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DIRICHLET–TO–ROBIN MAPS ON FINITE

NETWORKS

Cristina Araúz, Ángeles Carmona, Andrés M. Encinas

Our aim is to characterize those matrices that are the response matrix of
a semi–positive definite Schrödinger operator on a circular planar network.
Our findings generalize the known results and allow us to consider both non-
singular and non diagonally dominant matrices as response matrices. To this
end, we define the Dirichlet–to–Robin map associated with a Schrödinger
operator on general networks, and we prove that it satisfies the alternating

property which is essential to characterize the response matrices.

1. INTRODUCTION

Inverse boundary value problems were introduced by Alberto Calderón

in 1950, although this work was not published until the 80’s, see [7]. Its first
applications are found in geophysical electrical prospection and electrical impedance
tomography. The corresponding mathematical problem is whether it is possible to
determine the conductivity of a body by means of boundary measurements. This
problem is exponentially ill–posed, since its solution is highly sensitive to changes
in the boundary data.

Inverse boundary value problems have been considered both in the continuum
and discrete fields. The Dirichlet–to–Neumann map plays an important role in both
frameworks, since it is the main tool that allows us to determine from boundary
measurements the information in the interior of the domain.

We are here concerned with the discrete version of this problem. This point
of view is important in applications since finite network models arise in finite vol-
ume discretizations of the elliptic partial differential equation that model the con-
tinuos inverse problem, see [5, 6, 11]. In this framework, the characterization

2010 Mathematics Subject Classification. 05C40, 05C50, 90B10, 94C15.
Keywords and Phrases. Finite networks, Schrödinger operator, Dirichlet–to–Robin map, Schur

complement, inverse problem.

85
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of the networks that allow the recovery of the conductance is essential. When the
combinatorial Laplacian is considered, the matrix associated with the Dirichlet–to–
Neumann map is known as the response matrix of the network, which is a singular,
symmetric and diagonally dominant M–matrix; see [9]. Curtis et al. characterized
in [8], those singular, symmetric and diagonally dominant M–matrices that are the
response matrix of a circular planar network.

In this paper, we first define the Dirichlet–to–Robin map associated with a
Schrödinger operator on a general network, and then we derive some of its prop-
erties. These properties are analogs of those that characterize the Dirichlet–to–
Neumann maps, see [8] for circular planar networks and [11] for the continuous
case. In particular, we prove that the Dirichlet–to–Robin map of a general net-
work is a self–adjoint, positive semi–definite operator, whose kernel is related with
the second normal derivative of the Green operator, and it is negative off–diagonal
and positive on the diagonal. Furthermore, we prove the alternating property for
the Dirichlet–to–Robin map that is essential to characterize the response matrices.
The proof of this property follows the guidelines of the continuous case and makes
a deep use of the monotonicity property for Schrödinger operators. We remark that
the alternating property is an important tool to built recovery algorithms for the
conductances as it is shown in [1] for the case of spider networks.

Second, we extend the characterization given in [8] by removing the hypothe-
ses of singularity and diagonal dominance. Therefore, we obtain a wider class of
matrices that may be the response matrix of a circular planar network.

One of the most surprising facts about the conductance recovery is that a
response matrix can be the response matrix of a family of Schrödinger operators
associated with different conductances and potentials. This occurs even when the
Dirichlet–to–Neumann map associated with the combinatorial Laplacian is consid-
ered. This lack of uniqueness is due to the fact that the eigenfunction corresponding
to the lowest eigenvalue of the response matrix can be extended to the network as
a weight in infinite ways. Therefore, by choosing a specific extension we arrive at
a unique Schrödinger operator whose Dirichlet–to–Robin map corresponds to the
initial matrix.

