique component,
and thus each of them is isomorphic to K. [l

Since the Cartesian product of a graph G with an n-vertex edgeless graph is
isomorphic to the disjoint union of n copies of G, we obtain the following.

Corollary 12. Let Co, I, resp. CAg denote the sets of (isomorphism classes of)
nontrivial Cartesian product graphs that are chordal, interval, resp. circular-arc.

Then:

Co = {nG: G chordal,n > 2,|V(G)| > 2},
In = {nG : G interval,n > 2,|V(G }
(

| > 2},
CAg = {nG : G interval,n > 2,|V(G)| > 2} U{C4}.

>

4. THE LEXICOGRAPHIC PRODUCT

Given two graphs G and H, the lezicographic product of G and H, denoted
by G[H] (sometimes also by G o H) is the graph with vertex set V/(G) x V(H), in
which two distinct vertices (u,v) and (u’,v") are adjacent if and only if

(a) wu is adjacent to v/ in G, or
(b) u =" and v is adjacent to v’ in H.

Note that contrary to the other three products considered in this paper, the
lexicographic product is not commutative, that is, G[H] 2 H[G] in general.

The following theorem characterizes when a nontrivial lexicographic product
of two graphs G and H is chordal, interval, or circular-arc, respectively.
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Theorem 13. A nontrivial lexicographic product, G[H|, of two graphs G and H
18:

e chordal if and only if one of the following conditions holds:

(i) G is edgeless and H is chordal,
(ii) G s chordal and H is complete,

e interval if and only if one of the following conditions holds:

(i) G is edgeless and H is interval,

(ii) G is interval and H is complete,
e circular-arc if and only if one of the following conditions holds:

(i) G is edgeless and H is interval,
(ii) G is circular-arc and H is complete,

(iil) G is complete and H is co-bipartite circular-arc.

Proof. First, we characterize the chordal case. Suppose first that G[H] is chordal.
Then, both G and H are chordal since they are induced subgraphs of G[H]. If nei-
ther of conditions (i) or (ii) above holds, then G has an edge and H is not complete.
This implies that the product G[H]| contains an induced subgraph isomorphic to
K5[2K1] & C4, contrary to the fact that it is chordal. For the converse direction,
we will show that in both cases (i) and (ii), the product graph G[H] is chordal. If
G is edgeless and H is chordal, then the product G[H] is isomorphic to the disjoint
union of |V(G)| copies of H, and therefore chordal. If G is chordal and H is com-
plete, then the product G[H] is isomorphic to the graph obtained by repeatedly
substituting a vertex of G with a complete graph, and this operation is easily seen
to preserve chordality.

Now we analyze the interval case. Assume that G[H| is interval. Then, G
and H are interval. Since G[H] is interval, in particular G[H] is chordal, and thus
we obtain the desired result. Conversely, if G is edgeless and H interval, G[H] is
isomorphic to a disjoint union of copies of H, and if G is interval and H is complete,
G[H] can be obtained from a sequence of true twin additions to H. In both cases
the lexicographic product G[H] is interval.

Finally, we characterize the circular-arc case. Suppose first that G[H] is a
circular-arc graph. Then, both G and H are circular-arc graphs, since they are
induced subgraphs of G[H]. If G is edgeless, then the lexicographic product G[H]
is isomorphic to the Cartesian product GOH and by Theorem 11, condition (i)
holds. So we may assume that G has an edge. If H is complete then condition (i)
holds. Suppose now that G is not edgeless and that H is not complete. Since G[H]
is 1-perfectly orientable, one of conditions (i)—(iii) from Theorem 2 holds, and so we
infer that every component of G is complete and H is co-bipartite. Therefore, the
product G[H]| contains an induced subgraph isomorphic to K3[2K;] = Cy, from
which we infer that G is connected (that is, complete), since by Fact 7 G[H] is
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C4 + K;i-free. Therefore, condition (iii) holds. This completes the proof of the
forward direction.

