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SIMPLE PARAMETRIZATION METHODS FOR
GENERATING ADOMIAN POLYNOMIALS

K. K. Kataria, P. Vellaisamy

In this paper, we discuss two simple parametrization methods for calculat-
ing Adomian polynomials for several nonlinear operators, which utilize the
orthogonality of functions e"®, where n is an integer. Some important prop-
erties of Adomian polynomials are also discussed and illustrated with exam-
ples. These methods require minimum computation, are easy to implement,
and are extended to multivariable case also. Examples of different forms of
nonlinearity, which includes the one involved in the Navier Stokes equation,
is considered. Explicit expression for the n-th order Adomian polynomials
are obtained in most of the examples.

1. INTRODUCTION

The Adomian decomposition method (ADM) (see ADOMIAN [1, 2, 3]) pro-
vides an analytical approximate solution for nonlinear functional equation in terms
of a rapidly converging series, without linearization, perturbation or discretization.
Consider a functional equation

(1) u=f+L(u) + N(u),

where L and N are respectively, linear and nonlinear operators and f is a known
function. In ADM, the solution u(z,t) of (1) is decomposed in the form of an
infinite series,

u(z,t) = Z Up(z,t).
n=0
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Further, the nonlinear function N(u) is assumed to admit the representation

N(u) = ZAn(uo,ul, ceyUp),
n=0

where A,,’s are n-th order Adomian polynomials. In the linear case, N(u) = u, 4,
simply reduces to u,,.

Adomian’s method is simple in principle, but involves tedious calculations
for obtaining Adomian polynomials. ADOMIAN [1] gave a method for determining
these Adomian polynomials, by parametrizing u(x,t) as

(2) U’)\(Iat) = Zun(xvt))\n
n=0
and assuming N (uy) to be analytic in A, which decomposes as
(3) N(u,\)=ZAn(u0,u1,...,un))\".
n=0

Hence, the Adomian polynomials A,, are given by

1 9"N(uy)

(4) Ap(ug, 1y Up) = T ann

, V' n € Np,
A=0

where N,,, = {n € NU{0} : n > m} and N denotes the set of positive integers.

RaAcH [12] suggested the following formula for determining Adomian polyno-
mials:

Ao(uo) = N(uo),

(5) An(UO,Ul,...,Un) = ZC’(k,n)N(k)(uo), VHENv
k=1

where

Wazwaz [14] suggested a new algorithm in which after separating Ay =
N(ug) from other terms of the Taylor series expansion of the nonlinear function
N (u), we collect all terms of the expansion obtained such that the sum of the
subscripts of the components of u(x,t) in each term is the same. The limitations
of this algorithm is that it is difficult to keep track of the terms after some time.
ZHU et al. [15] suggested another useful method, but it also involves tedious
calculations of n-th derivative to obtain A,,. Adomian polynomials can also be



170 K. K. Kataria, P. Vellaisamy

obtained recursively (see BIAZAR and SHAFIOF [6], DUAN [8], [9], [10]). However,
the disadvantage is that we do not have explicit form for A,’s.

In this paper, we develop a simple parametrization technique for calculat-
ing Adomian polynomials and discuss some of their important properties. Indeed,
we develop two new simple methods to generate Adomian polynomials using the
orthogonality of functions {e™* n € Z}. The first method determines these poly-
nomials explicitly, whereas the second method generates them recursively. The
newly developed techniques are more viable, require less computation and generate
Adomian polynomials in a fewer steps. Both the methods are extended to the case
of several variables. Different forms of nonlinearity are discussed as applications of
our methods.

2. ADOMIAN POLYNOMIALS AND PARAMETRIZATION
METHODS

We assume the following hypotheses (see CHERRUAULT and ADOMIAN [7]):

H1 : The series solution u = Zuk of (1) is absolutely convergent,
k=0

H?2 : The nonlinear function N(u) admits the representation

o0

(6) N(u) = ZN<k>(0)“k_T o Jul < oo

k=0

The assumption H2, is almost always satisfied in concrete physical problems.
By H1 and H2, we have as a generalization of Taylor series, the Adomian series
(see CHERRUAULT and ADOMIAN [7])

(7) NG =3 Apfuos - ug) = 32N (ug) L0
k=0

k=0

Note that (7) is a rearrangement of an absolutely convergent series (6). We
look at a more general form of parametrization than the one given in (2). We
consider the following parametrization of u(z,t) and its complex conjugate u(z, t):

(8) ux(z, t) = Zuk(x,t)fk(/\ and wy(x,t) Z (z,t) f¥(\)

where A\ is a real parameter and f is any real or complex valued function with
|f] < 1.