Summarizing, here we have proved the alternating property for non–singular
response matrices for arbitrary networks. On one hand, the alternating property is
an structural property that the response matrices associated with a wider family
of difference operator must fulfill. These operators are discrete Schrödinger opera-
tors that correspond to the discrete version of the ones studied in the continuous
case. On the other hand, since the continuos bi–dimensional case is completely
characterized, the literature for the discrete case is mainly devoted to the study
of planar finite networks. Therefore, this work can be also considered as an ad-
vance toward the recovery of the conductance for non-planar networks that can
approximate multidimensional domains.
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2. PRELIMINARIES

Let Γ = (V, c) be a finite network; that is, a finite connected graph without
loops nor multiple edges, with vertex set V. Let E be the set of edges of the network
Γ. Each edge (x, y) has been assigned a conductance c(x, y), where c : V × V −→
[0,+∞). Moreover, c(x, y) = c(y, x) and c(x, y) = 0 if (x, y) /∈ E. Then, x, y ∈ V
are adjacent, x ∼ y, iff c(x, y) > 0. We denote by V (x), the set of neighbours of

x ∈ V ; that is, the set of vertices adjacent to x. Observe that x /∈ V (x).

The set of functions on a subset F ⊆ V, denoted by C(F ), and the set of non–
negative functions on F, C+(F ), are naturally identified with R

|F | and the positive
cone of R|F |, respectively. Note that if f ∈ C(F ), we can extend f to a function on
V by defining f(x) = 0 for all x ∈ V \ F.

We denote by
∫
F
u(x)dx or simply by

∫
F
u the value

∑

x∈F

u(x). Moreover, if

F is a non empty subset of V, its characteristic function is denoted by χ
F
. When

F = {x}, its characteristic function will be denoted by εx. If u ∈ C(V ), we define
the support of u as supp(u) = {x ∈ V : u(x) 6= 0}.

If we consider a proper subset F ⊂ V, then its boundary δ(F ) is given by the
vertices of V \ F that are adjacent to at least one vertex of F. It is easy to prove
that F̄ = F ∪ δ(F ) is connected when F is. Any function ω ∈ C+(F̄ ) such that

supp(ω) = F̄ and
∫
F̄
ω2 = 1 is called weight on F̄ . The set of weights is denoted by

Ω(F̄ ). We denote by kF the function kF (x) =
∑

y∈F

c(x, y).

We define the normal derivative of u ∈ C(F̄ ) on F as the function in C(δ(F ))
given by

(
∂u

∂n
F

)
(x) =

∫

F

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).

Given S, T ⊂ V, we define

C(S × T ) = {f : V × V −→ R : f(x, y) = 0 if (x, y) /∈ S × T }.

In particular, any function K ∈ C(F × F ) is called a kernel on F.

If K is a kernel on F, for each x, y ∈ F we denote by Kx and Ky the
functions of C(F ) defined by Kx(y) = Ky(x) = K(x, y). The integral operator

associated with K is the endomorphism K : C(F ) −→ C(F ) that assigns to each

f ∈ C(F ), the function K (f)(x) =
∫
F
K(x, y) f(y)dy for all x ∈ V. Conversely,

given an endomorphism K : C(F ) −→ C(F ), the associated kernel is given by
K(x, y) = K (εy)(x). Clearly, kernels and operators can be identified with matrices,
after giving a label on the vertex set. In addition, a function u ∈ C(F ) can be
identified with the kernel K(x, x) = u(x) and K(x, y) = 0 otherwise and hence
with a diagonal matrix, that will be denoted by Du.

When K is a kernel on F̄ , for each x ∈ δ(F ) and each y ∈ F̄ , we denote

by
(
∂K

∂nx

)
(x, y) the value

(
∂K

y

∂nF

)
(x), whereas for each x ∈ F̄ and each y ∈ δ(F )
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we denote by
(
∂K

∂ny

)
(x, y) the value

(
∂Kx

∂n
F

)
(y). Clearly,

∂K

∂nx
∈ C(δ(F ) × F̄ ) and

∂K

∂ny
∈ C(F̄ × δ(F )) and hence both are kernels on F̄ .

Lemma 1. If K is a kernel on F̄ , then it satisfies
∂
2
K

∂nx∂ny
=

∂
2
K

∂ny∂nx
∈ C(δ(F ) ×

δ(F )). Moreover, for any x, y ∈ δ(F )
(

∂2K

∂nx∂ny

)
(x, y) = k

F
(x)k

F
(y)K(x, y)− k

F
(x)

∫

F

c(y, z)K(x, z)dz

− k
F
(y)

∫

F

c(x, z)K(z, y)dz +

∫

F

∫

F

c(x, u)c(y, z)K(u, z) du dz.

