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DISCRETE HERMITE-HADAMARD INEQUALITY

AND ITS APPLICATIONS

Aykut Arslan, Ferhan M. Atıcı

We state and prove the Hermite-Hadamard inequality for a function defined
on a time scale, which has all the points as isolated. We illustrate our result
with various examples.

1. INTRODUCTION

The Hermite-Hadamard inequality [7, 8] states that if f : I → R is a convex
function, then the following inequality is satisfied:

f
(
a+ b

2

)
≤ 1

b− a

(∫ b

a

f(t)dt

)
≤ f (a) + f (b)

2
,

where a, b ∈ I and I is an interval in R.

In the theory of convex functions, the Hermite-Hadamard inequality plays an
important role. It has been used as a tool to obtain many nice results in integral
inequalities, approximation theory, optimization theory and numerical analysis. It
has been developed for different classes of convexity, such as quasi-convex functions,
log-convex, r -convex functions, p-functions [6], and recently for discrete functions
[1]. For the history of its developments in many directions, we refer the reader to a
paper by Mitrinović and Lacković [10]. For the generalizations and applications
in probability, we refer the reader to a paper by Merkle [9].

Mozyrska and Torres first introduced the convexity of a function defined
on a time scale (a nonempty closed subset of R) in their paper [11]. This short
paper can be considered as the establishment of the foundation of convex functions
on time scales.
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Here we introduce convexity by means of a midpoint condition of a function
defined on a time scale which has all the points as isolated. We state and prove
the Hermite-Hadamard inequality for such a class of functions. We call this new
inequality as discrete Hermite-Hadamard inequality.

The paper is organized as follows: In Section 2, we define a convex real
valued function on a discrete time scale T which time points may not be uniformly
distributed on a time line. We state the midpoint condition for a function defined
on T. We then prove four equivalent statements for convex functions on T. Section
3 starts with the proof of one kind of a substitution rule for integrals on any
time scale. Then with the use of the substitution rules we prove the Hermite-
Hadamard inequality for convex functions defined on T. Three corollaries follow
the main result of the paper. In the third corollary, we give an alternate proof to
the Hermite-Hadamard inequality for functions defined on the set of real numbers
R. Last section of the paper is devoted to some interesting examples of the Hermite-
Hadamard inequality. We close the paper with two remarks for the future direction
of the research in this area.

2. PRELIMINARIES

Let T = {0 = t0, t1, t2, t3, ...} be the set of positive real numbers such that
ti < tj for i < j. We assume that |T| = ℵ0. We then define the operators σ(ti) =
ti+1, µ(ti) = σ(ti) − ti, ρ(ti) = ti−1, and ν(ti) = ti − ρ(ti) for ti ∈ T, which are
known as the forward jump, the forward graininess, the backward jump, and the
backward graininess operators, respectively. The time scale T can be considered as
a discrete time scale. If T is the set of integers (i.e. T = Z), then σ(t) = t + 1,
µ(t) = 1, ρ(t) = t− 1 and ν(t) = 1, for all t ∈ T.

Definition 1. Let f be a real valued function defined on T. Then the ∆-derivative

and the ∇-derivative of f are defined, respectively, as

f∆(t) =
f(σ(t))− f(t)

µ(t)
, f∇(t) =

f(t)− f(ρ(t))

ν(t)
,

where t ∈ T. We define a second order derivative as f∆∆ := (f∆)∆. The ∆-integral

and the ∇-integral of f are defined as

∫ b

a

f(τ)∆τ =
∑

s∈[a,b)∩T

f(s)µ(s),

∫ b

a

f(τ)∇τ =
∑

s∈(a,b]∩T

f(s)ν(s),

respectively, where a, b ∈ T.

We also use the notation Tκ which is defined as

T
κ =

{
T\(ρ(supT), supT], supT < ∞

T, supT = ∞.
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For further reading on time scales, we refer the reader to an excellent book on the
analysis of time scales [2].

Throughout this study, we focus on the discrete time scales. Let T be any
discrete time scale and a, b ∈ T with a < b. [a, b]T means [a, b] ∩ T. We define

T[a,b] =
{
t | t = b− u

b− a
for u ∈ [a, b]T

}
.