Note that for such a parametrization, series (8) is also absolutely convergent.
Now using (7) and (8), we have

(9) N(uy) = 3 N wo) N (e (Zuj (2,0)f )

k=0
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Since Z u;(z,t) f7()\) is absolutely convergent, by a rearrangement of terms
=1 -
in the right hand side of (9), we can write N(uy) as ZAkfk()\), where Ay’s are
k=0
Adomian polynomials. Hence,

(1) N(ux) = N(uo) + N (uo) (ur f(N) + uzf?(A) + )

(2) o
N 2!( )(ulf()\)+qu2()\)+._.)2

N(S;'(UO)(Ulf()\) +’U,2f2()\) + )3 T

— N(uo) + N (uo)ur fN) + (N<1><uo>u2 NG ) ) 20

3
+ (VO oy + N + N o) 8 ) 0+

= ZA/@(U(JJM, ) fRN).
k=0

Note that Ap’s are polynomials in ug, ug, ..., u, only. For a suitable choice
of f, we possibly can develop a convenient method to determine these Adomian
polynomials. One such method was given by Adomian himself where he chooses
f(A) = X and then taking n-th derivative on both sides of (10) obtained (4). In Sec-
tion 4, we choose f(\) = e** and develop two new methods to determine Adomian
polynomials.

3. SOME PROPERTIES OF ADOMIAN POLYNOMIALS

In this section, we discuss some important properties of Adomian polynomi-
als, which are very useful in many cases to obtain them without explicit calculations.
Indeed, a formal power series can be effectively used to obtain them

Let f and g be formal power series in = with f(z Zakx and g(x) =
i k=0
Zbkxk. Then,

k=0
g ZL’
(11) —m kg 0, (bk—z%ck 7)
and for any n € N, we have
0o k
n n 1 . .
(12) (@) =) dya®, do=af, dy = kao 2(3” —k+j)ajdi—,
— iz

provided ag is invertible.
Now we state and prove some general properties of Adomian polynomials.
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Theorem 1. Let A;,, As, ..., Am, be the Adomian polynomials of the nonlinear
operators N1, No, ..., Ny, respectively. Then the Adomian polynomials of

= apNy(u) are given by

m
An = ZakAknv Vne Ny
k=1
where the ay’s are scalars.

m

u) = H Ni(u) are given by

(13) Ap= > HAJk,VnENO

]nl J_n] 1
k;E€Ng

In particular, Adomian polynomials of N(u) = Ni(u)Na(u), from (13), are

Ap = A Ay .
k=0

(iii) N(u) = Ny(u)/Na(u) are given by Ag = A1,/As, and

T ( ZAQ,C nk),VneN.

(iv) N(u) = N{(u) for any p € N are giwen by Ag = A}~ and

An =

n

Z(kp —n+k)A, An—r, YVneN.
k=1

1
nAlO

Ay =

(v) N(u) = Ny (Na2(u)) are given by Ag = N1 (Asz,) and

n j

(14) Av= 3 N (4, H
Z?:ljkj:n Jj=1
kjEN()

, VnéeN.

Proof. (i) Directly follows from (4).
(ii) Note that Leibniz rule (see JOHNSON [11]) for higher derivatives of product of
m functions is given by

m (kj)
(15) S BOR0 . )= Y w][
Xty kj=n J=
k €Np

Using (4) and (15), the Adomian polynomials are

i 8”N1 ('U,)\)NQ(UA) . Nm(uA)

A (g, g,y ... uy) = - S

A=0
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m
1
:E E n! = E HAjkj,VTLENQ.
S kj=n =1 A=0 sm kj=n j=1
kj€No kj€Ng

ONFi

m

1 9% N;(ua)
k!