In addition,
(

∂
2
K

∂nx∂ny

)
is a symmetric kernel when K is.

The combinatorial Laplacian of Γ is the linear operator L : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function defined for all x ∈ V as

L (u)(x) =

∫

V

c(x, y)
(
u(x)− u(y)

)
dy.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear
operator Lq : C(V ) −→ C(V ) that assigns to each u ∈ C(V ) the function Lq(u) =
L (u) + qu. It is well–known that any Schrödinger operator is self–adjoint. The
relation between the values of the Schrödinger operator with potential q on F and
the values of the normal derivative at δ(F ) is given by the First Green Identity,
proved in [3]
∫

F

vLq(u) =
1

2

∫

F̄

∫

F̄

c
F
(x, y)(u(x)−u(y))(v(x)−v(y)) dxdy+

∫

F

quv−

∫

δ(F )

v
∂u

∂n
F

,

where u, v ∈ C(F̄ ) and c
F
= c ·χ

(F̄×F̄ )\(δ(F )×δ(F ))
. A direct consequence of the above

identity is the so–called Second Green Identity
∫

F

(
vLq(u)− uLq(v)

)
=

∫

δ(F )

(
u

∂v

∂n
F

− v
∂u

∂n
F

)
, for all u, v ∈ C(F̄ ).

In particular, taking v = χ
F̄
in the Second Green Identity we obtain the so–called

Gauss Theorem

(1)

∫

F

L (u) = −

∫

δ(F )

∂u

∂n
F

, for all u ∈ C(F̄ ).

A function u ∈ C(F̄ ) is called q–harmonic on F iff Lq(u) = 0 on F. We define
the energy associated with F and q as the symmetric bilinear form EF

q : C(F̄ ) ×

C(F̄ ) −→ IR given for any u, v ∈ C(F̄ ) by

(2) EF
q (u, v) =

1

2

∫

F̄

∫

F̄

c
F
(x, y)

(
u(x)− u(y)

) (
v(x) − v(y)

)
dxdy +

∫

F̄

q u v.
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In particular, when q = 0, the energy will be denoted by EF . From the First Green
Identity, for any u, v ∈ C(F̄ ) we get that

(3) EF
q (u, v) =

∫

F

vLq(u) +

∫

δ(F )

v

[
∂u

∂n
F

+ qu

]
.

Some of the present authors characterized in [4] when the energy is positive
semi–definite by defining the potential associated with a weight. For any weight
σ ∈ Ω(F̄ ), the so–called potential associated with σ is the function in C(F̄ ) defined

as qσ = −σ−1L (σ) on F, qσ = −σ−1 ∂σ

∂n
F

on δ(F ).

Observe that qσ = 0 iff σ = aχ
F̄
, with a > 0 . More generally, from Gauss

Theorem, we obtain that
∫
F̄
σ qσ = 0, which implies that qσ must take positive and

negative values, except when σ = aχ
F̄
, a > 0.

We end this section with some terminology following the guidelines of [8].
Given S = {s1, . . . , sk} and T = {t1, . . . , tk} disjoint subsets of δ(F ), there exist k
paths, γ1, . . . , γk, such that γi starts at si ends at ti and γi \ {si, ti} ⊂ F, since F is
connected. The pair (S;T ) is called connected through Γ, when there exist k paths
connecting S and T that are mutually disjoint.

The network Γ = (F̄ , c
F
) is called a circular planar network if it can be

embedded in a closed disc D in the plane so that the vertices in F lie in
◦

D and
vertices in δ(F ) lie on the circumference C = ∂D. In this case, the vertices in
δ(F ) can be labelled in the clockwise circular order. The pair (S;T ) of boundary
vertices is called a circular pair if the set (s1, . . . , sk; t1, . . . , tk) is in circular or-
der. When the network is not circular planar, we can label the boundary nodes,
say δ(F ) = {p1, . . . , pn}, where n = |δ(F )|. In this case, a subset {s1, . . . , sk} of
boundary nodes is called an ordered set if there exists a non decreasing function
σ : {1, . . . , k} −→ {1, . . . , n} such that sj = pσ(j). The pair (S;T ) is called or-

dered pair if (s1, . . . , sk; t1, . . . , tk) is an ordered set. Notice that in the definition
of ordered set we are not assuming that the vertices in S nor T are different, but
S ∩ T = ∅.

