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BLOW-UP FOR DISCRETE REACTION-DIFFUSION

EQUATIONS ON NETWORKS

Soon-Yeong Chung, Jae-Hwang Lee

In this paper, we discuss the conditions under which blow-up occurs for the
solutions of reaction-diffusion equations on networks. The analysis of this
class of problems includes the existence of blow-up in finite time and the
determination of the blow-up time and the corresponding blow-up rate.
In addition, when the solution blows up, we give estimates for the blow-up
time and also provide the blow-up rate. Finally, we show some numerical
illustrations which describe the main results.

1. INTRODUCTION

We say that a solution u to the equation blows up (or is a thermal runaway)
at time T, if |u(xn, tn)| → +∞ for some sequence (xn, tn) → (a, T ). Here, T is
called a blow-up time and a is called a blow-up point.

There have been many papers which study the blow-up phenomenon for the
solution to the reaction-diffusion equations. In fact, they show that the solution
may or may not blow up in finite time, depending on the exponent q and the
magnitude of the initial data. (see [1], [3], [4], [7], [8], [9], [13], [14], [16], [17],
[18] and [19]).

From a similar point of view, it will be interesting to investigate the diffu-
sion of energy or information on networks, which can be modelled by the discrete
reaction-diffusion equation on networks. Here the network means a graph with
edge-weight, i.e. a weighted graph (see [5]). On the other hand, the long time be-
havior (extinction and positivity) of solutions to evolution Laplace equation with
absorption on networks is studied in the papers [6] and [11].
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The goal of this paper is to analyze some features of the blow-up phenomenon
arising from the following discrete reaction-diffusion equation in S × (0,∞)

(1)







ut(x, t) = ∆ωu(x, t) + |u|q−1(x, t)u(x, t), (x, t) ∈ S × (0,∞)
u(x, t) = 0, (x, t) ∈ ∂S × (0,∞)
u(x, 0) = u0(x), x ∈ S,

where q > 0 and u0 is nonnegative and nontrivial. Here S is a finite network and
the operator ∆ω is the discrete Laplacian on the network S with boundary ∂S.

Since functions on a finite network of size N can be identified with vectors
in R

N , the theoretical framework is the classical theory for systems of ODE. So,
it seems that blow-up solution or global solution can be obtained by virtue of the
famous Wintner’s Lemma (see [10]). But in this paper, we follow traditional PDE
techniques so called the comparison principle, which has been commonly accepted
when dealing with blow-up theory in PDE and seems to be easier and stronger.

The reaction-diffusion equation (1) on a continuous domain Ω ⊂ R
N has also

been studied even until these days (see [2] and [15]). For example, in order to get
a blow-up solution they adopted the condition such as

1 < q < (3N + 8)/(3N − 4)

in the paper [15] and

1 < q < (N + 2)/(N − 2)

in the paper [2], respectively. So it is quite natural that conditions to obtain a
blow-up solution include something related to the domain Ω ⊂ R

N . But here in
this paper (see Theorem 4.10), we obtain a blow-up solution under the condition

q > 1 and y0 > K
1

q−1 · |S|,

where y0 =
∑

x∈S

u0(x) and K = maxx∈S

∑

y∈∂S

ω(x, y). The constant K can be under-

stood as a number representing the internal topology of the network S.

We organized this paper as follows: After considering some concepts on net-
works and the local existence of solutions to the equation (1), we discuss the compar-
ison principles on networks in order to study the blow-up phenomenon in Section 4,
in which we find out blow-up conditions of the solution to the equation (1) and the
blow-up time with the blow-up rate. Finally, in Section 5, we give some numerical
illustrations to exploit the main results.

2. PRELIMINARIES

In this section, we start with the theoretic graph notions frequently used
throughout this paper. For more detailed information on notations, notions, and
conventions, we refer the reader to [5].
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For a graph G = G(V,E) we mean a finite sets V of vertices (or nodes) with
a set E of two-element subsets of V (whose elements are called edges). The set
of vertices and edges of a graph G are sometimes denoted by V (G) and E(G), or
simply V and E, respectively. Conventionally, we denote by x ∈ V or x ∈ G the
facts that x is a vertex in G.