(iil) Follows directly from (3) and (11), whereas (iv) follows from (3) and (12).
(v) By using Faa di Bruno’s formula (see Jounson [11]) for generalized chain rule
for higher derivatives of composition of two functions,

n . kj
d” "k 1 (92"
Seolf®) = > g () T (T WneN,
Z?:l Jkj=n j=1
k;€Ng
we get from (4),
. i 8”N1 (NQ(UA))
An(UO, ULy .- - ,un) = ol 78)\” e
n ok 1 (10?Na(u !
n T L L kA ! O\
i1 dkj=n Jj=1 A=0
k;€Ng
nks noAN
= Y MY ) ]] 2 ¥neN.
i1 dkj=n j=1 7
k;€Ng
This completes the proof. (I

REMARK 1. ADOMIAN and RACH [4] proposed an algorithm for obtaining Adomian poly-
nomials of composite nonlinearity, whereas (14) gives an explicit formula. Also, Rach
formula (5) is a particular case of (14) for composed function N (uy).

4. TWO SIMPLE METHODS TO CALCULATE ADOMIAN
POLYNOMIALS

In this section, we give two new methods to calculate Adomian polynomials.
The basic idea is to avoid the tedious calculations of higher derivatives involved
in the existing methods. Let Z denote the set of all integers. Consider the set of
orthogonal functions {e?"®,n € Z}, which indeed forms a basis for the Hilbert space
L?|—m, ] with inner product

< f,g>= f(:v)@d:v.

Specifically, we use the fact

(16) < einA7 eimA >= ein)\efim)\ d\ = O, 1f m 7£ n,
2w, ifm=n.
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We choose f(\) = e in (8), so that
(17) ’[,L)\(I,t) = Zuk(xat)e“d\

and its complex conjugate, u(z,t) is parametrized as

o0

= Z Ty, (z, t)e™ .

k=0

REMARK 2. Note that uy in (17), as a function of )\, is a series of periodic functions
each of period 27w and therefore N(uy) is also 2m-periodic. The absolute convergence of
(e o)

Uy = Z ure™ and N (uy) follow from hypotheses H1 and H2. Also, for parametrization

(17, Adomian polynomials for the nonlinear function N(u) turn out to be the Fourier

coefficients of the periodic function N (uy).

Theorem 2. Let uy = Zukeik’\ be a parametrized representation of u(x,t), where
k=0

A is a real parameter and N be the nonlinear function defined in (1). Then,

N (uy) e ™ dA = / N(Zukeik)‘>ei"A dX, V n e Ny.

- - k=0

s

Proof. From the assumption H1, Z |uj| = M < oo. Therefore, from (7), the k-th
j=1
term in N (uy) is

k k k
|N()u0 (Zuem> <Z|U3|) _'N(;'(uo) M

Since (7) is an absolutely convergent series with infinite radius of convergence,
N(k)(uo)
k!

k

‘N()uo

MP converges. By Weierstrass M-test, the series

3 X w) (Zu A)

k=0

converges uniformly. Hence, using (7), we get for n € Ny

us

) ke
N(’U,)\) —in\ d\ = / N 7-L() <Z u;j elj)\ + Z Ua ele) efzn)\ d\
- T k=0 j=n+1

n

T N(k) U() ijA —inA
= "}E)HOOZ/_ (Zu]e e dA, (by (16))
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T 00 (k) n B k . T n ) .
= / Z NT(UO)<ZUJ_6UA _ UO) efzn)\ d\ = / N(Zukezk)\>eln)\ d)\,
_ =