3. DOOB TRANSFORM

In order to study the positive semi–definiteness of Schrödinger operators,
some of the present authors introduced the so–called Doob transform which is a
useful tool in the framework of Dirichlet forms, see [3]. In the next result, we adapt
this technique for a network with boundary; that is, Γ = (F̄ , c

F
).

Proposition 2 (Doob Transform). Given σ ∈ Ω(F̄ ), then for any u ∈ C(F̄ ) the
following identities hold:

L (u)(x) =
1

σ(x)

∫

F̄

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy − qσ(x)u(x), x ∈ F,

(
∂u

∂n
F

)
(x) =

1

σ(x)

∫

F

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy − qσ(x)u(x), x ∈ δ(F ).
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In addition, for any u, v ∈ C(F̄ ) we get that

EF(u, v) =
1

2

∫

F̄

∫

F̄

c
F
(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)(
v(x)

σ(x)
−
v(y)

σ(y)

)
dxdy−

∫

F̄

qσu v.

Proof. First observe that

σ(x)
(
u(x)− u(y)

)
= σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
+
(
σ(x) − σ(y)

)
u(x),

for any x, y ∈ F̄ . So, if x ∈ F, then

L (u)(x) =

∫

F̄

c(x, y)
(
u(x)− u(y)

)
dy

=
1

σ(x)

∫

F̄

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy +

u(x)

σ(x)

∫

F̄

c(x, y)
(
σ(x)− σ(y)

)
dy

=
1

σ(x)

∫

F̄

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy − qσ(x)u(x),

whereas if x ∈ δ(F ), then

∂u

∂n
F

(x) =

∫

F

c(x, y)
(
u(x)− u(y)

)
dy

=
1

σ(x)

∫

F

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy − qσ(x)u(x).

Finally, from Identity (3), we get that

EF (u, v) =

∫

F

v(x)

σ(x)

∫

F̄

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy dx

+

∫

δ(F )

v(x)

σ(x)

∫

F

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dy dx−

∫

F̄

qσu v

=

∫

F̄

∫

F̄

c
F
(x, y)σ(x)σ(y)

v(x)

σ(x)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dxdy −

∫

F̄

qσu v.

Therefore, the last claim is consequence of the following identities,

∫

F̄

∫

F̄

c
F
(x, y)σ(x)σ(y)

v(x)

σ(x)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dxdy

=

∫

F̄

∫

F̄

c
F
(y, x)σ(y)σ(x)

v(y)

σ(y)

(
u(y)

σ(y)
−

u(x)

σ(x)

)
dy dx

= −

∫

F̄

∫

F̄

c
F
(x, y)σ(x)σ(y)

v(y)

σ(y)

(
u(x)

σ(x)
−

u(y)

σ(y)

)
dxdy,

where we have taken into account the symmetry of c
F
.
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Corollary 3. If there exist σ ∈ Ω(F̄ ) and λ ≥ 0 such that q = qσ+λχ
δ(F )

, then the

Energy EF
q is positive semi–definite. Moreover, it is not strictly definite iff λ = 0,

in which case EF
q (v, v) = 0 iff v = aσ, a ∈ IR.

We remark that given q ∈ C(V ), there exist unique σ ∈ Ω(V ) and λ ∈ R such
that q = qσ + λ. This property is a consequence of the Perron–Frobenius Theorem
applied to the matrix tI−K, for t ∈ R large enough, where K is the matrix associated

with the operator K = Lq on F and K =
∂

nF
+ q on δ(F ).

So, q = qσ+λ does not represent any restriction on the potentials. Moreover,
the Doob transform allows us to characterize when K is positive semidefinite: this
occurs iff λ ≥ 0 and, in this case, K is singular iff λ = 0. Therefore, q = qσ
corresponds to positive semidefinite and singular operators.

On the other hand, it is true that for λ > 0, q = qσ + λχ
δ(F )

determine a
positive definite operator and hence there exist also a weight ω ∈ Ω(V ) and a value
µ > 0 such that

q = qσ + λχ
δ(F )

= qω + µ.

