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FACTORIZED DIFFERENCE SCHEME FOR 2D

FRACTIONAL IN TIME DIFFUSION EQUATION

Sandra Hodžić

A factorized finite-difference scheme for numerical approximation of initial-
boundary value problem for two-dimensional fractional in time diffusion equa-
tion is proposed. Its stability is investigated and a convergence rate estimate
is obtained.

1. INTRODUCTION

In recent years there has been increasing interest in modeling the physical
and chemical processes with equations involving fractional derivatives and inte-
grals. Fractional partial differential equations emerge in modeling diverse processes
occurring in viscoelastic media, disordered materials, media of fractal geometry, as
well as in the mathematical modeling of biological, social and economic phenomena
(see [7, 11, 12]).

One kind of these equations is the time-fractional diffusion equation, which
can be obtained from the standard diffusion equation by replacing classical time
derivative with fractional derivative of order α ∈ (0, 1). It corresponds to anomalous
sub-diffusion which has been investigated by many authors. When the initial-
boundary value problems for time fractional diffusion equation are approximated
by finite difference methods, in multidimensional case a similar phenomenon is
observed as for the classical parabolic equation: explicit scheme is numerically
unstable, while the implicit scheme is stable but inefficient, since at each time layer
an elliptic problem needs to be solved.

In this article we consider the first initial-boundary value problem for two-
dimensional fractional in time diffusion equation. The problem is approximated
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by the factorized finite difference scheme, which can be regarded as a kind of
alternating-direction-implicit (ADI) scheme (see [13]). In [4] the same problem is
approximated by additive scheme - another type of ADI scheme. In [2, 8] multidi-
mensional evolution equations with fractional in space derivatives are approximated
with diverse ADI schemes.

The paper is organized as follows. In Section 2 we introduce the Riemann-
Liouville fractional derivative. In Section 3 we define several function spaces con-
taining functions with fractional derivatives. In Section 4 we define the first initial-
boundary value problem for two-dimensional fractional in time diffusion equation.
In Section 5 we define the factorized difference scheme by approximating the con-
sidered problem and prove its stability. In Section 6 we investigate the convergence
of the proposed difference scheme.

2. FRACTIONAL DERIVATIVES

Let u be a function defined on interval [a, b], and k− 1 < α < k, k ∈ N. Then
the left Riemann-Liouville fractional derivative of order α is defined as

(1) Dα
a+u(t) =

1

Γ(k − α)

dk

dtk

∫ t

a

u(τ )

(t− τ )α+1−k
dτ

and the right Riemann-Liouville fractional derivative is defined analogously

(2) Dα
b−u(t) =

(−1)k

Γ(k − α)

dk

dtk

∫ b

t

u(τ )

(t− τ )α+1−k
dτ,

where Γ(·) denotes the Gamma function. Notice that if the function u(t) has
continuous derivative of order k in [a, b], then for α → k or α → k − 1, the left
(right) Riemann-Liouville derivative converges to a standard k– or (k − 1)–order
derivative of u(t).

Since the integral is present in the definition of the fractional order derivatives,
it is apparent that these derivatives are nonlocal operators.

For functions of many variables, the partial Riemann-Liouville fractional
derivatives are defined in an analogous manner, for example

Dα
t,a+u(x, t) =

1

Γ(k − α)

∂k

∂tk

∫ t

a

u(x, τ )

(t− τ )α+1−k
dτ, k − 1 < α < k, k ∈ N.

3. SOME FUNCTION SPACES

We define some function spaces, norms and inner products that we use there-
after. Let Ω be an open domain in R

n. By Ck(Ω) and Ck(Ω̄) we denote the spaces
of k times continuously differentiable functions in Ω and Ω̄, respectively. Further,
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Ċ∞(Ω) = C∞
0 (Ω) stands for the space of infinitely differentiable functions with

compact support in Ω. As usual, the space of measurable functions whose squares
are Lebesgue integrable in Ω is denoted by L2(Ω). The inner product and the norm
in this space are defined by

(u, v)Ω = (u, v)L2(Ω) =

∫

Ω

uv dΩ, ‖u‖Ω = ‖u‖L2(Ω) = (u, u)
1/2
Ω .

We also use Hα(Ω) and Ḣα(Ω) = Hα
0 (Ω) to denote the usual Sobolev spaces [10]

with norms denoted by ‖u‖Hα(Ω).