For the converse direction, we will show that in any of the three cases, the
product graph G[H] is circular-arc. If G is edgeless and H interval, then the
lexicographic product G[H] is isomorphic to the disjoint union of |V(G)| copies
of H, and therefore circular-arc. If G is circular-arc and H is complete, then the
product G[H] is isomorphic to the graph obtained by repeatedly substituting a
vertex of G with a complete graph. Substituting a vertex v with a complete graph
is the same as adding a sequence of true twins to vertex v, an operation easily seen
to preserve the property of being a circular-arc graph. Finally, suppose that G
is complete and H is a co-bipartite circular-arc graph. In this case, an inductive
argument on the order of G together with the fact that the class of co-bipartite
circular-arc graphs is closed under join (by Lemma 9) shows that G[H] is a circular-
arc graph. O

Since the lexicographic product of an n-vertex edgeless graph with a graph G
is isomorphic to the disjoint union of n copies of GG, Theorem 13 has the following
consequence.

Corollary 14. Let Cpeyy Zies, resp. CApesr, denote the sets of (isomorphism classes
of) nontrivial lexicographic product graphs that are chordal, interval, resp. circular-
arc. Then:

Crex = {nG : G chordal,n > 2,|V(G)| > 2}
U{G[K,] : G chordal ,n >2,|V(G)| > 2},
Tper = {nG : G interval, n > 2, |V(G)| > 2}
U{G[K,] : G interval, n > 2, |V(G)| > 2},
CAper = {nG : G interval, n > 2, |V(G)| > 2}
U{G[K,] : G circular-are, n > 2, |[V(G)| > 2}
U {K,[G]:n > 2, G co-bipartite circular-arc, |V (G)| > 2} .

5. THE DIRECT PRODUCT

The direct product G x H of two graphs G and H (sometimes also called
tensor product, categorical product, or Kronecker product) is the graph with vertex
set V(G) x V(H) in which two distinct vertices (u,v) and (u/,v’) are adjacent if
and only if

(a) u is adjacent to v’ in G, and
(b) v is adjacent to v" in H.

The direct product of two graphs is commutative, in the sense that G x H =
H x G.
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In the next theorem we characterize when a nontrivial direct product of two
graphs G and H is chordal, interval, or circular-arc, respectively. A circular cater-
pillar (resp. odd circular caterpillar) is a connected graph such that the removal of
all degree-one vertices yields a cycle (resp. an odd cycle).

Theorem 15. A nontrivial direct product, G x H, of two graphs G and H is:

e chordal if and only if one of the following conditions holds:

(i) at least one of G and H s edgeless,

(ii) G is a 2-linear forest and H is a forest, or vice versa,
e interval if and only if one of the following conditions holds :

(i) at least one of G and H is edgeless,

(ii) G is a 2-linear forest and H is a caterpillar forest, or vice versa,
e circular-arc graph if and only if one of the following conditions holds :

(i) at least one of G and H s edgeless,
(ii) G is a 2-linear forest and H is a caterpillar forest, or vice versa,

(ill) G =2 Ky and H is an odd circular caterpillar, or vice versa.

Proof. We prove the three equivalences in the order as stated in the theorem.

First suppose that G x H is chordal, and that both G and H contain an
edge. We claim that G (and then, by symmetry, also H) is a forest. Indeed, if G
contained a cycle, then G x H would contain an induced subgraph isomorphic to
the direct product of Ko with a cycle, which contains an induced cycle of length at
least 4, contrary to the fact that G' x H is chordal. It remains to show that at least
one of G and H is a 2-linear forest. If this were not the case, then G x H would
contain an induced copy of P35 x P5, which contains an induced C4 and therefore is
not chordal, a contradiction.

For the converse direction, suppose that one of conditions (i) and (ii) holds.
If condition (i) holds, then G x H is edgeless and hence chordal. Assume now that
condition (ii) holds, say G is a 2-linear forest and H is a forest. In this case, for
each component T of H, the graphs K7 x T and K5 x T are acyclic, and hence so is
G x H, which is the disjoint union of such graphs. It follows that G x H is chordal.