Note that T[a,b] ⊂ [0, 1]. We also want to point out that there exists a bijective
(one-to-one and onto) map between [a, b]T and T[a,b].

Definition 2. f : T → R is called convex on T if for every x, y ∈ T with x < y,
the following inequality

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

is satisfied for all λ ∈ T[x,y].

Definition 3. We define the midpoint of a and b as the nth element in a finite

time scale [a, b]T with cardinality 2n− 1.

For the notation, we denote the midpoint of a and b by m[a,b] in [a, b]T, and the
corresponding midpoint of 0 and 1 by m[0,1] in T[a,b]. If T = Z, then Definition

3 reduces to the standard definition of midpoint on Z, namely m[a,b] =
a+ b

2
and

m[0,1] =
1

2
.

Definition 4. f : T → R satisfies the midpoint condition if

(1) f(m[a,b]) ≤ m[0,1]f(a) + (1−m[0,1])f(b),

for every a, b ∈ T with the cardinality of [a, b]T an odd number.

Remark 1. If we want to be more precise for the number m[0,1] in (1), then we can

write it as m[0,1] =
b−m[a,b]

b− a
. Note that if T = Z, then the inequality (1) becomes

f

(
a+ b

2

)
≤

f(a) + f(b)

2
, as stated in [1].

The following two theorems are crucial in the proof of the next theorem about
some equivalent criteria of convexity for real valued functions defined on T.

Theorem 5 (Taylor’s Theorem [2]). Let n ∈ N. Suppose that f is n-times diffe-

rentiable on Tκn−1

. Let α ∈ Tκn−1

, t ∈ T, and define the functions hk by

h0(r, s) ≡ 1 and hk+1(r, s) =

∫ r

s

hk(τ, s)∆τ for k ∈ N0.

Then we have

f(t) =
n−1∑

k=0

hk(t, α)f
∆k

(α) +

∫ ρn−1(t)

α

hn−1(t, σ(τ))f
∆n

(τ)∆τ.
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Theorem 6 (Mean Value Theorem [3]). Let f be a continuous function on [a, b]T
that is differentiable on [a, b)T. Then there exists ξ, τ ∈ [a, b)T such that

f∆(τ) ≤ f(b)− f(a)

b− a
≤ f∆(ξ).

Theorem 7. Let f : T → R. The following are equivalent:

(i) f is convex on T.

(ii) f satisfies the midpoint condition (1).

(iii) f∆2

(t) ≥ 0 for all t ∈ T.

(iv) f(x) ≥ f(y) + (x− y)f∆(y) for all x, y ∈ T with x > y,

(or f(x) ≥ f(y) + (x − y)f∇(y) for all x < y).

Proof. We prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (iii).

(i) ⇒ (ii): Let a, b ∈ T with a < b and [a, b]T have odd number of time points.
This implies that [a, b]T has a midpoint m[a,b]. Since f is convex, by choosing

λ =
b−m[a,b]

b− a
, we obtain

f(m[a,b]) ≤
(
b−m[a,b]

b− a

)
f(a) +

(
m[a,b] − a

b− a

)
f(b).

Then the midpoint condition (1) follows.

Next we prove that (ii) implies (iii). Let t ∈ T. Then σ(t) ∈ T. Applying the
midpoint condition at σ(t), we have

f(σ(t)) ≤ σ2(t)− σ(t)

σ2(t)− t
f(t) +

σ(t)− t

σ2(t)− t
f(σ2(t)).

Simple algebra implies that f∆2

(t) ≥ 0.

Next we prove that (iii) ⇒ (i). Let x, y ∈ T with x < y. Fix λ ∈ T[x,y].

Define x0 = λx + (1− λ)y. Using Taylor’s theorem (Theorem 5) at x0 we have

f(y) =

1∑

i=0

hi(y, x0)f
∆i

(x0) +

ρ2(y)∑

τ=x0

h1(y, σ(τ))f
∆2

(τ)(σ(τ) − τ).

Since f∆2

(τ) ≥ 0 on T and h1(y, σ(τ)) = y − σ(τ) ≥ 0 on T, we have

(2) f(y) ≥ f(x0) + (y − x0)f
∆(x0).