However, the relation between σ and ω, and λ and µ is not easy to find. In fact,
we only know that µ < λ.

From now on, we will work with potentials given by a weight σ ∈ Ω(F̄ )
and a real value λ ≥ 0 such that q = qσ + λχ

δ(F )
; so that the corresponding

Schrödinger operator is positive semi–definite. Notice, that in this case the weight
σ is q–harmonic on F ; that is, Lq(σ) = 0 on F.

In [3, Proposition 4.10], some of the present authors proved the following
version of the minimum principle that will be useful in what follows.

Proposition 4 (Monotonicity Property). If u ∈ C(F̄ ) is such that Lq(u) ≥ 0 on F
and u ≥ 0 on δ(F ) then either u > 0 on F or u = 0 on F̄ .

Let us consider the following Dirichlet problem : Given f ∈ C(F ) and g ∈
C(δ(F )) find u ∈ C(F̄ ) satisfying

(4) Lq(u) = f on F and u = g on δ(F ).

The existence and uniqueness of solution for Problem (4) were proved in the
above–mentioned paper. In fact, the Dirichlet Principle tell us that for any data
f ∈ C(F ) and g ∈ C(δ(F )), Problem (4) has a unique solution; see [4, Proposition
3.3].

Associated with the Dirichlet problem we can consider the following semi
homogenous problems, that allow us to introduce the concept of Green and Poisson
operators:

Given f ∈ C(F ) find u ∈ C(F ) satisfying

(5) Lq(u) = f on F and u = 0 on δ(F ),

and given g ∈ C(δ(F )) find v ∈ C(F̄ ) satisfying

(6) Lq(v) = 0 on F and v = g on δ(F ).
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Clearly, if u and v are the unique solutions of (5) and (6) respectively, then u + v
is the unique solution of Problem (4).

We define the Green operator for F as the operator Gq : C(F ) −→ C(F ) as-
signing to any f ∈ C(F ) the unique solution, uf ∈ C(F ), of Problem (5). The
kernel associated with the Green operator is called Green kernel and denoted by
Gq. Then, Gq : F × F −→ R is a symmetric kernel and Gq(x, y) = Gq(εy)(x).

On the other hand, we define the Poisson operator for F as the operator
Pq : C(δ(F )) −→ C(F̄ ) assigning to any g ∈ C(δ(F )) the unique solution, ug, of
Problem (6). The kernel associated with the Poisson operator is called Poisson

kernel and denoted by Pq. Then, Pq : F̄ × δ(F ) −→ R and Pq(x, y) = Pq(εy)(x).
From Proposition 4, we obtain that Gq(x, y) > 0 for any x, y ∈ F and Pq(x, y) > 0
for any x ∈ F, y ∈ δ(F ). Moreover, Pq(σχδ(F )

) = σ on F̄ , since Lq(σ) = 0 on F,

which means that weight σ ∈ Ω(F̄ ) is the unique solution of the Dirichlet problem

Lq(u) = 0 on F and u = σ on δ(F ).

Therefore, given f ∈ C(F ) and g ∈ C(δ(F )) the unique solution u ∈ C(F̄ ) of
Problem (4) is given by

u = Gq(f) + Pq(g).

Moreover, we have the following relation between the Green and Poisson kernels
that was proved in [3]:

Pq(x, y) = εy(x) −
∂Gq

∂ny
(x, y).

4. THE DIRICHLET–TO–ROBIN MAP

In this section we define the Dirichlet–to–Robin map on general networks and
we study its main properties. This map is naturally associated to a Schrödinger
operator, and generalizes the concept of Dirichlet–to–Neumann map for the case of
the combinatorial Laplacian.

The map Λq : C(δ(F )) −→ C(δ(F )) that assigns to any function g ∈ C(δ(F ))

the function Λq(g) =
∂ug

∂nF

+qg is called Dirichlet–to–Robin map, where ug = Pq(g).

The Poisson kernel is directly related to the Dirichlet–to–Robin map Λq, as
it is shown on the proposition below.

Proposition 5. The Dirichlet–to–Robin map, Λq, is a self–adjoint, positive semi–

definite operator whose associated quadratic form is given by
∫

δ(F )

gΛq(g) = EF
q (ug, ug).