120 i - k=0
where the last step follows from (7). This completes the proof. O
Using Theorem 2, we propose two methods to calculate Adomian polynomials.
4.1. First Method
Let uy = iukeik)‘ and N(uy) = iAke“”, where Ay’s are Adomian poly-
k=0

k=0
nomials. Then

(18) / N<Zukeik)‘)ei"A d)\ = / ZAkeik)‘efm)‘ d\ =27A,.
- k=0 T k=0

The last equality in (18) follows due to the uniform convergence of the series

Z Apetk=mXA  Hence,

k=0
17 = kA | —inA
(19) Ap(ug,ugy ... up) = > 7WN Zuke e dX
k=0
_ 17 - ik | —inA
= _WN<kZ_Ouke e ™ d\, V n e Ny,

by Theorem 2.
4.2. Second Method

BIAZAR and SHAFIOF [6] proposed a recursive method to calculate Adomian
polynomials, in which only one time differentiation is required. Some useful re-
cursive relationships among the index vectors of the Adomian polynomials were
obtained by DUAN [8]. These relationships within index vectors easily generates
Adomian polynomials on using Rach formula (5).

Here, we propose a new recursive method for calculating Adomian polynomi-
als by using a different approach. Define an operator T by

(20) T(An(uo’ Uy - - ’u")) = % An(U07 Uiy 7'Un)€_i)\ dA,

where vy = ug, + (k + Dug e and 7y, = U + (k + 1)Tpy1e™, k€ {0,1,2,...,n}.

Proposition 1. Let u = Zuk be the solution of (1) and N be a nonlinear oper-
k=0

ator. Then, operator T given by (20) satisfies the following properties.
(i) T(ur) = (k + Dugsa,
(il) T (N® (ug)) = ug N+ (uy),
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(iii) T (g, Uy - - .ukm) = g, T (Upop Uk - - .ukm) + Up, Uy - - - uka(ukl),
(iv) T (g, wky - - - u,, N*®) (u0)) = U, Uk - - - Uk, T (N(k) (uo))
+ T (g, Uk - - - up,, )N (ug),
(v) T(ctpy gy - - - gy, N® (ug) + Buj uy, . . .ule(kl)(uo))
= T (uky Uk, - - - g, N (w0)) + BT (ujyuy, - . . wj, NE) (ug)),
where k, k', ki, ji € No; m, ¢ € Ny and o, 8 are scalars.

Proof. Parts (i), (iii) and (v) follow easily by using (16).
(ii) From (20), we have

(21) T(N® (ug)) = %/ N® (ug +ure™) e d, ¥ k € No.

—T

From (19), the left hand side of (21) is A; for N®)(u), which by (5) is equal to
up N+ (44). This can also be obtained directly on using (7) and (16).

(iv) Using (7) and (16), we get

2w

—T

(22) L / N® (uo + ulew‘) dr = N®) (up).

From (20), we have

T (g, sy - - - ug,, N® (uo))

T m

= % » 1_[1 (ur, + (kj + l)uijrlei)‘) N®) (uo + uleM) e~ d
J:
= H Up, % L N (uo + ulei)‘) e d
Jj=1 i
+ Z(kz + l)uk[+1Hung 217r / N®) (uo + uleM) dA, (by (16))
=1 j=1 -
J#L

= Uk, Uy - - - uka(N(k)(uo)) + T (g, gy - - - up, )YN® (ug), ¥ m > 2.
The last equality follows from (21) and (22). O

For an operator T satisfying the above properties, the following result due to
BABOLIAN and JAVADI [5] holds:

1
(23) An(uo,ul, ceey ’U,n) = E T(An,l(uo,ul, . ,’U,nfl)).

After calculating Ag from (19) as

(24) AO (UO) = N(UO),
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A,, can be calculated by following recursive formula, obtained using (20) and (23),

(25) Ap(ug,ug, ... up) = 1 An_l(vo,vl,...,Un_l)e_i’\d)\, VneN,

2nm J_

where vy = ug, + (k + Dug e and 7y, = U + (k + 1) Tpy1e™, k€ {0,1,2,...,n}.

5. APPLICATIONS TO SOME FORMS OF NONLINEARITY

In this section, we apply the above discussed methods to calculate Adomian
polynomials for different forms of nonlinearity. The second method is efficient in
cases where Taylor series expansion is required, as in case of exponential, logarith-
mic and trigonometric nonlinearity. The advantage is that the second algorithm
requires at most the first two terms of the Taylor series expansion. Applications
of properties of Adomian polynomials discussed in the third section are also illus-
trated.