Assume now that G x H is interval. Since G x H is interval, it is chordal,
and therefore one of the conditions for the chordal case holds. Therefore, necessity
of the stated conditions is achieved, unless (without loss of generality) G is a 2-
linear forest containing an edge and H is a forest that is not a caterpillar forest.
By Lemma 10, H contains an induced bipartite claw, and consequently G x H
contains an induced subgraph, say F, isomorphic to the direct product of K5 with
the bipartite claw. A direct inspection shows that F' is isomorphic to the disjoint
union of two copies of the bipartite claw, therefore by Lemma 10, F' is not interval,
and hence neither is G x H. This stablishes necessity. Let us now prove sufficiency.
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If one of G and H, say G, is edgeless, then G x H is edgeless and therefore interval.
Now, if G is a 2-linear forest and H is a caterpillar forest, then each component of
G x H is interval. This is because for each component K of H, the components
of G x H are either K1 x K or K9 x K, both caterpillar forests, and in particular
interval graphs (Lemma 10). The result now follows from the fact that interval
graphs are closed under disjoint union.

Finally, we consider the circular-arc case. Suppose first that G x H is a
circular-arc graph. Then it is 1-perfectly orientable, in particular, one of the con-
ditions (i)—(iii) from Theorem 3 holds. Condition (i) from that theorem coincides
with condition (i) in Theorem 15, so we may assume that both G and H contain
an edge.

Suppose that condition (ii) from Theorem 3 holds, say G is a 2-linear forest
and H is a pseudoforest (the other case is symmetric). We consider two cases
depending on whether H is acyclic or not.

Case 1: H is acyclic. We claim that in this case H is a caterpillar forest (and
hence condition (ii) holds in this case). If this is not the case, then, by Lemma 10,
H would contain an induced subgraph, say K, isomorphic to the bipartite claw,
but then G x H would contain Ky x K = 2K as induced subgraph, contradicting
the fact that 2K is not is a circular-arc graph (by Lemma 10). Hence, condition
(7i) of the proposition holds in this case.

Case 2 : H contains a component, say K, with a cycle. If K contains an
even cycle (say of length 2k > 4), then G x H contains 2Co, as induced subgraph,
contrary to the fact that it is a circular-arc graph (by Fact 7, Cox + K7 is not
circular-arc and therefore neither is 2C5;). Hence, K contains a (unique) odd
cycle, say C. If H has a vertex with no neighbors on C, then G x H contains an
induced subgraph isomorphic to Co + K7 where k > 3 is the length of C, contrary
to the fact that G x H is a circular-arc graph. It follows that every vertex not in C'
has a neighbor in C, and in particular, since H is a pseudoforest, that every vertex
not in C' has a unique neighbor in C' and that V(H) \ C is an independent set in
H. Consequently, H is an odd circular caterpillar. If G were not isomorphic to Ko,
the product G x H would contain an induced Co; + K7, contradicting Fact 7. We
conclude that G = K3 and hence condition (iii) applies in this case.

Finally, suppose that condition (iii) from Theorem 3 holds, say G is a 3-
linear forest and H is a 4-linear forest. To avoid the already considered condition
(ii) (from Theorem 3), we may assume that neither of G and H is a 2-linear forest.
But then G x H contains an induced copy of P3 x Ps, which is not a circular-arc
graph (since it contains an induced Cy + K1), a contradiction.

For the converse direction, suppose that one of the conditions (i)—(iii) holds.
If condition (i) holds, then G x H is edgeless and hence circular-arc. Assume now
that both G and H contain an edge and that condition (ii) holds, say G is a 2-linear
forest and H is a caterpillar forest. In this case, for each component K of H, the
graphs K7 x K and Ky x K are caterpillar forests, in particular, by Lemma 10,
they are interval graphs. It follows that G x H, which is the disjoint union of such
graphs, is also interval, and hence circular-arc. Finally, if condition (iii) holds, say
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G = K5 and H is an odd circular caterpillar, then G x H is a circular caterpillar.
It is easy to see that every circular caterpillar is circular-arc: we can obtain a
circular-arc representation of it by covering the circle with arcs corresponding to
vertices of the cycle, and placing a new arc corresponding to each leaf within the
arc corresponding to its unique neighbor in the cycle without intersecting any other
arc. O

Theorem 15 implies the following.