Moreover, λ is the lowest eigenvalue of Λq and its associated eigenfunctions are

multiple of σ. In addition, the kernel N ∈ C(δ(F )× δ(F )) of Λq is

N =
∂Pq

∂nx
+ q = k

F
+ q −

∂2Gq

∂nx∂ny
,
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which is symmetric, negative off–diagonal and positive on the diagonal.

Proof. From (3) we get that for any f, g ∈ C(δ(F )),
∫

δ(F )

fΛq(g) = EF
q (uf , ug) = EF

q (ug, uf ) =

∫

δ(F )

gΛq(f)

and hence Λq is self–adjoint and positive semi–definite. Moreover, for every x ∈
δ(F ), using that Pq(σχδ(F )

) = σ on F̄ it is easily seen that

Λq(σχδ(F )
)(x) =

∂σ

∂n
F

(x) + qσ(x)σ(x) + λσ(x) = λσ(x),

since qσ = −σ−1 ∂σ

∂n
F

on δ(F ).

On the other hand, from Proposition 2 and taking into account that ug = g
on δ(F ), we get

EF
q (ug, ug) = EF (ug, ug) +

∫

F̄

qu2
g = EF (ug, ug) +

∫

F̄

qσu
2
g + λ

∫

δ(F )

g2

=
1

2

∫

F̄

∫

F̄

c
F
(x, y)σ(x)σ(y)

(
ug(x)

σ(x)
−

ug(y)

σ(y)

)2

dxdy + λ

∫

δ(F )

g2 ≥ λ

∫

δ(F )

g2.

The equality holds iff ug = aσ; that is, iff g = aσ.

Suppose that g is a non–zero eigenfunction corresponding to the eigenvalue
α. Then, by the definition of eigenvalue and the first part of the proposition, we
have

α

∫

δ(F )

g2 =

∫

δ(F )

gΛq(g) = EF
q (ug, ug) ≥ λ

∫

δ(F )

g2

which implies that α ≥ λ.

Taking now g = εy, y ∈ δ(F ), we obtain that ug = P y
q and therefore

Λq(εy) =
∂P y

q

∂n
F

+ qεy.

Using this and equality Pq(x, y) = εy(x)−
∂Gq

∂ny
(x, y) we easily see that

Λq(εy) =
∂

∂n
F

(
εy −

∂Gy
q

∂ny

)
+ qεy = k

F
εy + qεy −

∂2Gq

∂nx∂ny
.

Finally, for any x, y ∈ δ(F ) with x 6= y, notice that Pq(x, y) = εy(x) = 0. In
this case, we get that

N(x, y) = Λq(εy)(x) =
∂Pq

∂nx
(x, y)

=
∑

z∈F

c(x, z)
(
Pq(x, y)− Pq(z, y)

)
= −

∑

z∈F

c(x, z)Pq(z, y) < 0,
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since Pq(z, y) > 0. Moreover, as Λq(σ) = λσ on δ(F ), then for any y ∈ δ(F )

∑

x∈δ(F )

Λq(εy)(x)σ(x) = λσ(y),

and hence

Λq(εy)(y) = λ− σ(y)−1
∑

x∈δ(F )
x 6=y

Λq(εy)(x)σ(x) > 0,

where we used the fact that Λq(εy)(x) < 0 for any x, y ∈ δ(F ) and x 6= y as shown
above.

The kernel of Dirichlet–to–Robin map is closely related to the Schur comple-
ment of

(
Lq

)
|F

in Lq; see [10] and [8, Theorem 3.2] for the combinatorial Laplacian

and the Dirichlet–to–Neumann map. Notice that the Robin problem

Lq(u) = f on F,
∂u

∂n
F

+ qu = g on δ(F ),

has the following matrix expression

L =

[
D −C

−C⊤ M

][
vδ

v

]
=

[
g

f

]
,

where D is the diagonal matrix whose diagonal entries are given by k
F
+ q, C =(

c(x, y)
)

x∈δ(F )
y∈F

, M is the matrix associated with
(
Lq

)
|F
, vδ, v, f, g are the vectors

determined by u
|δ(F )

, u
|F
, f and g, respectively. Then, M is invertible and M−1 =

(
Gq(x, y)

)
x,y∈F

. Moreover, the Schur complement of M in L is

L/M = D− CM−1C⊤ =
(
N(x, y)

)
x,y∈δ(F )

,

since we have the equality given for N in Proposition 5 and the following equality
from Lemma 1

CM−1C⊤ =

(
∂2Gq

∂nx∂ny
(x, y)

)

x,y∈δ(F )

,

where we have taken into account that Gq is symmetric and zero on δ(F )× F.