Using the Mean Value Theorem (Theorem 6) for f on [x, x0]T, there exists τ ∈
[x, x0)T such that

f(x0)− f(x)

x0 − x
≤ f∆(τ).
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Since f∆2

(t) ≥ 0 on T, we have f∆(τ) ≤ f∆(x0). Therefore we obtain

(3) f(x) ≥ f(x0) + (x− x0)f
∆(x0).

If we multiply the inequality (2) by 1−λ and the inequality (3) by λ and add them
side by side, we obtain

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ T[x,y].

Now we prove (i) ⇒ (iv). Given any x, y ∈ T such that y < x, by convexity of f
on [y, x], we have

f(σ(y)) ≤ σ(y)− y

x− y
f(x) +

x− σ(y)

x− y
f(y).

After rearranging the terms we have

f∆(y) ≤ f(x)− f(y)

x− y
.

This simplifies to f(x) ≥ f(y) + (x − y)f∆(y) for all x > y. The same argument
works to show that

f(x) ≥ f(y) + (x− y)f∇(y) for all x < y.

Finally we prove (iv) ⇒ (iii). Given f(x) ≥ f(y) + (x − y)f∆(y) for all x > y. By

choosing x = σ2(y), we obtain f∆2

(y) ≥ 0. Since y is arbitrary, (iii) follows.

This completes the proof.

3. HERMITE-HADAMARD INEQUALITY ON DISCRETE TIME

SCALES

In this section we prove discrete Hermite-Hadamard inequality for convex
functions defined on a discrete time scale T.

Theorem 8 (Substitution rule on time scales [5]). Assume ν : T → R is strictly

increasing and T̃ := ν(T) is a time scale. If f : T → R is a an rd-continuous

function and ν is differentiable with rd-continuous derivative, then if a, b ∈ T,

∫ b

a

f(t)ν∆(t)∆t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∆̃s

or ∫ b

a

f(t)ν∇(t)∇t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∇̃s.

Next we state and prove the substitution rule for a strictly decreasing function
ν : T → R, where T can now be any time scale, and not strictly isolated.
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Theorem 9. Assume ν : T → R be strictly decreasing and T̃ := ν (T) is a time

scale. If f : T → R is a continuous function and ν is differentiable with rd-

continuous derivative, then for a, b ∈ T,

∫ b

a

f(t)(−ν∆) (t)∆t =

∫ ν(a)

ν(b)

(
f ◦ ν−1

)
(s) ∇̃s

and ∫ b

a

f(t)(−ν∇) (t)∇t =

∫ ν(a)

ν(b)

(
f ◦ ν−1

)
(s) ∆̃s.

Proof. We prove the second equality. In the proof we use the basics of the dual
time scales introduced in [4] and the substitution method for a strictly increasing
function (Theorem 8). We start on the right side of the equality:

∫ ν(a)

ν(b)

(
f ◦ ν−1

)
(s) ∆̃s =

∫ −ν(b)

−ν(a)

(f ◦ ν−1)∗(s)∇s

=

∫ −ν(b)=(u−1
◦ν)(a)

−ν(a)=(u−1◦ν)(a)

f(u−1 ◦ ν)−1(s)∇s

=

∫ b

a

f(t)(u−1 ◦ ν)∇(t)∇t =

∫ b

a

f(t)(−ν)∇∇t,

where T represents the dual time scale, u(s) := −s and

f(ν−1)∗(s) = f(ν−1(−s)) = f((ν−1 ◦ u)(s)) = f((u−1 ◦ ν)−1(s)).

Remark 2. We note that the statement of Theorem 2.3 (ii) in the paper [5] is not correct

since T̃ was defined as −ν (T) for a strictly decreasing function ν.

We use the following notation in the proof of the next theorem: Let a, b ∈
T, a < b and the cardinality of [a, b]T be an odd number, say k + 1. Let t ∈ T[a,b].

Then there exists an n ∈ N ∪ {0} such that t = σn(0). We denote t̂ by σk−n(0).
Similarly, let u ∈ [a, b]T. Then there exists a ℓ ∈ N ∪ {0} such that u = σℓ(a). We

denote û by σk−ℓ(a). We also note that ˆ̂u = u and ˆ̂t = t.

Next we illustrate this new notation with an example.