Corollary 16. Let Cx, Zx, resp. CAx, denote the sets of (isomorphism classes of)
nontrivial direct product graphs that are chordal, interval, resp. circular-arc. Then:

Cx ={mnK;:m>2n>2}
U{2mF 4+ n|V(F)|K; : F is a forest, m > 1, n >0, |[V(F)| > 2},
Iy ={mnK;:m>2 n>2}
U{2mF 4+ n|V(F)|K; : F is a caterpillar forest, m > 1, n >0, |V(F)| > 2},
CAx ={mnK;:m>2,n>2}
U{2mF 4+ n|V(F)|K; : F is a caterpillar forest, m > 1, n >0, |V(F)| > 2}

U {G: G is a circular caterpillar satisfying conditions (*)} ,
where conditions (x) are the following:

e the unique cycle C' of G is of length 4k 4+ 2 for some k > 1, and

e cvery two vertices at distance 2k + 1 on C are of the same degree in G.

Proof. The statement of the corollary follows immediately from the characteriza-
tions given by Theorem 15 and the following facts:

— If Gx H is a nontrivial direct product such that m = |V(G)| > 2,n = |[V(H)| > 2,
and at least one of the two factors is edgeless, then G x H is an edgeless graph
of order mn.

— If H is a bipartite graph, then Ky x H = 2G (see, e.g., [9, Exercise 8.14]). In
particular, if H is a forest (resp. caterpillar forest), then Ko x H = 2H.

— The direct product is distributive (up to isomorphism) with respect to the disjoint
union.

— Suppose that H is an odd circular caterpillar, with its unique cycle, say C, of
length 2k +1 for some k& > 1. Then, K3 x H is isomorphic to a circular caterpillar,
say G, the unique cycle of which, say C’, has length 2(2k+1) = 4k +2. Moreover,
every vertex v of C' corresponds to a pair of vertices v’,v” of C” at distance 2k +1
in C’, such that dg(v') = dg(v”) = dy(v).
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6. THE STRONG PRODUCT

In this final section we consider the strong product and we characterize when
a nontrivial strong product of two graphs G and H is chordal, interval, or circular-
arc, respectively. The strong product G X H of graphs G and H is the graph with
vertex set V(G) x V (H) in which two distinct vertices (u,v) and (v, v") are adjacent
if and only if

(a) wu is adjacent to v’ in G and v = v, or
(b) u =" and v is adjacent to v’ in H, or
(¢) u is adjacent to v’ in G and v is adjacent to v’ in H.

It is easy to see that the fact that one of the conditions (a), (b) and (c) holds
is equivalent to the pair of conditions u’ € Ng[u] and v € Ng[v], that is, that
(u',v") € Nglu] x Ng[v]. Consequently, for every two vertices u € V(G) and v €
V(H), we have Ngmg[(u,v)] = Ng[u] X Ng[v]. The strong product of two graphs
is commutative, in the sense that GX H = H X G.

To prove the characterization of circular-arc nontrivial strong product graphs,
we need one further lemma.

Lemma 17. Let G,G’, and H be graphs such that G’ is obtained from G by adding
a true twin. Then, GX H is circular-arc if and only if G' X H s circular-arc.