A graph G is said to be simple if it has neither multiple edges nor loops, and
G is said to be connected if for every pair of vertices x and y, there exists a sequence
(called a path) of vertices x = x0, x1, . . . , xn−1, xn = y such that xj−1 and xj are
connected by an edge (called adjacent) for j = 1, . . . , n.

A graph G′ = G′(V ′, E′) is said to be a subgraph of G = G(V,E) if V ′ ⊂ V
and E′ ⊂ E. In this case, G is a host graph of G′. If E′ consists of all the edges
from E which connect the vertices of V ′ in its host graph G, then G′ is called an
induced subgraph. It is noted that an induced subgraph of a connected host graph
may not be connected.

A weight on a graph G is a symmetric function ω : V ×V → [0,∞) satisfying
that

ω(x, y) > 0 if and only if {x, y} ∈ E.

Here, {x, y} denotes the edge connecting the vertices x and y. Then we call
a graph G with a weight ω a network.

For an induced subgraph S of a G = G(V,E), the (vertex) boundary ∂S of S
is the set of all vertices z ∈ V \ S but are adjacent to some vertex in S, i.e.

∂S := {z ∈ V \ S | z ∼ y for some y ∈ S}.

By S, we denote a subgraph of G whose vertices are consisting of those in S or
∂S and whose edges set are formed by the edges between vertices in S and edges
between a vertex in S and a vertex in ∂S. By the way, these last edges are usually
known as boundary edges.

Throughout this paper, a subgraph S in our concern is assumed to be an
induced subgraph which is simple and connected. From now on, for simplicity, by
a network S with boundary ∂S we mean a subgraph S of G, associated with the
weight ω.

The degree dωx of a vertex x in a network S (with boundary ∂S) is defined
as

dωx :=
∑

y∈S

ω(x, y).

The discrete Laplacian ∆ω on a network S of a function u : S → R is defined
by

∆ωu(x) :=
∑

y∈S

[u(y)− u(x)]ω(x, y)

for each x ∈ S.
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We now briefly discuss the existence and uniqueness of a solution for

(2)







ut = ∆ωu+ |u|q−1u in S × (0,∞),
u = 0 on ∂S × (0,∞),
u(·, 0) = u0 on S,

where q ≥ 1 and u0 : S → R is a function satisfying that u(z) = 0, for all z ∈ ∂S.

By C(S) we mean the set of all functions u : S → R satisfying that u(z) = 0,
for all z ∈ ∂S.

For u0 ∈ C(S), q ≥ 1 and t0 > 0, consider a Banach space

Xt0 = {u : S × [0, t0] → R | u(x, ·) ∈ C ([0, t0]) for each x ∈ S}

with the norm ‖u‖Xt0
:= maxx∈S max0≤t≤t0 |u(x, t)|. Then it is clear that C(S) ⊂

Xt0 .

Then it is easy to see that the operator D:Xt0 → Xt0 , defined by

D[u](x, t) :=

{

u0(x) +
∫ t

0
∆ωu(x, s)ds+

∫ t

0
|u|q−1(x, s)u(x, s)ds, S × [0, t0]

0, ∂S × [0, t0],

is well-defined. In the next lemma we show that this operator is contractive on
the closed ball so that we obtain the existence and uniqueness of solutions to the
equation (2) in the time interval [0, t0], for t0 small enough, as a consequence of
Banach’s fixed point theorem. In fact, For u0 ∈ C(S), it is noted that u is a solution
of the initial value problem







ut = ∆ωu+ |u|q−1u in S × (0,∞),
u = 0 on ∂S × (0,∞),
u(·, 0) = u0 on S,

if and only if it is a fixed point of D, that is, D[u] = u.

Lemma 2.1. The operator D is a contraction on the closed ball

B(u0, 2‖u0‖Xt0
) :=

{

u ∈ Xt0 | ‖ u− u0 ‖Xt0
≤ 2‖u0‖Xt0

}

if t0 is small enough.