Example 1. Let [a, b]T = {x0 = a, x1, x2, x3, x4, x5, x6 = b}, where xi < xi+1 for 0 ≤ i ≤ 5.
Then we have x̂i = σ6−i(a) = x6−i for 0 ≤ i ≤ 6. It follows that

T[a,b] = {t0 = 0, t1 =
b− x5

b− a
, t2 =

b− x4

b− a
, t3 =

b− x3

b− a
, t4 =

b− x2

b− a
, t5 =

b− x1

b− a
, t6 = 1}.

Hence we have t̂i = σ6−i(0) = t6−i for 0 ≤ i ≤ 6.

This implies that t̂i =
b− xi

b− a
. One simple algebra step implies that

xi = at̂i + (1− t̂i)b.

On the other hand, x̂i = x6−i = ati + (1− ti)b.
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Theorem 10. Suppose that f : T → R is a convex function on [a, b]T. Then

f(m[a,b]) ≤
1

b− a

∫

[a,b]T

k(t)f(t)∇(t)− 1

b− a

∫

[a,b]T

g∆(t)k(t)f(t)∆t

≤ m[0,1]f(a) + (1−m[0,1])f(b),

where g : [a, b]T → [a, b]T is defined by g(u) = û and k : [a, b]T → R+ is defined by

(4) k(x) :=





g(x)−m[a,b]

g(x)− x
, x 6= m[a,b]

1/2, x = m[a,b].

Proof. Fix t ∈ T[a,b]. Then there exists x ∈ [a, b]T such that x = ta+ (1 − t)b. As

we pointed out in Example 1, x̂ = t̂a+(1− t̂)b. Denote x̂ by y, i.e. y = t̂a+(1− t̂)b.
Note that m[a,b] = m[x,y] using the definition of the hat operator.

Let ξ : [a, b]T → T[a,b] be a linear function defined as ξ(u) =
b− u

b− a
. Hence we have

ξ(x) = t and ξ(y) = t̂. If x 6= m[a,b], then by convexity of f we have

(5) f(m[a,b]) ≤
y −m[a,b]

y − x
f(x) +

m[a,b] − x

y − x
f(y).

If x = m[a,b], then it reduces to x = y = m[a,b]. Clearly we have

(6) f(m[a,b]) =
1

2
f(x) +

1

2
f(y).

We combine (5) and (6) using the function k

f(m[a,b]) ≤ k(x)f(x) + k(y)f(y).

Next we integrate each side of the above inequality from 0 to 1 on T[a,b] and we
obtain

f(m[a,b])

∫

T[a,b]

∆̃t ≤
∫

T[a,b]

k(x)f(x)∆̃t+

∫

T[a,b]

k(y)f(y)∆̃t

=

∫

T[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t+

∫

T[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t.

Here we first claim that

(7)

∫

T[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t =
1

b− a

∫

[a,b]T

k(t)f(t)∇t.

Let’s define F := k · f. Then we have F (ξ−1(t)) = k(ξ−1(t))f(ξ−1(t)).

Next, we apply the substitution rule (Theorem 9) to the integral on the left
side of the equality in (7).

∫

T[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t =

∫

T[a,b]

F (ξ−1(t))∆̃t =

∫ b

a

F (t)
1

b − a
∇t.
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This finishes the proof of our first claim.

Next we claim that

(8)

∫

T[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t = − 1

b− a

∫

[a,b]T

g∆(t)k(t)f(t)∆t.

Before we prove the equality (8), we point out that the function g is a bijection and
g ≡ g−1 since g2 is an identity function. As a result of this, we have g(t̂a+(1−t̂)b) =
ta+ (1− t)b. This observation will help us to complete the proof of the claim.

By applying w(u) = ξ̂(u) to the integral on the left side of the equality (8), we have

∫

T[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t =

∫

T[a,b]

F (ξ−1(t̂))∆̃t

=

∫ 1

0

(F ◦w−1)(t)∆̃t = − 1

b− a

∫

[a,b]T

g∆(t)F (t)∆t,

where

w∆(u) =
w(σ(u))− w(u)

σ(u)− u
=

̂ξ(σ(u))− ξ̂(u)

σ(u)− u

=

b− σ̂(u)

b− a
− b− û

b− a

σ(u)− u
=

1

(a− b)

(σ̂(u)− û)

σ(u)− u
=

g∆(u)

a− b
≥ 0,

since σ̂(u) < û. This completes the proof of our second claim.