Proof. Note that G X H is an induced subgraph of G’ X H, therefore if G' X H
is circular-arc, then so is G X H. Suppose now that G X H is circular-arc, and
that G’ was obtained from G by adding to it a true twin z’ to a vertex x of
G. Note that for every v € V(H), we have Nogy[(z,v)] = Ng/[x] x Ng[v] and
Ngmpl(a',v)] = N/ [2'] x Ng[v]. Since Ng[2] = Ngr[2'], each vertex of the form
(2',v) for v € V(H) is a true twin in G’ X H of vertex (z,v). It follows that G' X H
can be obtained from GX H by a sequence of true twin additions. Since circular-arc
graphs are closed under true twin additions, G’ X H is circular-arc. O

We now state and prove the main result of this section. Recall that a graph
G is said to be co-chain if its vertex set can be partitioned into two cliques, say X
and Y, such that the vertices in X can be ordered as X = {1, ..., £C|X‘} so that for
all 1 <i < j <|X|, we have N[x;] C Nz;], and 2-complete if G can be obtained
from Ps by applying a sequence of true twin additions.

Theorem 18. A nontrivial strong product, GX H, of two graphs G and H is:

e chordal if and only if every component of G is complete and H is chordal, or
vice versa,

e interval if and only if every component of G is complete and H is interval,
or vice versa,



Chordal, interval, and circular-arc product graphs 545

o circular-arc if and only if one of the following conditions holds:

(i) G is complete and H is a circular-arc graph, or vice versa,
(ii) G is 2-complete and H is a connected co-chain graph, or vice versa,

(iil) each component of G is complete and H is interval, or vice versa.

Proof. Again, we prove the three equivalences in the order as stated in the theo-
rem.

Suppose first that GRH is chordal. Each graph G and H must also be chordal
since they are induced subgraphs of G X H. Suppose now that not all components
of G are complete and no all components of H are complete. Therefore there is a
component of G and a component of H each having an induced P;. But P3 X Ps
contains an induced 4-cycle, and is therefore not chordal, a contradiction. Thus,
all components of one of the factors must be complete.

To show sufficiency, let G1,..., Gy be the components of G, let Hy,..., Hy,
be the components of H, and suppose that G; is complete for : = 1,...,k, and H is
chordal. Note that the components of GX H are of the form G; X H; for 1 <i <k,
1 < j < L. Every component G; X H; of G X H is chordal since it is the result of
applying a sequence of true twin additions to a chordal graph, namely H;. (The
operation of adding a true twin is easily seen to preserve chordality.) Since each
component of GX H is chordal and chordal graphs are closed under disjoint union,
we conclude that G X H is chordal.

Suppose now that G X H is interval. Again, G and H must be interval since
they are induced subgraphs of the product. Necessity follows immediately from
the chordal case. To conclude the proof for the interval case, assume that every
component of G is complete and H is interval. In that case, the strong product
G X H can be obtained as disjoint union of graphs each of which is the result
of applying a sequence of true twin additions to the interval graph H. Since the
operations of disjoint union and true twin addition preserve the class of interval
graphs, we conclude that G K H is interval.

It remains to analyze the circular-arc case.

Necessity. Suppose that G X H is circular-arc. Then, G and H are induced
subgraphs of G X H and therefore circular-arc as well. Suppose that G and H are
both connected. Since G X H is 1-perfectly orientable, by Theorem 4, either G
is complete, or G is 2-complete and H is co-chain. So we are in cases (i) or (ii),
respectively.

Now, if not both factors are connected, the product G X H is disconnected.
Since G X H is circular-arc, by Lemma 6 we know that all its components are
interval. Moreover, since for every component GG; of G and every component H; of
H their product G; X H; is a component of G X H we infer that all components of
G are interval, and similarly for H. Therefore, G and H are interval. Since G X H
is a disjoint union of interval graphs, it is interval, and in particular chordal. Thus
we can apply the already stablished characterization for the chordal case, and so
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one of G and H must be a disjoint union of complete graphs. This concludes the
proof of the forward implication.

Sufficiency. We will show that if one of (i), (ii), or (iii) holds, then G X H is
circular-arc.

If condition (i) holds, say G is complete and H is circular-arc, then the
product G X H is the result of applying a sequence of true twin additions to a
circular-arc graph, namely H, and so it is circular-arc.