For α > 0 we set

|u|Cα
+[a,b] = ‖Dα

a+u‖C[a,b], |u|Cα
−
[a,b] = ‖Dα

b−u‖C[a,b],

‖u‖Cα
±
[a,b] =

(

‖u‖2
C[α]− [a,b]

+ |u|2Cα
±
[a,b]

)1/2
,

|u|Hα
+(a,b) = ‖Dα

a+u‖L2(a,b), |u|Hα
−
(a,b) = ‖Dα

b−u‖L2(a,b)

and

‖u‖Hα
±
(a,b) =

(

‖u‖2
H[α]−(a,b)

+ |u|2Hα
±
(a,b)

)1/2
,

where [α]− denotes the largest integer < α. Then we define Cα
±[a, b] as the space

of functions u ∈ C [α]− [a, b] with the finite norms ‖u‖Cα
±
[a,b]. The space Hα

±(a, b) is

defined analogously, while the space Ḣα
±(a, b) is defined as the closure of Ċ∞(a, b)

with the respect to the norm ‖ · ‖Hα
±
(a,b). As for α = k ∈ N ∪ {0} fractional

derivative reduces to standard k-order derivative, we have Ck
±[a, b] = Ck[a, b] and

Hk
±(a, b) = Hk(a, b).

Lemma 1 (See [9]). For α > 0, α 6= k + 1/2, k ∈ N, the spaces Ḣα
+(a, b), Ḣ

α
−(a, b)

and Ḣα(a, b) are equal and their seminorms as well as norms are equivalent.

For vector valued functions which map a real interval (0, T ) (or [0, T ]) into
Banach space X, we introduce the spaces Ck([0, T ], X), k ∈ N∪{0} and Hα((0, T ),
X), α ≥ 0, in the usual way [10]. In analogous manner, we define the spaces
Cα

±([0, T ], X) and Hα
±((0, T ), X).

Throughout the paper, by C we denote positive generic constant which may
take different values in different formulas.

4. PROBLEM FORMULATION

Let 0 < α < 1, Ω = (0, 1)× (0, 1) and Q = Ω× (0, T ). We consider the time
fractional diffusion equation

(3) Dα
t,0+u−

∂2u

∂x2
−

∂2u

∂y2
= f(x, y, t), (x, y, t) ∈ Q,

subject to homogeneous initial and boundary conditions

(4) u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),
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(5) u(x, y, 0) = 0, (x, y) ∈ Ω̄.

Initial-boundary value problem (3)–(5) is often called sub-diffusion problem.

For f ∈ L2(Q), the problem (3)–(5) is well posed in the space Ḣ1,α/2(Q) =
L2((0, T ), Ḣ1(Ω)) ∩ Ḣα/2((0, T ), L2(Ω)) and its weak solution satisfies the a priori
estimate (see [6, 9])

‖u‖H1,α/2(Q) ≤ C‖f‖L2(Q).

5. FINITE DIFFERENCE APPROXIMATION

In the domain Q̄ = [0, 1]× [0, 1]× [0, T ], we define the uniform mesh Q̄hτ =
ω̄h × ω̄τ , where ω̄h = {(xi, yj) = (ih, jh) | i, j = 0, 1, . . . , n; h = 1/n} and ω̄τ =
{tk = kτ | k = 0, 1, . . . ,m; τ = T/m}. We also define ωh = ω̄h ∩ Ω, γh = ω̄h \ ωh,
ω1h = ω̄h∩(0, 1]×(0, 1), ω2h = ω̄h∩(0, 1)×(0, 1], ωτ = ω̄τ ∩(0, T ), ω−

τ = ω̄τ ∩ [0, T )
and ω+

τ = ω̄τ ∩ (0, T ]. We use standard notation from the theory of the finite
difference schemes (see [13]):

v = v(x, y, t), v̂ = v(x, y, t+ τ), vk = v(x, y, tk), (x, y) ∈ ω̄h,

vx =
v(x+ h, y, t)− v(x, y, t)

h
= vx̄(x− h, y, t),

vy =
v(x, y + h, t)− v(x, y, t)

h
= vȳ(x, y − h, t).

For a function u defined on Q̄ which satisfies the homogeneous initial condi-
tion, we approximate the left Riemann-Liouville fractional derivativeDα

t,0+u(x, y, tk)
by (see [3]):

(Dα
t,0+,τu)

k =
1

Γ(2− α)

k−1
∑

ℓ=0

(t1−α
k−ℓ − t1−α

k−ℓ−1)u
ℓ
t .

The following result holds:

Lemma 2 (See [14]). Suppose that u ∈ C2[0, t], t ∈ ω+
τ . Then

|Dα
t,0+u−Dα

t,0+,τu| ≤ τ2−α 1

1− α

[

1− α

12
+

22−α

2− α
− (1 + 2−α)

]

max
0≤s≤t

|u′′(s)|.