To prove the right side of the inequality, we construct the following inequali-
ties using convexity of f.

f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b),

f(y) ≤ b− y

b− a
f(a) +

y − a

b− a
f(b).

Next, we multiply both inequality by k(x) and k(y) respectively. We obtain

k(x)f(x) ≤ b− x

b− a
k(x)f(a) +

x− a

b− a
k(x)f(b),

k(y)f(y) ≤ b− y

b− a
k(y)f(a) +

y − a

b− a
k(y)f(b).

Simple algebra implies the following identities

b− x

b − a
k(x) +

b− y

b− a
k(y) =

b−m[a,b]

b− a
,

x− a

b − a
k(x) +

y − a

b− a
k(y) =

m[a,b] − a

b− a
.
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Recall that x and y both depend on t. We let t vary over T[a,b] and integrate each
side of the last two inequalities on T[a,b] and we add them side by side, we obtain

∫

T[a,b]

k(ν−1(t))f(ν−1(t))∆̃t+

∫

T[a,b]

k(ν−1(t̂))f(ν−1(t̂))∆̃t

≤ b−m[a,b]

b− a
f(a) +

m[a,b] − a

b− a
f(b) = m[0,1]f(a) + (1 −m[0,1])f(b),

where the last equality holds by means of Remark 1.

Corollary 1. Suppose that f : hZ → R is a convex function with h > 0, a, b ∈
hZ, a < b. Then

(9) f
(
a+ b

2

)
≤ 1

2(b− a)

[ ∫

[a,b]hZ

f(t)∆t+

∫

[a,b]hZ

f(t)∇t

]
≤ f (a) + f (b)

2
.

Proof. Here g and k simplify into g(x) = a+b−x and k(x) = 1/2 and g∆(x) = −1.
Hence we have the desired inequality.

When h = 1, we obtain the Hermite-Hadamard inequality on Z.

Corollary 2. [1] Suppose that f : Z → R is a convex function on [a, b]Z with

a, b ∈ Z, a < b, and a+ b an even number. Then

(10) f
(
a+ b

2

)
≤ 1

2(b− a)

[∫ b

a

f(t)∆t+

∫ b

a

f(t)∇t

]
≤ f (a) + f (b)

2
.

Next we give an alternate proof of the Hermite-Hadamard inequality on R

(continuous Hermite-Hadamard inequality) by using the main result of this paper.
For this purpose, we first state the following lemma without giving its proof.

Lemma 1. Let f : R → R be a convex function on R. Then for any h > 0, its
restriction to hZ is also a convex function.

Corollary 3. Let f be a real convex function on the finite interval [a, b] ⊂ R. Then
f satisfies the continuous Hermite-Hadamard inequality

f
(
a+ b

2

)
≤ 1

(b− a)

(∫ b

a

f(t)dt

)
≤ f(a) + f(b)

2
.

Proof. By restricting f to hZ we obtain the inequality (9). Since f is convex on
[a, b], it is continuous on (a, b), hence integrable on [a, b]. When h tends to zero,
the ∆−integral and ∇−integral converge to the Riemann integral of f on [a, b]. In
other words,

lim
h→0

∑

t∈[a,b)hZ

f(t)h =

∫ b

a

f(t)dt and lim
h→0

∑

t∈(a,b]hZ

f(t)h =

∫ b

a

f(t)dt.

Hence the result follows.
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4. APPLICATIONS

(i). Let f(t) = (1+h)t/h be a function on hZ for some positive real number h.

Since f∆2

(t) = f(t) ≥ 0, f satisfies Hermite-Hadamard inequality on the interval
[a, b]hZ, where a, b ∈ hZ.

(11) f
(
a+ b

2

)
≤ 1

2(b− a)

[∫

[a,b]hZ

f(t)∆t+

∫

[a,b]hZ

f(t)∇t

]
≤ f(a) + f(b)

2
,

where
∫

[a,b]hZ

f(t)∆t =
∑

t∈[a,b)hZ

(1 + h)t/hh = (1 + h)b/h − (1 + h)a/h,

∫

[a,b]hZ

f(t)∇t =
∑

t∈(a,b]hZ

(1 + h)t/hh = (1 + h)1+b/h − (1 + h)1+a/h.