Suppose now that (ii) holds, say G is 2-complete and H is a connected co-
chain graph. By Lemma 17, we may assume that both factors are true-twin-free.
Therefore, G = P3 and, by Lemma 5 H € {K1} U{R,,,n > 1} U{R, * K1,n > 0}.
Notice first that PsK K7 =2 Pj is circular-arc. Since R, * K7 is an induced subgraph
of R, 42, it is enough to show that P; X R,, is circular-arc for all n > 1.

Let V(Ps) = {u1,uz2,us} where uy; and ug are the two leaves. Assuming the
notation as in the definition of rafts, let V(R,,) = XUY, where X = {xg,z1,...,2n}
and Y = {yo,y1,..,Yn} are the two parts of the raft. Vertices in P3 X R,, will be
said to be left, resp. right, depending on whether their second coordinate is in X
or in Y, respectively.

Fig. 1 shows a schematic representation of P3 X R,,. We partition the vertex
set of the graph in the following way: 6 singletons, namely {a;}, {a2}, {as}, {b1},
{b2}, {bs}, where a; = (u;,2z0) and b; = (ug—;,y0), and 6 cliques of size k each,
namely Ay, As, A3, By, Be, and Bs, defined as follows: for ¢ € {1,2,3}, we have
Ai = {ui} x (X \{=zo}) and B; = {us—i} x (Y \ {yo}). Bold lines between certain
pairs of sets mean that every possible edge between the two sets is present. If the
corresponding line is not bold, then only some of the edges between the two sets
are present.

A1 B3
1 2 n n 2 1
aq o 0 ° ° o 0 b3
Ag B2
1 2 n n 2 1
a9 e .- o e .- o o | by
A3 Bl
1 2 n n 2 1
as oo - o e - o0 b1

Figure 1. A schematic representation of P3 X R,,

To describe such edges, we introduce the following ordering of the vertices
within each of the 6 cliques Ai, Ao, A3, By, B2, B3 of size n. Note that for every
1 <i< j <n, we have that Ng, [z;] C Ng, [z;] and Ng, [v:] C Ng,[y;]. We order
the vertices in the 6 cliques accordingly, that is, for each clique of the form A;, the
linear ordering of its vertices is (u;, 1), . .., (u;, x,); for each clique of the form B;,
the linear ordering of its vertices is (u4—;,y1), ..., (Wa—i, yn). To keep the notation
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light, we will slightly abuse the notation, speaking of “vertex 4 in clique C” (for
ie{l,....,n} and C € {Ay, As, A3, By, B2, Bs}) when referring to the i-th vertex
in the linear ordering of C.

The edges of graph G can be now concisely described as follows. We will say
that two cliques K; and K; (where Ky is either A, By, {as}, or {b;} for some /)
are adjacent if |i — j| < 1. The closed neighborhood of a; is the union of the cliques
A; adjacent to a; and {a1} U {az} U {as}. The neighborhood of b; is the union of
the cliques B; adjacent to b; and {b1} U {ba} U {bs}. For each vertex i in a left
clique, say Aj, its closed neighborhood consists of the vertices a; in its adjacent
cliques {a;}, all the vertices belonging to some left clique adjacent to A;, and of
vertices {n — i+ 1,...,n} in each right clique adjacent to B,_;. For each vertex i
in a right clique, say B;, its closed neighborhood consists of the vertices b; in its
adjacent cliques {b;}, all vertices belonging to some right clique adjacent to B,
and of vertices {n —i+1,...,n} in each left clique adjacent to A4_;.

For any two adjacent clique A;, B;, the vertices of A; U B; induce a special
co-chain graph, called a semiraft. Given a non-negative integer n > 0, the semiraft
of order n is the graph S,, consisting of two disjoint cliques on n vertices each, say
X =Az1,...,zp} and Y = {y1, ..., yn} together with additional edges between X
and Y such that for every 1 < i,j < n, vertex x; is adjacent to vertex y; if and
only if i + 7 > n.