We approximate the initial-boundary value problem (3)–(5) with the following
factorized finite difference scheme:

(6)
(

(I + θταA1) (I + θταA2)D
α
t,0+,τv

)k
−∆hv

k−1 = f̄k, (x, y) ∈ ωh,

k = 1, 2, . . . ,m, subject to homogeneous boundary and initial conditions:

(7) v(x, y, t) = 0, (x, y, t) ∈ γh × ω+
τ ,
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(8) v(x, y, 0) = 0, (x, y) ∈ ω̄h,

where I is the identity operator, θ is positive parameter, A1v = −vxx̄, A2v = −vyȳ
and ∆hv = vxx̄ + vyȳ = −Av.

When the right-hand side f is continuous function, we set f̄ = f, otherwise
we have to use some averaged value, for example f̄ = T1T2f, where T1 and T2 are
the Steklov averaging operators:

T1f(x, y, t) =

∫ 1/2

−1/2

f(x+ hs, y, t) ds, T2f(x, y, t) =

∫ 1/2

−1/2

f(x, y + hs, t) ds.

Let us note that the finite difference scheme (6)-(8) is numerically efficient,
unlike the standard implicit scheme [15]. Indeed, to compute the values of solution
v at the time layer t = tk it is necessary to invert the operators (I + θταA1) and
(I + θταA2) . By suitable ordering of mesh nodes each of these operators can be
represented by a tridiagonal matrix. This way, the required solutions are obtained
by two applications of the Thomas algorithm.

We define the following discrete inner products and norms:

(v, w)h = (v, w)L2(ωh) = h2
∑

(x,y)∈ωh

vw, ‖v‖h = ‖v‖L2(ωh) = (v, v)
1/2
h ,

(v, w)ih = (v, w)L2(ωih) = h2
∑

(x,y)∈ωih

vw, ‖v‖ih = ‖v‖L2(ωih) = (v, v)
1/2
ih , i = 1, 2,

|v|2H1(ωh)
= ‖vx̄‖

2
1h + ‖vȳ‖

2
2h, ‖v‖2H1(ωh)

= |v|2H1(ωh)
+ ‖v‖2h,

‖v‖L2(Qhτ ) =

(

τ

m
∑

k=1

‖vk‖2h

)1/2

,

‖v‖B1,α/2(Qhτ ) =

[

τ

m
∑

k=1

‖vk‖2H1(ωh)
+ τ

m
∑

k=1

(

Dα
t,0+,τ

(

‖v‖2h
)

)k
]1/2

.

For every function v(t) defined on the mesh ω̄τ , which satisfies the initial
condition v(0) = 0, the following equality holds (see [3])

τ
m
∑

k=1

(

Dα
t,0+,τ (v

2)
)k

=
1

Γ(2− α)

m
∑

k=1

(

t1−α
m−k+1 − t1−α

m−k

)

(vk)
2
.

In particular, from here it follows that the norm ‖v‖B1,α/2(Qhτ ) is well defined.

Lemma 3 (See [4]). For 0 < α < 1 and arbitrary function v(t) defined on the mesh

ω̄τ the following inequality is valid

(9) vk
(

Dα
t,0+,τv

)k
≥

1

2

(

Dα
t,0+,τ (v

2)
)k

+
τ 2−α(1− 2−α)

Γ(2− α)
(vk−1

t )
2
.

Theorem 1. Let α ∈ (0, 1) and θ ≥
Γ(2− α)

2(1− 2−α)
. Then the finite difference scheme

(6)–(8) is absolutely stable and its solution satisfies the following a priori estimate :

(10) ‖v‖B1,α/2(Qhτ ) ≤ C‖f̄‖L2(Qhτ ).
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Proof. Taking the inner product of (6) with vk, we obtain

(

vk, BDα
t,0+,τv

k
)

h
+
(

vk, Avk
)

h
−
(

vk, A(vk − vk−1)
)

h
=

(

vk, f̄k
)

h
,

where A = A1 + A2 = −∆h and B = (I + θταA1) (I + θταA2) . Operators A
and B are positive and self-adjoint, so the corresponding energy norms (see [13])

‖v‖A = (Av, v)
1/2
h and ‖v‖B = (Bv, v)

1/2
h are well defined.