Proof. Consider u and v ∈ B(u0, 2‖u0‖Xt0
). Then for (x, t) ∈ S × [0, t0],

|D[u](x, t)−D[v](x, t)|

=

∣

∣

∣

∣

∫ t

0

∆ω(u− v)(x, s)ds +

∫ t

0

|u|q−1(x, s)u(x, s)− |v|q−1(x, s)v(x, s)ds

∣

∣

∣

∣

≤
[

2|S| max
(x,y)∈E

ω(x, y)‖u− v‖Xt0
+ qmax

x∈S

max
0≤s≤t

|η(x, s)|q−1‖u− v‖Xt0

]

t

≤
[

2|S| max
(x,y)∈E

ω(x, y)‖u− v‖Xt0
+ q(3‖u0‖Xt0

)q−1‖u− v‖Xt0

]

t0

= C1t0‖u− v‖Xt0
,
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where |η(x, s)| < max{‖u‖Xt0
, ‖v‖Xt0

} for (x, s) ∈ S× [0, t], derived from the mean

value theorem and C1 = 2|S|max(x,y)∈E ω(x, y) + q(3‖u0‖Xt0
)q−1. Moreover, it is

easy to see that the above inequality still holds for (x, t) ∈ ∂S× [0, t0]. Hence choos-
ing t0 sufficiently small, we obtain a contraction on the closed ball B(u0, 2‖u0‖Xt0

)
into itself. The proof is thus complete.

The local existence and uniqueness is then assured and therefore the exis-
tence and uniqueness of the maximal solution for the above initial value problem,
according to ODE theory, for example, Wintner’s Lemma (see [10]).

3. DISCRETE VERSION OF COMPARISON PRINCIPLES

We devote this section to proving the comparison principle for the discrete
reaction-diffusion equation (2) in order to study the blow-up occurrence and global
existence, which we begin in the next section.

Define
ST := S × (0, T ) and ST := S × [0, T ).

By C1(ST ), we denote set of all functions u : S× [0, T ) → R, satisfying that
for each x ∈ S, u(x, ·) is continuous on [0, T ) and continuously differentiable (0, T ).

Now, we state the comparison principles and some related corollaries.

Theorem 3.2 (Comparison Principle: Discrete Version). Let T > 0 be arbitrarily

given (may be infinite) and q ≥ 1. Suppose that u and v ∈ C1(ST ) satisfy the

inequality

(3)











ut −∆ωu− |u|q−1u ≥ vt −∆ωv − |v|q−1v in ST ,

u ≥ v on ∂S × [0, T ),

u(·, 0) ≥ v(·, 0) on S.

Then u ≥ v on S × [0, T ).

Proof. Let T ′ > 0 be arbitrary given with T ′ < T. For each k ∈ R, let ũ, ṽ :
S × [0, T ′] → R be the functions defined by

ũ(x, t) := e−ktu(x, t); ṽ(x, t) := e−ktv(x, t).

From (3) we have, applying the mean value theorem,

ekt(ũt − ṽt)(x, t)− ekt∆ω(ũ− ṽ)(x, t) + ekt[k − qξq−1(x, t)e(q−1)kt](ũ− ṽ)(x, t) ≥ 0

for all (x, t) ∈ S×(0, T ′], where |ξ(x, t)| < max{|ũ(x, t)|, |ṽ(x, t)|}. Multiplying e−kt

on both sides, we have

(4) (ũt − ṽt)(x, t)−∆ω(ũ− ṽ)(x, t) + [k − qξq−1(x, t)e(q−1)kt](ũ− ṽ)(x, t) ≥ 0
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for all (x, t) ∈ S × (0, T ′]. Let λ : S × [0, T ′] → R be a function by

λ(x, t) := ũ(x, t)− ṽ(x, t).

Since λ(x, ·) is continuous on [0, T ′] for each x ∈ S, λ has a minimum value on
S × [0, T ′], that is,

λ(x0, t0) = min
x∈S

min
0≤t≤T ′

λ(x, t).