As shown by the interval representation given in Fig. 2, every semiraft is an
interval graph.

i §A—‘—v—\
By
nx\ 1 A L
—_ E ‘\‘\‘\
=l ™2 , A
n—24
ne2N Y ——— o
: na T L
B L L ng
3 e |n—2 — AT
2 \Xn—l ERRERE
1 &TL ‘\‘\‘\ 35
clique clique \_fﬁ

Figure 2. The semiraft S, and its interval representation.

Suppose first that n = 1. A circular-arc representation of P3; X Ry is depicted
in Fig. 3. (The rectangles P and @ also depicted in Fig. 3 are not part of the
representation, they will be used later on in the proof.)

Suppose now that n > 1. We will give a circular-arc representation of PsX R,,
similar to that of P3 X R; shown in Fig. 3, combined with the interval repre-
sentations of semirafts represented by Fig. 2. The circular-arc representation
of P3 X R, is the same as in Fig. 3, but this time instead of each clique C €
{A;, As, A3, By, B2, B3} being represented by a single arc, it will consist of n arcs.
If we were to “zoom in” at the rectangles marked as P and () in Fig. 3 to see how
the arcs representing the four cliques interact, then we would see the representations
shown in Fig. 4 and 5 below.
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P

as

Figure 3. A circular-arc representation of Ps X R;.

na, = (u2,an

la, = (u1,21) ———
Ay = (u2,01) ———
24, = (u1,22) ———+T
24, = (u2, T2 ) ———T1——
3a; = (u1, 23) ——t—7
34, = (U2, 23) ————1
Loty
[ |
P by
n—24 = ulyzn,—Zg T T T 1
n—24, = “277’"*% T T T l
n—1la = ulvznflﬂ T T T |
n—1a, = U2, Tn—1) T —
nA; = “hmﬂﬁ T T T T T |
T T T T T

Figure 5. Intersection of cliques Az, A3, B, and Bs.

np, = Euz yn;

npy = (U1, Yn
= (u2,Yn—-1
=(u1,Yn—1
= (u2,yn—2
= (u1,Yn-2
u27y3;
U1, Y3
u2, Y2
By = (U1,92
By = (u2,y1
By = (u1,y1

n—2p,
n—2p;
n—1p,
n—1p
np, :%
npg, =
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This gives a circular-arc representation of the graph P; X R,,. This implies
that if G is 2-complete and H is co-chain, the strong product GX H is circular-arc,
concluding this part of the proof.

Finally, if condition (iii) holds, say each component of G is complete and H
is interval, then each component of the strong product, G; X H}, is interval, since it
can be obtained by applying a sequence of true twin additions to an interval graph,
Hj. It follows from Lemma 6 that G X H is circular-arc. O

HARTINGER and MILANIC showed in [11] that for each n > 1, the graph
P; X R, is 1-perfectly orientable. Theorem 18 (and its proof) imply that for each
n > 1, the graph P; X R,, is circular-arc. Since the class of circular-arc graphs is a
subclass of the class of 1-perfectly orientable graphs, this gives an alternative proof
of the fact that graphs of the form Ps X R,, are 1-perfectly orientable.

Since the strong product is distributive (up to isomorphism) with respect to
the disjoint union, Theorem 18 implies the following.

Corollary 19. Let Cy, I, resp. CAg, denote the sets of (isomorphism classes of)
nontrivial direct product graphs that are chordal, interval, resp. circular-arc. Then:

k
{ ~+(GREK,,): G chorda,
i=1 k

V(G)|>2, k>1,n >1Vi=1,. kZmz2},

) i=1
{ —|— (GR K,,) : G interval,

k
| (@) >2, k>1, ni21w:1,...,k,2ni22},

CAx ={GX K, : G circular-arc, n > 2, |V(G)| > 2}U

{GX H : G 2-complete, H connected and co-chain, |V (H)| > 2}U
k

{ —|—(G X K,,): G circular-are,
i=1 &
V@) 22 k=1 m > 1¥i=1,.. .k zniy},
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