Using the Lemma 3, Cauchy-Schwarz and ε inequalities, and taking into

account that vk =
vk + vk−1

2
+

vk − vk−1

2
, we further obtain

1

2
Dα

t,0+,τ‖v
k‖2B +

τ 2−α(1− 2−α)

Γ(2− α)
‖vk−1

t ‖2B +
1

2
‖vk‖2A +

1

2
‖vk−1‖2A −

τ 2

2
‖vk−1

t ‖2A

≤
1

4ε
‖f̄k‖2h + ε‖vk‖2h.

From operator inequalities

B = I + θταA+ θ2τ2αA1A2 ≥ I, B ≥ θταA,

the equality

‖v‖A = |v|H1(ωh)

and discrete Poincaré inequality (see [13])

‖v‖h ≤
1

2
√
2
|v|H1(ωh)

it follows that

1

2
Dα

t,0+,τ‖v
k‖2h +

(

θ
(1− 2−α)

Γ(2− α)
−

1

2

)

τ2‖vk−1
t ‖2A +

1

2
|vk|2H1(ωh)

+
1

2
|vk−1|2H1(ωh)

≤
1

4ε
‖f̄k‖h +

ε

8
|vk|2H1(ωh)

.

For θ ≥
Γ(2− α)

2(1− 2−α)
, by choosing ε = 2 and

summing for k = 1, 2, . . . ,m, we obtain the

a priori estimate (10) with C =
3

4
. �

In the Theorem 1 it was assumed that the
parameter θ must be greater than some
value which depends on α. Fig. 1 shows

the graph of the function α 7→
Γ(2− α)

2(1− 2−α)
.

Fig. 1
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6. CONVERGENCE OF THE DIFFERENCE SCHEME

Let u be the solution of the initial-boundary-value problem (3)–(5) and v the
solution of the difference scheme (6)–(8) with f̄ = T1T2f. The error z = u − v is
defined on the mesh ω̄h × ω̄τ . Putting v = −z + u into (6)–(8) it follows that error
satisfies

(11)
(

(I + θταA1) (I + θταA2)D
α
t,0+,τz

)k
−∆hz

k−1 = ψk,

(x, y) ∈ ωh, k = 1, 2, . . . ,m,

(12) z = 0, (x, y) ∈ γh, t ∈ ω̄τ ,

(13) z0 = z(x, y, 0) = 0, (x, y) ∈ ωh,

where

ψk = (I + θταA1) (I + θταA2)D
α
t,0+,τu

k −∆hu
k−1 − T1T2f

k

=
(

(I + θταA1) (I + θταA2)D
α
t,0+,τu− T1T2D

α
t,0+u

)k

+

[

(

T1T2
∂2u

∂x2

)k

− uk−1
xx̄

]

+

[

(

T1T2
∂2u

∂y2

)k

− uk−1
yȳ

]

= ξk1 + ξk2 + ηk1,x + ηk2,y + ζk1,x + ζk2,y + χk
1,x + χk

2,y + µk
1,x + µk

2,y,

where

ξ1 = Dα
t,0+,τu−Dα

t,0+u, ξ2 = Dα
t,0+u− T1T2D

α
t,0+u,

η1 = T2
∂u

∂x
(x− h/2, y, t)− ux̄(x, y, t), η2 = T1

∂u

∂y
(x, y − h/2, t)− uȳ(x, y, t),

ζ1 = τut̄x̄, ζ2 = τut̄ȳ,

χ1 = −θταDα
t,0+,τux̄, χ2 = −θταDα

t,0+,τuȳ,

µ1 =
1

2
θ2τ2αDα

t,0+,τux̄yȳ, µ2 =
1

2
θ2τ2αDα

t,0+,τuxx̄ȳ.

Lemma 4. Let θ ≥
Γ(2− α)

2(1− 2−α)
. The finite difference scheme (11)–(13) is absolutely

stable and the following a priori estimate holds :

(14) ‖z‖B1,α/2(Qhτ ) ≤ C

[ 2
∑

i=1

τ

m
∑

k=1

(

‖ξki ‖2h + ‖ηk
i ‖2ih + ‖ζki ‖2ih + ‖χk

i ‖2ih + ‖µk
i ‖2ih

)

]1/2

.