Hence it follows that

(1 + h)
a+b
2h ≤ 1

2(b− a)

(
[(1 + h)b/h − (1 + h)a/h] + [(1 + h)1+b/h − (a+ h)1+a/h]

)

≤ (1 + h)a/h + (1 + h)b/h

2
.

Now, let x = f(a) and y = f(b), then the above inequality (11) simplifies into

(12)
√
xy ≤ 2 + h

h

[
y − x

f−1(y)− f−1(x)

]
≤ x+ y

2
,

for all x, y ∈ f(hZ).

Note that inequality (12) holds for all x, y ∈ f(hZ) for a given h > 0. Now we let
h vary and take the limit as h goes to zero. Then f(t) = (1 + h)t/h converges to
et and the inequality turns into the well-known geometric-logarithmic-arithmetic
mean inequality: √

xy ≤ y − x

ln y − ln x
≤ x+ y

2
,

for all x, y positive real numbers.

(ii). Let f : hN → R be defined as f(t) = 1
t for some positive real number

h. Since f∆2

(t) =
2

t(t+ h)(t+ 2h)
≥ 0, f is convex on hN. Hence the Hermite-

Hadamard inequality holds and we obtain

2

a+ b
≤ H(b, a)

b− a
− h

2ab
≤

1

a
+

1

b
2

,

where a, b ∈ hN and H(b, a) =

∫

[a,b]hZ

1

t
∆t.
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We take the limit as h goes to 0. Then we have

2

a+ b
≤ ln(b)− ln(a)

b− a
≤

1

a
+

1

b
2

,

for all a, b positive real numbers.

Theorem 11. Let T be a discrete time scale and f be function on T, not necessarily
convex, satisfying α ≤ f∆2

(t) ≤ β. Then we get

αU ≤
(

1

b− a

∫

[a,b]T

k(t)f(t)∇t− 1

b− a

∫

[a,b]T

g∆(t)k(t)f(t)∆t

)
− f(m[a,b]) ≤ βU

αV ≤ m[0,1]f(a) + (1−m[0,1])f(b)

−
(

1

b− a

∫

[a,b]T

k(t)f(t)∇t − 1

b− a

∫

[a,b]T

g∆(t)k(t)f(t)∆t

)
≤ βV,

where

U =
1

(b− a)

[∫

[a,b]T

k(t)h2(t)∇t−
∫

[a,b]T

k(t)g∆(t)h2(t)∆t

]
− h2(m[a,b]) and

V = m[0,1]h2(a) + (1−m[0,1])h2(b)

− 1

(b− a)

[ ∫

[a,b]T

k(t)h2(t)∇t−
∫

[a,b]T

k(t)g∆(t)h2(t)∆t

]
.

Proof. Let h2(t) be the Taylor monomial with s = 0. In other words it is a function
on T whose second ∆−derivative is 1. Taylor monomials are defined in Theorem
5. Let F (t) := f(t) − αh2(t) and G(t) := βh2(t) − f(t). Since α ≤ f∆2

(t) ≤ β

we have F∆2

(t) ≥ 0 and G∆2

(t) ≥ 0. Therefore F and G are convex. If we apply
the Hermite Hadamard inequality for both F and G, then we derive the desired
inequalities.

Corollary 4. If T = Z, then U =
(b− a)2 + 2

24
and V =

(b− a)2 − 1

12
.

Corollary 5. If T = qN, then

U =
1

q(1 + q)2(b− a)

[
q2
√
ab(b2 − a2) + 2n(q2 − 1)(ab)3/2 − 2(q2 + q)ab(b− a)

]
and

V =
1

q(1 + q)2(b− a)

[
q
√
ab(b2 − a2)− 2n(q2 − 1)(ab)3/2

]
.

The following two remarks will state some open problems for the researchers
who are interested in working in this area.

Remark 3. Midpoint condition plays an important role to prove the main result of this
paper. Even though the convexity of the function on any time scale has been defined in
[1, 11], it is still an open problem to define the midpoint condition for such a function.
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Remark 4. As it is pointed out in the paper [12], the Hermite-Hadamard inequality for
the function defined on a real interval can characterize the convexity of the function.
Again this can be done as another direction of the research for the class of functions we
consider in this paper.
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