ExAMPLE 1. (Nonlinear polynomials) Adomian polynomials for N(u) = wu™, where
m € N. We use (19) to find A,,. Obviously, Ag = |uo|*uf*~" and

1 " ) iA\ym _—1i
A = o | (uo+u16 A)(uo—i—ule A) e d)

— / o + Wr e’ Z (7:)ulg(ulei’\)mfkefM dX

k=0
=uy'u +mu0 |uo| u1,
2iA)(uO+uleiA+u262ik)mef2ik d\

1 .
As = 2— uo —|—H16M —+ uze

QiA)

= 2i/ Uo +ﬂ16i>\+ﬂge

( m ) kl(ulei)\)lw(uze%)\)kgef%k d\
5 ki, ka2, ks
23:1 kj=m

1 _
= ug' U2 + mug |u1| + mug |u0| uz+2m( m — 1)ug" 3|u0|2u§.

Indeed, from Theorem 1 (ii), the n-th order Adomian polynomial is given by

m
An(uo,ut,...,un) = E Wk 11 I |ukj7 VY n € Ng.
T ky=n =t
k; €Ng

EXAMPLE 2. (Trigonometric function) Adomian polynomials for N(u) = sinu. Using
(19), Ao = sinug and

A = L (sin(uo + uleM))(f“ dA
2 J_ .
1 s

=5 (cos (w1 e™) sin ug + sin (u1e™) cos uo)efﬂ dA
T
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1 /T 2 2iA _ 3 30\ »
:2— <(1—%+..-)sinuo+<u1eu—ul; -‘r---)COSUo 6Z>\d)\
T J ! !
= U1 COSUuo,
1 [~ ) ) o
As = > (sin(uo Fue + uzeQM))e 22 A
_ 1 e (uleiA 4 u262i)\)2 )
=50 Hr((l—#—t----)smuo
+ ((uleM + uzeQM) — .. ) cos uo> e PN 4
1 5 .
= U2 COS Up — U1 sinuo,
1 [~ ) ) ) s
As = 5 (sin(uo Fure +uge?™ 4+ U363M))6 3 dn
T J _x
1/ ix 20X 3iA\2 _ )
== <(1 o (ure +u2621 + uze”™) 1. ) sin uo + ((ule“ T ouge??
) i 20X 3iA\3 )
+ uze®™) — (e + U263, tuse ) + - ) cos uo> e ¥ dx

1 3 .
= u3 CcoOS Uy — g U7 COS Up — UL U2 SiN Up.

Similarly, A, As, ... can be calculated.

EXAMPLE 3. (Exponential function) Adomian polynomials for N(u) = e*. From (19), we
have Ag = €“° and

1 T N » 1 T A iy
Av=oo [ et tan S — [ e <1+“116, —|—~-~>e AN = uget,
T ) . T ) !
142 _ 2i T eu0+ulei’\+u262i’\672iA d\
) _x
1 /7 Y 26\ ix 2002 L
= U0 (1 + (ure —|1—'uze ) n (ure —6—2'1@6 ) +) o~ 4\

2
u
<U2 + é) 6U07

and etc. Indeed, from Theorem 1 (v), the n-th order Adomian polynomial for e* is

n

k.
w,’

An(uo, v, ..., up) =e"° Z H%, VneN.
4!

, Lk
E?:l jkj=n 7j=1
kj €Ny

ExaMPLE 4. (Composite nonlinearity) Adomian polynomials for N(u) = e5"*“. Using
(19), Ag = e¥"™0 and

1 ™ . Iy esinuo ™ . N o2 upett . .
Al — 2_ esln(u0+ule )6 (2N d)\ = 5 e(slnule cos ug—2sin 5 smuo)e (2N d\

T ) _x ™ -

-

sin ug ™ . . 2 .
= ¢ / <1+<(uleM—---)cosuo—2(lulem—~~~) sinu0>—|—...>eﬂd)\
2 2



Simple Parametrization Methods for Generating Adomian Polynomials 179

_ sin ug
= U1 COS Uge ,
1 T sin (uo4ug e’ fuge? ) —2ix
Ay = — e e dA
2 J_ .

sin ug T . .
° 3 / (1 + <((u16M + uzeQM) — .. ) COS Uo
T J_

™

. . 2 . .
_ 2(% (u162>\ + ’UJQG%A) — . ) Sinuo) + %(((LﬂelA + UQ62Z>\) [ ) COS UQ

2

. . 2
_2(3 (ulez)\+u2e2zk)_,..) Sinuo)

, +...>62i)\d)\

1 2 . 1 2 2 sin ug
U2 COS Ug — §u1 sin uo + 5 Uy COS Up | € .