Proof. Taking the inner product of (11) with zk, we obtain

(

zk, (I + θταA1) (I + θταA2)D
α
t,0+,τz

k
)

h
−
(

zk,∆hz
k−1

)

h
−
(

zk, ξk1
)

h

=
(

zk, ξk2
)

h
+
(

zk, ηk1,x
)

h
+
(

zk, ηk2,y
)

h
+
(

zk, ζk1,x
)

h
+
(

zk, ζk2,y
)

h

+
(

zk, χk
1,x

)

h
+
(

zk, χk
2,y

)

h
+
(

zk, µk
1,x

)

h
+
(

zk, µk
2,y

)

h
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Next, we estimate the terms at the right-hand side:

∣

∣

(

zk, ξk2
)

h

∣

∣ ≤
ε1

2

∥

∥zk
∥

∥

2

h
+

1

2ε1

∥

∥ξk2
∥

∥

2

h
≤

ε1

16
|zk|2H1(ωh)

+
1

2ε1

∥

∥ξk2
∥

∥

2

h
, ε1 > 0,

∣

∣

(

zk, ηk1,x
)
∣

∣ =
∣

∣

(

ηk1 , z
k
x̄

)

1h

∣

∣ ≤
ε1

2

∥

∥zkx̄
∥

∥

2

1h
+

1

2ε1

∥

∥ηk1
∥

∥

2

1h
,

∣

∣

(

zk, ηk2,y
)∣

∣ =
∣

∣

∣

(

ηk2 , z
k
ȳ

)

2h

∣

∣

∣
≤

ε1

2

∥

∥zkȳ
∥

∥

2

2h
+

1

2ε1

∥

∥ηk2
∥

∥

2

2h
,

and analogously for the other terms. If we transform the left-hand side terms as in
the proof of Theorem 1, we obtain

1

2
Dα

t,0+,τ‖z
k‖2 +

1

2
|zk|2H1(ωh)

≤
1

4ε
‖ξk1‖

2
h +

(

ε

8
+

ε1

16
+ 4

ε1

2

)

|zk|2H1(ωh)

+
1

2ε1

(

‖ξk2‖
2
h + ‖ηk1‖

2
1h + ‖ηk2‖

2
2h + ‖ζk1 ‖

2
1h + ‖ζk2 ‖

2
2h

+ ‖χk
1‖

2
1h + ‖χk

2‖
2
2h + ‖µk

1‖
2
1h + ‖µk

2‖
2
2h

)

.

Result follows for sufficiently small ε and ε1 after summation for k = 1, 2, . . . ,m.

In order to obtain the error bound of finite difference scheme (6)–(8), it is
sufficient to estimate the right-hand side terms in (14).

Theorem 2. Let the solution u of the initial-boundary value problem (3)–(5) be-

longs to the space C2([0, T ], C(Ω̄)) ∩ C1([0, T ], H3(Ω)) and θ ≥
Γ(2− α)

2(1− 2−α)
. Then

the solution v of the finite difference scheme (6)–(8) with f̄ = T1T2f converges to

u and the following convergence rate estimate holds :

‖u− v‖B1,α/2(Qhτ ) = O(h2 + τα).

Proof. From Lemma 2 it immediately follows that

(15)

(

τ

m
∑

k=1

‖ξk1‖
2
h

)1/2

≤ Cτ2−α ‖u‖C2([0,T ],C(Ω̄)).

From integral representation

u(x, y)− T1T2u(x, y) =
1

h2

∫ x+h/2

x−h/2

∫ y+h/2

y−h/2

(
∫ x

x′

∫ y

y′

∂2u

∂x∂y
(x′′, y′′) dy′′dx′′

−

∫ x

x′

∫ x

x′′

∂2u

∂x2
(x′′′, y′) dx′′′dx′′ −

∫ y

y′

∫ y

y′′

∂2u

∂y2
(x′, y′′′) dy′′′dy′′

)

dy′dx′

one obtains

(16)

(

τ

m
∑

k=1

‖ξk2‖
2
h

)1/2

≤ Ch2 ‖u‖Cα
+([0,T ],H2(Ω)).
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Using the Bramble-Hilbert lemma [1] and methodology presented in [5], one
obtains

(17)

(

τ

m
∑

k=1

‖ηki ‖
2
ih

)1/2

≤ Ch2 ‖u‖C([0,T ],H3(Ω)), i = 1, 2.

Terms ζi, χi and µi can be estimated directly:

(

τ

m
∑

k=1

‖ζki ‖
2
ih

)1/2

≤ Cτ ‖u‖H1((0,T ),C1(Ω̄)), i = 1, 2,(18)

(

τ

m
∑

k=1

‖χk
i ‖

2
ih

)1/2

≤ Cτα ‖u‖C1([0,T ],C1(Ω̄)), i = 1, 2,(19)

(

τ

m
∑

k=1

‖µk
i ‖

2
ih

)1/2

≤ Cτ2α ‖u‖C1([0,T ],H3(Ω)), i = 1, 2.(20)

Result follows from (15)–(20).
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