Then we have only to show that λ(x0, t0) ≥ 0. Suppose that λ(x0, t0) < 0, on the
contrary. Since λ ≥ 0 on both ∂S×[0, T ′] and S×{0}, we have (x0, t0) ∈ S×(0, T ′].
It follows from the differentiability of λ(x, ·) in (0, T ′] for each x ∈ S that

(5) λt(x0, t0) ≤ 0.

It is clear that

λ(y, t0)− λ(x0, t0) ≥ 0 for all y ∈ S

which implies

(6) ∆ωλ(x0, t0) ≥ 0.

Now we note that

|qξq−1(x0, y0)e
(q−1)kt0 | < qe(q−1)kt0 max{|ũ(x0, t0)|

q−1, |ṽ(x0, t0)|
q−1}

= qmax{|u(x0, t0)|
q−1, |v(x0, t0)|

q−1}.

Then we choose k > 0 sufficiently large so that k−qξq−1(x0, t0)e
(q−1)kt0 > 0, which

gives

(7) [k − qξq−1(x0, t0)e
(q−1)kt0 ]λ(x0, t0) < 0.

Combining (5), (6) and (7), we obtain

λt(x0, t0)−∆ωλ(x0, t0) + [k − qξq−1e(q−1)kt0 ]λ(x0, t0) < 0,

which contradicts (4). Therefore, u ≥ v on S × (0, T ′]. Since T ′ < T is arbitrarily
given, we finally get u ≥ v on S × (0, T ).

According to the above comparison principle, it is easy to obtain the unique-
ness of solutions to the equation (2), which is stated as follows.

Corollary 3.3 (Uniqueness). The equation (2) has a unique solution.

The following theorem describes solutions which have non-trivial initial con-
ditions in S.

Theorem 3.4 (Strict Comparison Principle: Discrete Version). Under the same

hypotheses as in Theorem 3.2 above, we have u > v on S×(0, T ) if u0(x0) > v0(x0)
for some x0 ∈ S.
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Proof. Note that u ≥ v on S × [0, T ) by Theorem 3.2. Let T ′ > 0 be arbitrary
given T ′ < T. Let λ : S × [0, T ′] → R be a function defined by

λ(x, t) := u(x, t)− v(x, t).

Then λ(x, t) ≥ 0 on S × [0, T ′] and summing the equations on S, we have, for each
t ∈ (0, T ′],

∑

x∈S

λt(x, t) ≥
∑

x∈S

∆ωλ(x, t) +
∑

x∈S

[uq(x, t) − vq(x, t)].

We note that

∑

x∈S

∆ωλ(x, t) =
∑

x∈S

∑

y∈S

[λ(y, t)− λ(x, t)]ω(x, y)

=
∑

x∈S

∑

y∈S

[λ(y, t)− λ(x, t)]ω(x, y) +
∑

x∈S

∑

y∈∂S

[λ(y, t)− λ(x, t)]ω(x, y)

≥ −
∑

x∈S

∑

y∈∂S

λ(x, t)ω(x, y) ≥ −K
∑

x∈S

λ(x, t),

where K = maxx∈S

∑

y∈∂S

ω(x, y) and

uq(x, t)− vq(x, t) = qξq−1(x, t)[u(x, t)− v(x, t)]

on S × [0, T ′], where |ξ(x, t)| < m := max(x,t)∈S×[0,T ′]{|u(x, t)|, |v(x, t)|}. Then it
follows that

(8)
∑

x∈S

λt(x, t) ≥ −K ′
∑

x∈S

λ(x, t), t ∈ (0, T ′],

where K ′ := K + qmq−1. This implies

(9)
∑

x∈S

λ(x, t) ≥ C0 e
−K′t, t ∈ (0, T ′],

where C0 :=
∑

x∈S

λ(x, 0) > 0.

Now, suppose that there exists a (x∗, t∗) ∈ S× (0, T ′] such that λ(x∗, t∗) = 0,
that is,

λ(x∗, t∗) = min
x∈S

min
0<t≤T ′

λ(x, t).