Now we show that the Dirichlet–to–Robin map has the alternating property,
which may be considered as a generalization of the monotonicity property; see [11,
Theorem 2.1] for the continuous version of this property.

Theorem 6 (Alternating paths). Suppose that δ(F ) = A ∪ B, where A and B
are disjoint subsets. Let g ∈ C(B) and s1, . . . , sk ∈ A such that for every index

i = 1, . . . , k

(7) (−1)i+1Λq(g)(si) > 0.
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Then there exist t1, . . . , tk ∈ B such that for every index i = 1, . . . , k

(8) Λq(g)(si)g(tk−i+1) < 0.

Moreover, for any i = 1, . . . , k, there exists a path γi from si to tk−i+1 such that

γi \ {si, tk−i+1} ⊂ F and g(tk−i+1)ug|(γi\{si})
> 0, where ug = Pq(g).

Proof. Observe that as g ∈ C(B), for any x ∈ A, we have that Λq(g)(x) =
∂ug

∂n
(x).

By (7), 0 <
∂ug

∂n
(s1) = −

∫
F
c(s1, y)ug(y) dy. Then, there exists y ∈ F ∩V (s1) such

that ug(y) < 0.

Let W be the connected component of {z ∈ F : ug(z) < 0} containing y.
Suppose that W ∩ B = ∅; that is, W ⊂ F ∪ A. We consider v = ugχW

; then
Lq(v) = 0 on W, v ≥ 0 on δ(W ), then from the monotonicity principle v ≥ 0 on W
which is a contradiction. Therefore, W ∩B 6= ∅ and hence ug ≥ 0 on δ(W ) ∩ F. If
ug ≥ 0 on δ(W )∩B, we get that Lq(ug) = 0 onW, ug ≥ 0 on δ(W ), so ug ≥ 0 on W
applying again the monotonicity principle which is a contradiction. So, there exists
tk ∈ δ(W ) ∩ B such that ug(tk) < 0 which means g(tk) < 0. As tk ∈ δ(W ), there
exists z1 ∈ W, so ug(z1) < 0, such that tk ∼ z1. As W is a connected subset we can
join tk and s1 by a path γ1 = {s1 ∼ y ∼ . . . ∼ z1 ∼ tk} such that {y, . . . , z1} ⊂ W
and hence ug|(γ1\{s1})

< 0.

We can repeat this argument to produce paths γj such that γj joins sj to
a point tk+1−j ∈ B such that γj \ {sj , tk+1−j} ⊂ F and (−1)jug(z) < 0 for all
z ∈ γj \ {sj}.

Corollary 7. Suppose that the network Γ = (F̄ , c
F
) is circular planar and δ(F ) =

A∪B, where A and B are disjoint subsets. Let g ∈ C(B) and ug = Pq(g), if there
is a set of different points {p1, . . . , pk} ∈ A in circular order such that for every

index i = 1, . . . , k

(9) (−1)i+1Λq(g)(pi) > 0

then there is a set of different points {q1, . . . , qk} ∈ B in circular order such that

for every index i = 1, . . . , k

(10) Λq(g)(pi)g(qk−i+1) < 0.

Moreover, for any i = 1, . . . , k, there exists a path γi from pi to qk−i+1 such that γi\
{pi, qk−i+1} ⊂ F, g(qk−i+1)ug|(γi\{pi})

> 0 in such a way that (p1, . . . , pk; q1, . . . , qk)

is connected through Γ.