Using Theorem 1 (v), we obtain
. n
Ap(uo,uty .. un) =0 Z H

Z?:1 jkj=nj=1
k; €Ng

B
I VneN,
ke,

where B,, are Adomian polynomials of sin u.

The next example is based on the second method.

EXAMPLE 5. (Logarithmic function) Adomian polynomials for N(u) = Inwu. Obviously,
Ao = Inug, from (24). Also, from (25),

™ . . ™ A .
A = 1 In(uo + uleM)eﬂA d\ = L/ In <uo (1 + we )>67M d)
2r J_, 2 J_ . Uo
™ (2N .
- L (lnuo+(ule +~~~)>e*“dA:ﬂ7
2 J_ . Uo uo
Ao =4 /ﬁ (- 2u2e™) ir gy L /7r o e (1 + mem)ile*"A dA
2T 4n _n (uo +ure) T d4m o Uo Uo
:L ™ (w1 + 2uze™) (1_U1ei)‘ +--~)efikd)\:%—u—12
ar J_ . Uo Uo u  2ug’
and etc. Indeed, from Theorem 1 (v), we get
(—1)Zir ki1 (2?21 kj — 1) s

| n 0
! u
An(uo,ut,...,un) = Z UZ?Zij Jlj[l Rl VneN

>y dkj=n 0
k; €Ng

6. EXTENSION TO THE CASE OF SEVERAL VARIABLES

We here extend our methods to calculate Adomian polynomials for the mul-
tivariable case. Consider the system of m functional equations,

(26) Uj = fj —|—Lj(ul,’lL2,...,Um)+Nj(U1,UQ,...,um), ]: 1,2,...,7’)1.
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Here, L;’s and Nj’s are linear and nonlinear operators respectively and f;’s are
known functions. As assumed earlier, we shall suppose

H3 : Solution u; = Zujk of (26) are absolutely convergent for j =1,2,...,m
k=0

H4 : The nonlinear function Nj(u1, ug, ..., un) is developable into an entire series
with infinite radius of convergence so that

Grrthatkm N (0., rouy
(27) NJ (ul’ uz,...,u Z Z Z 8k1u18k2uQ 8kmum H

k1=0ko=0 j=1

for all 1 < j < m. Since (27) is absolutely convergent, it can be rearranged as

oo
Nj(u1,ug, ..., Upy) = E Aj (Ul e e s Uty Uy e ey UDpy v - oy Umngs -+« » Urny, )
k=0
o0 o0 k 4k m
. Ot TR N (ugy e Umg) -—uj0
(28) = - 2
Ok1uy ... OFmu,, ]

k1=0 km=0

Parameterize u;(z,t) and its complex conjugate @;(z,t) as follows:

:Zujkfk()‘)7 s, :Zﬂjxfk()‘) , 1<j<m,
k=0 k=0

where A\ is a real parameter and f is any real or complex valued function with
|f| < 1. Since the series (28) is absolutely convergent, N;(u1,,uz,, ..., Un,) can
be decomposed as

(29)  Nj(u1y,uzy,---Um,) ZAJk (Wigs ooy Uiy ey Umgs - - s Uiy ) FE(N).
k=0

Taking f()\) = €™, the parametrized form of u;(z,t), for each j, is
(30) Ujy = Zujkeik)\
k=0

and complex conjugates, U;(x,t) are parametrized as u;, = Zﬂjk e We first
k=0
give the extended version of Theorem 2 for the multivariable case.