Then it follows from the differentiability of λ(x, ·) in (0, T ′] for each x ∈ S that

λt(x
∗, t∗) ≤ 0.
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From the first inequality in (3), we have

0 ≥ λt(x
∗, t∗) ≥ ∆ωλ(x

∗, t∗) + [uq(x∗, t∗)− vq(x∗, t∗)]

=
∑

y∈S

λ(y, t∗)ω(x∗, y) ≥ 0,

which implies that λ(y, t∗) = 0 for all y ∈ S with y ∼ x∗. Now, for any x ∈ S, there
exists a path

x∗ ∼ x1 ∼ · · · ∼ xn−1 ∼ xn = x,

since S is connected. By applying the same argument as above inductively we see
that λ(x, t∗) = 0 for every x ∈ S. This gives a contradiction to (9). Since T ′ < T
is arbitrarily given, we finally get u > v on S × (0, T ).

We note that the comparison principle as in Theorem 3.2 is not true in general
for 0 < q < 1, so that the uniqueness of solutions (2) is not guaranteed. But, we
present here a similar version of the comparison principle for 0 < q < 1, under a
little bit stronger boundary conditions.

Theorem 3.5. Let T > 0 (T may be +∞) and q > 0. Suppose that u and v ∈
C1(ST ) satisfy the inequality

(10)



















ut (x, t)−∆ωu (x, t)− u(x, t)|u(x, t)|q−1

≥ vt (x, t)−∆ωv (x, t)− v(x, t)|v(x, t)|q−1 , (x, t) ∈ ST ,

u (x, t) > v (x, t) , (x, t) ∈ ∂S × [0, T ),

u (·, 0) > v (·, 0) , x ∈ S.

Then u (x, t) ≥ v (x, t) for all (x, t) ∈ S × (0, T ) .

Proof. Let T ′ > 0 and δ > 0 be arbitrary given with T ′ < T and 0 < δ <
min(v,t)∈Γ(u − v)(x, t), respectively where Γ := {(x, t) ∈ S × [0, T ′] | t = 0 or x ∈
∂S}, called a parabolic boundary.

Now, define a function λ : S × (0, T ′] → R be a function defined by

λ(x, t) := [u(x, t)− v(x, t)]− δ, (x, t) ∈ S × (0, T ′]

Then λ(x, t) > 0 on Γ. Now, we suppose that minx∈S,0<t≤T ′ λ(x, t) < 0. Then there
exists (x0, t0) ∈ S × (0, T ′] such that

(i) λ(x0, t0) = 0,

(ii) λ(y, t0) ≥ τ(x0, t0) = 0, y ∈ S,

(iii) λ(x, t) > 0, (x, t) ∈ S × (0, t0).

Then τt(x0, t0) ≤ 0 and since u (y, t0)− u (x0, t0) ≥ v (y, t0)− v (x0, t0) , we obtain

∆ωu (x0, t0) ≥ ∆ωv (x0, t0) .
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Hence, the equation (10) gives

0 ≥ λt (x0, t0) ≥ |u (x0, t0)|
q−1

u (x0, t0)− |v (x0, t0)|
q−1

v (x0, t0)

= |v (x0, t0) + δ|
q−1

(v (x0, t0) + δ)− |v (x0, t0)|
q−1

v (x0, t0) > 0,

which leads a contradiction. Hence, λ(x, t) ≥ 0 for all (x, t) ∈ S × (0, T ′] so that
we have u(x, t) ≥ v(x, t) for all (x, t) ∈ S × (0, T ), since δ and T ′ are arbitrary.

Definition 3.6. A real-valued function u is a super-solution of the equation (2) if
it satisfies







ut ≥ ∆ωu+ |u|q−1u in S × (0,∞),
u ≥ 0 on ∂S × (0,∞),
u(·, 0) ≥ u0 on S.

A sub-solution is defined similarly by reversing the inequalities.

The followings are easy consequences of the above theorems.

Corollary 3.7. Let u be a super-solution to the equation (2). Then we have u ≥ 0
on S × [0,∞). Moreover, u > 0 on S × (0,∞) if u0 is non-trivial on S.

Corollary 3.8. Let u be a super-solution and v be a sub-solution to the equation

(2), respectively. Then u ≥ v on S × [0,∞). Moreover, u > v on S × (0,∞) if

u0(x0) > v0(x0) for some x0 ∈ S.

4. BLOW-UP AND GLOBAL EXISTENCE

Throughout this section we assume that the initial data u0 ∈ C(S) are non-
negative on S and non-trivial on S. As seen in the previous sections, we see that a
solution to the equation (2) with T = ∞ is nonnegative on S × [0,∞). Hence, the
reaction term |u|q−1u of the equation (2) can be written as uq.

Now, we study whether a solution to

(11)







ut = ∆ωu+ uq in S × (0,∞),
u = 0 on ∂S × (0,∞),
u(·, 0) = u0 on S,

exists globally in time, or blows up in finite time. If the blow-up occurs, we want
to find out the blow-up time (see [1]) and rate (see [4]). For general references on
blow-up problems we refer to surveys [1] and [12].

First we introduce the concept of blow-up and begin to discuss the sufficient
conditions to guarantee that the solution blows up.

Definition 4.9 (Blow-up in a finite time T ). We say that a solution u to the

equation (11) blows up (or is a thermal runaway) at t = T, if there exists x ∈ S
such that |u(x, t)| → +∞ as t ր T. In this case, we say that the solution blows up

in finite time if T is finite.
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Theorem 4.10. Let u be a solution of the equation (11) and consider y0 =
∑

x∈S

u0(x) and K = maxx∈S

∑

y∈∂S

ω(x, y). Then :

(i) If 0 < q ≤ 1, then the solution is global.

(ii) If q > 1 and y0 > K
1

q−1 · |S|, then the solution blows up.

Moreover, the blow-up time T in (ii) satisfies

T ≤
1

K(q − 1)
ln

[

1−K ·
( |S|

y0

)q−1
]−1

.

Proof. First, we prove (i). Consider the following ODE problem






d

dt
z(t) = zq (t) , t > 0,

z (0) = maxx∈S u0(x) + 1.

Then we have
{

z (t) =
[

(1− q) t+ z1−q (0)
]

1
1−q , q 6= 1,

z (t) = z (0) et, q = 1,

for every t ≥ 0.
Take v (x, t) := z (t) for all x ∈ S and t ≥ 0. Then it is easy to see that v(x, t) >
u(x, t), (x, t) ∈ ∂S × (0,+∞), v(x, 0) = z(0) > maxx∈S u0(x), x ∈ S, and

vt (x, t)−∆ωv (x, t)− vq (x, t) =
d

dt
z (t)− zq (t) = 0.

Thus, 0 ≤ u(x, t) ≤ v(x, t) = z(t), (x, t) ∈ S × (0,+∞) by Theorem 3.5. This
implies that u must be global.

Secondly, we prove (ii). Assume that q > 1. Then summing on S the equation
(11), we get

∑

x∈S

ut(x, t) ≥ −K
∑

x∈S

u(x, t) + |S|1−q

[

∑

x∈S

u(x, t)

]q

.

Here, we used Jensen’s inequality and the same technique as in the proof of Theorem

3.4. Multiplying
[

∑

x∈S

u(x, t)
]−q

on both sides of the inequality and letting η(t) :=

[

∑

x∈S

u(x, t)
]1−q

, we have

η′(t) ≤ K(q − 1)η(t) + (1− q)|S|1−q.

Using the differential inequality, we have

η(t) ≤ eK(q−1)t

[

η(0) +
|S|1−q

K
(eK(1−q)t − 1)

]

.
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Let y(t) :=
∑

x∈S

u(x, t). Then

y1−q(t) ≤ eK(q−1)t

[

y1−q
0 −

|S|1−q

K
+

|S|1−q

K
eK(1−q)t

]

.