Theorem 3. Let the parametrized representation of uj(x,t), 1 < j < m, be given
by (30), where X is a real parameter and Nj(ui,us, ..., Un,) are the nonlinear terms
in (26). Then

T

—inA
Ni(ur,, U2, s Um, )€ dA

—T
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T n n n
= / Nj( E ug, e, E ug, e E umkem’\)e_m’\ dA.
-7 k=0 k=0

k=0

Proof. Let us consider m-tuple vectors a = (ayq, az, .. ), W= (Ug, Uy Uy,

o0
— _ 1) 1) 15
g = (U, U2y -+, Umg)s (Zulk g Zwk KA € ) and
k=0
n n m
u,, = (Zulkel“,Zquel“, . .,Zumkem’\). Also, denote |a| = Zak, u® =
k=0 k=0

ﬁugk, al = ﬁak! and 0% = Ha ,fk From H3, Z|u]k| = M; < oo for

k=1 k=1
7 =1,2,...,m and therefore

al al
where M = (M, Ma, ..., M,,). Using H4, Y aL'(“O) < co. Hence, by
«
|| >0
Weierstrass M-test,
o uy — up)”
Z 9 Nj(uo)%

la|=0

converges uniformly. Hence, for n € Ny and using (28), we get

Nj(u)\)eﬂ-md)\z/ > 9°N;(uo) 0) e dA
- >0
. u")\_ 0)a —inA
—mlgnoo;/ 0% Nj(ug) =2 —="— e~ dA, (by (16))
:/ S 0N () W Z )T i g
|a\>0 :

= NJ (up, ) e,

and thus the proof is complete using (28). O

6.1. Extension of the First Method
Taking f(A\) = e**, we have from (29),

(31) Nj(ulmu%\a-'-vum)\) = ZAjk(ulm'--aulka'--aumm---aumk)eikAa

for j = 1,2,...,m. To determine A, , multiply e~®* in (31) and integrate both
sides with respect to A from —m to 7, to get

(32) / N; ( Z uq, e, Z ug, e Z umkeik’\) e~ A A\
- k=0 k=0

k=0
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= / Z Ajk €ik>\€_in)\ d\ = 27TAjn.

T k=0
The last equality in (32) follows due to the uniform convergence of the series

> A e'*=mA Hence,

k=0
1 . oo oo
ik kA ) ,—inA
Ajn(ulo,...,umn)zﬁ/ Nj(g ug, e g U, € )e mAAN.
- k=0

k=0

Applying Theorem 3, we get for j = 1,2,...,m and n € Ny,

(33) Ajn(uloa"-vumn): %/ Nj(zulkeik)\,..,,Zumkeikk)e—inxd/\.
o k=0 k=0

EXAMPLE 6. Consider the set of nonlinear equations

Ouy Oou;j Ou; .
Nj(u1,uz2,us3) :Ula—xj +U2a—yJ +u38—;7 J=12.3.

These nonlinear terms appear in the Navier Stokes equation for an incompressible
fluid flow defined by

121% _n 1

Here z,y,z are spatial components, ¢ is the temporal component, 1 denotes dynamic
viscosity, p denotes density, v = n/p is the kinematic viscosity and V = (u1,u2,us)
denotes the speed vector. Using prevalent methods, SENG et al. [13] computed the
Adomian polynomials for the nonlinear term (V.V)V in (34), using tedious computations.

By our extended first method, we calculate A, with a few steps. From (33), Ado-
mian polynomials A;, for j =1,2,3 are

ou; Ous s
Ajy = w1 8;’0 + u2, azjo + us, (9;07
L[ i O(ujy + uj, ) gy + g, ™)
An = or | <(ulo +ua, €’ )% + (u2y + uz, €’ )%
. . i _
+ (us, +u3lem)w> i g
0z
_ . Ouy Oy Ouy, Ujg wj, Aujy
Ty Ty T Ty, tun Ty m T T
1 Tr ; i O(wsg + uj, e 4wy, €2
Ajy = ] <(U10 +ur, e +ug,e®?) (50 Jlax i2€"")

QM) a(ujo + Uy, e + Uy, e2i>\)
Oy
27.'A)8(uj0 + “jleM + Uj262M)> 21N )

(2N
+ (uzp +uz, e + uz,e

(BN
+ (usy +us, e +us,e EP
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ou;j ou;j ou;j ou,
= U1y ;2 —+ U1, ;1 —+ U1y ;0 + U2, ;2
ouj ou;j ouj ou; ou;j
+u21 ;l +U22 ;0 +u30 ;2 +u31 21 +u32 ;0

Thus, the n-th order Adomian polynomials for j = 1,2,3 are given by

8Ujb
Ajy(Uigy ooy Uy e ey USgy - ey U, ) = E E Uk, 8w,Vn€No.
(k,w)e{(1,2),(2,y),(3,2)} at+b=n
a,beENg

6.2. Extension of the Second Method

The Adomian polynomials can be calculated recursively for the multivariable
case also. DUAN [9] introduced the simplified index matrices of the multivariable
Adomian polynomials and established a recurrence relationships among them to
provide a convenient recursive algorithm.

Based on our approach, we give a new recursive method to obtain these
polynomials for the multivariable case. We define an operator 71" as

(35) T (A, (Utgs -y ULy Uy e v s Uy e e vy Umgy---sUm,,))
1 ™
— —iX
=5 Aj (V1gs ey V1, U2gs e o3 V25 e ey Umgs e vy Uy ) € dA,
—T

where vj, = u;, +(k+1)u;,,, e andv;, = u;, +(k+1)u;, e, k€ {0,1,2,...,n}.
From (33), we get for j =1,2,...,m,

(36) Ajo(ulo,u%, e ,umo) = Nj(ulo,u%, e ,umo).

Note that operator T defined in (35) satisfies all the properties of Proposition
1. Therefore, by applying (23), we get the following recursive formula for 4, (1 <
ji<m, neN):

1 (7 ;
— / Aj. (v, ... ,vmnfl)e_”‘ dA,
—1T

(37) Ajn (U’lO? e 7umn) = on
where v;, = uj, +(k+1)uj,,, e and v;, = u;, +(k+1)u;,,,e?, k € {0,1,...,n—1}.

EXAMPLE 7. Adomian polynomials for N(u) = uluz%. From (36), we have Ag =

5 Ox
U1, U2, % Now by using (37),
T o i O(uz, + ug, €)
A = 3 7W(u10+ullek)(uz0+uzlek)%e rdA
_ 8’!12 _ 8u2 _ 8u2
= ot Ty T Tyt T T,
1 (7 O(uz, + 2ug,e™)

A2 = E ((ﬂlo —|—ﬂllei>\)('ll,20 + Uzlei)\)

ox
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_ o ixy O(ug, + ug, e
+ (ulo + ullew\)(u% + 2u226M) M

oz
; ixy O(u Uz, e i
+ (T, + 2T1,e™) (u2y + uz, ™) % e A
x
— (9'&2 _ 8”2 _ 8”2
= U1,U2, 81:2 + U1y U2, 81:1 + U1, Uz, 81:1
_ 8U2 _ (5) _ a’uz
Uy T E T, T E o Ty T
Thus, the n-th order Adomian polynomials are given by
_ OJua,
An(ulw ey ULy, U2gy - 7Q,LG) = Z ulau%w7 ¥V n € Np.
a+b+c=n
a,beENg

REMARK 3. The recursive algorithm obtained here is based on a simple integration,
which on using (16) conveniently produces Adomian polynomials. More analytic recursive
algorithms based on regular operations such as addition, multiplication and differentiation
were obtained by DUAN [10].

7. CONCLUSIONS

The crucial step involved in Adomian decomposition method is the employ-
ment of the “Adomian polynomials”. The computation of n-th order Adomian
polynomial is difficult, as it requires tedious calculations. In this paper, we have
discussed some important properties of Adomian polynomials and developed two
simple methods which avoid draggy calculation of higher derivatives involved in
prevalent methods. Another advantage is that at every stage we don’t have to
keep track of sum of the indices of components of u(z,t) (see WAZWAZ [14]). Also,
the second algorithm is efficient in cases where Taylor series expansion is required,
as for example in case of exponential, logarithmic and trigonometric nonlinearity,
and it just requires the first two terms of the Taylor series expansion. We have
illustrated our approach using typical examples.
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