This is equivalent to

(12) yq−1(t) ≥
1

(

y1−q
0 −

|S|1−q

K

)

eK(q−1)t +
|S|1−q

K

.

Thus, if yq−1
0 > K · |S|q−1, the solution blows up and we have the following estimate

for the blow-up time:

T ≤
1

K(q − 1)
ln

[

1−K ·
( |S|

y0

)q−1
]−1

.

Remark. In (ii) above, if the condition y0 > K
1

q−1 · |S| is dropped, then the solution can
be global. For example, consider a function

v(x, t) := αφ1(x), x ∈ S, t > 0,

where 0 < α ≪ 1 and
{

−∆ωφ1(x) = λ1φ1(x), x ∈ S,

φ1(x) = 0, x ∈ ∂S.

Note that it is well-known that λ1 > 0 and φ1(x) > 0 for all x ∈ S. (see [5]). Then

vt(x, t)−∆ωv(x, t)− v
q(x, t) = αφ1(x)[λ1 − α

q−1
φ
q−1
1 (x)] > 0

on S×(0,∞). Now, let u(x, t) be a solution to the equation (11). Then v(x, t) = u(x, t) = 0
on ∂S × (0,∞). If u0(x) ≤ v(x, 0) = αφ1(x) for a sufficiently small α > 0, then it follows
from Theorem 3.2 that

0 ≤ u(x, t) ≤ v(x, t)

on S × [0,∞), which implies that u(x, t) must be global.

Now, we derive the blow-up rate for the solution of the equation (11).

Theorem 4.11. Let q > 1 and u be a solution to the equation (11) blowing up at

finite time T. Then :

(i) (The lower bound)

max
x∈S

u(x, t) ≥
( 1

q − 1

)

1
q−1

(T − t)
−

1
q−1 , t > 0.

(ii) (The upper bound)

max
x∈S

u(x, t) ≤
[

(q − 1)(T − t)−
1

2
d(q − 1)2(T − t)2

]−
1

q−1
, t > 0,

where d = maxx∈S dωx.
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(iii) (The blow up rate)

lim
t→T−

(T − t)
1

q−1 max
x∈S

u(x, t) =

(

1

q − 1

)

1
q−1

.

Proof. First, we prove (i). Note that u > 0 on S × (0,∞) by Theorem 3.4. Let
T be the finite maximal time of existence of a blow-up solution and xt ∈ S be
a node such that u(xt, t) = maxx∈S u(x, t) for each t > 0. In fact, we note that
maxx∈S u(x, t) is differentiable almost everywhere for each x ∈ S. Then we now
have lim

t→T−

u(xt, t) = ∞ and the equation (11) at the node xs for almost all s > 0

can be written as follows:

ut(xs, s) = ∆ωu(xs, s) + uq(xs, s)(13)

=
∑

y∈S

[u(y, s)− u(xs, s)]ω(xs, y) + uq(xs, s) ≤ uq(xs, s).

Integrating (13) in (t, T ), and taking into account that q > 1, we obtain

T − t ≥

∫ T

t

us(xs, s)

uq(xs, s)
ds =

∫ ∞

u(xt,t)

1

uq
du =

1

q − 1
u1−q(xt, t).

Hence we obtain

u(xt, t) ≥

(

1

q − 1

)

1
q−1

(T − t)
−

1
q−1 .

Next, we prove (ii). As in the previous theorem, we get the following estimate:

ut(xs, s) = ∆ωu(xs, s) + uq(xs, s) =
∑

y∈S

[u(y, s)− u(xs, s)]ω(xs, y) + uq(xs, s)

≥ −
∑

y∈S

u(xs, s)ω(xs, y) + uq(xs, s)

= −du(xs, s) + uq(xs, s) = uq(xs, s)[1− du1−q(xs, s)],

for each s > 0, where d = maxx∈S dωx. By the lower-bound of u(xs, s) in (i), we
have

(14) ut(xs, s) ≥ uq(xs, s)[1− d(q − 1)(T − s)].

Integrating (14) over (t, T ), the upper-bound can be derived by a method similar
to that used in (i).

Finally, (iii) can be easily obtained by (i) and (ii).
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5. EXAMPLES AND NUMERICAL ILLUSTRATIONS

In this section, we show some examples and numerical illustrations to our
results in the previous section.

First, we consider a digon, that is, a graph S = {x1} with ∂S = {x2} and
ω(x1, x2) = 1. Thus, the equation (11) can be rewritten as

(15)







ut(x1, t) = −u(x1, t) + uq(x1, t), t ∈ (0,∞)
u(x2, t) = 0, t ∈ (0,∞)
u(x1, 0) = u0 > 0.

When q = 1, the solution u(x1, t) = u0, t ∈ [0,∞), which is global. For q > 1,
then the equation (15) is well-known Bernoulli equation. The explicit solution to
the equation (15) is as follows:

(16) u(x1, t) =
[

(u1−q
0 − 1)e(q−1)t + 1

]

1
1−q

.

If u1−q
0 − 1 < 0, then it is easy to see that u(x1, t) blows up in finite time and the

blow-up time is

T =
− ln(1 − u1−q

0 )

(q − 1)
.

Moreover, a tedious calculation makes us to get the following limit:

lim
t→T−

(T − t)
1

q−1 u(x1, t) = lim
t→T−

[

(T − t)
[(

u
1−q
0 − 1

)

e
(q−1)t + 1

]

−1
]

1
q−1

=

(

1

q − 1

)

1
q−1

.

Now, we consider a path on 30 vertices, that is, S = {x2, · · ·x29}

◦x1
•x2

•x3
· · · · · · · · · •x28

•x29
◦x30

Figure 1. Graph S

with the boundary ∂S = {x1, x30} and a weight ω as

ω(xj , xj+1) =

{

1, j = 1, 2, . . . , 29,
0, otherwise.

Example 5.12. For the above graph S, we put q = 2.5 in Theorem 4.10. The initial
condition u0 is given by Table 1.

Node i u0(xi) Node i u0(xi) Node i u0(xi)

1 0 11 0 21 1
2 1 12 2 22 2
3 2 13 3 23 3
4 3 14 4 24 4
5 4 15 5 25 5
6 5 16 4 26 4
7 4 17 3 27 3
8 3 18 2 28 2
9 2 19 1 29 1
10 1 20 0 30 0

Table 1. Initial values u0 of u
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By simple calculation, we see that the initial value u0 of Table 1 satisfies the hy-
pothesis of Theorem 4.10 (ii) where the solution to the equation (11) blows up. Figure 2
shows the blow-up in time of a solution u beginning with u0. The computed blow-up time
T to the solution u is

T < 2120.

In particular, Figure 2 shows the blow-up occurrence to the solution at some nodes x1,

x11 and x14.

Figure 2. Blow-up solution u
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Figure 3. Behaviors of ln u at nodes x1, x11 and x14

Example 5.13. For the above graph S with the same initial condition u0 in Example 5.12,
we put q = 1. Figure 4 shows that the solution is global and the global behavior of node
x17 and x21 in time.
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Figure 4. Global solution u and Behaviors of node x17 and x21

Example 5.14. For the above graph S, we put q = 1.5 in Theorem 4.10. The initial

condition u0 is given by Table 2. Then y0 ≤ K
1

q−1 · |S|. Figure 5 shows the solution u of
equation (11) is global even if q > 1 and the behaviors the node x8 and x13.

Node i u0(xi) Node i u0(xi) Node i u0(xi)

1 0 11 0.1 21 0.2
2 0.05 12 0.15 22 0.15
3 0.1 13 0.2 23 0.1
4 0.15 14 0.15 24 0.05
5 0.2 15 0.1 25 0
6 0.15 16 0.05 26 0.05
7 0.1 17 0 27 0.1
8 0.05 18 0.05 28 0.15
9 0 19 0.1 29 0.2
10 0.05 20 0.15 30 0

Table 2. Initial Values of u
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Figure 5. Global solution u and Behaviors of node x8 and x13
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