Proof. The paths built on the proof of Theorem 6 do not intersect if the network
is planar and the vertices pj ∈ A are in circular order, since the values for the
function ug in γj have different sign than the ones on γj−1 and γj+1. Then, qj ∈ B
are the points given by the last theorem and are also in circular order.
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Theorem 8 (Strong alternating paths). Suppose that δ(F ) = A∪B, where A and

B are disjoint subsets. Let g ∈ C(B) and ug = Pq(g). If there is a set of points

{s1, . . . , sk} ∈ A such that for every index i = 1, . . . , k

(11) Λq(g)(si) = 0

then there is a set of points {t1, . . . , tk} ∈ B such that for every index i = 1, . . . , k

(12) (−1)ig(ti) ≥ 0.

Moreover, for any i = 1, . . . , k, there exists a path Pi from si ∼ xi
1 ∼ . . . ∼ xi

ni
∼ ti

such that Pi \ {si, ti} ⊂ F and there exists ji ∈ {1, . . . , ni+1} such that ug(x
i
ℓ) = 0

for all ℓ = 0, . . . , ji − 1 and g(ti)ug(x
i
ℓ) > 0 for all ℓ = ji, . . . , ni + 1, where xi

0 = si
and xi

ni+1 = ti.

Proof. By (11), 0 =
∂ug

∂n
(s1) = −

∫
F
c(s1, y)ug(y) dy. Then, either ug = 0 on

V (s1)∩F or there exists y1 ∈ F such that ug(y1) < 0 (in this case there also exists
z1 ∈ F such that ug(z1) > 0). If ug = 0 on V (s1) ∩ F, consider x1 ∈ V (s1) ∩ F,

then 0 = Lq(ug)(x1) = −
∑

y∈F̄

c(x1, y)ug(y). Again, either ug = 0 on V (x1) or there

exists y2 ∈ F ∪ B such that ug(y2) < 0 (in this case there exists also z2 ∈ F ∪ B
such that ug(z2) > 0). If y2 ∈ B, this will be the vertex t1.

Otherwise, let W be the connected component of {z ∈ F : ug(z) < 0} and
proceeding as in the proof of Theorem 6 we get the result.

Having fixed a label in the boundary, we say that the network has the al-

ternating property if for any ordered set {s1, . . . , sk} satisfying the hypothesis of
Theorem 6, then the vertices {t1, . . . , tk}, given by the Theorem, are also in or-
der. Next result also tells us a property of the Dirichlet–to–Robin map of networks
having the alternating property which is related with totally nonnegative matrices.

Theorem 9. Let Γ be a network having the alternating property and let the pair

(x1, . . . , xk; y1, . . . , yk) be an ordered pair on δ(F ). Let M = (mij) be the k × k

matrix with entries defined by mij =
∂Pq

∂nx
(xi, yj). Then,

(13) (−1)
k(k+1)

2 det(M) ≥ 0.

Proof. Clearly we can suppose that the vertices (x1, . . . , xk) are different and that
the vertices (y1, . . . , yk) are different too. The proof is by induction on k. For k = 1,
from Proposition 5, the result is true. Next we assume that the result is true for all
(k−1)×(k−1) submatrices and prove that it is true for k×k matrices. If the result
is not true, then we have a sequence of distinct vertices (x1, . . . , xk; y1, . . . , yk) such
that

(14) (−1)
k(k+1)

2 det(M) < 0.
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Consider the matrix M−1 with entries (hij). Then,

(15) hij = (−1)i+j det(Mij)

det(M)
,

where Mij is the (i, j) minor of M. By induction hypothesis, (14) and (15),

(16) (−1)i+j+k+1hij = (−1)i+j+
k(k−1)

2 +
k(k+1)

2 +1hij ≥ 0.

Since M is nonsingular, for fixed i there must be some j for which

(17) (−1)i+j+k+1hij > 0.

Now let w = (wi)
k
i=1 be the vector wi = (−1)i+1 and z = M−1w. Then using (16)

and (17) it is easy to verify that

(18) (−1)i+kzi > 0.

So we have a vector z such that

(19) wi =
k∑

j=1

∂Pq

∂nx
(xi, yj)zj

and (−1)k+1ziwi > 0.

Let the function g ∈ δ(F ), defined as g(yj) = zj , j = 1, . . . , k and g = 0
otherwise then,

Λqg(xi) =
k∑

j=1

∂Pq

∂nx
(xi, yj)g(yj) = wi,

by the choice of g, the definition of Λq and equation (19). Then by Theorem 6, there
exists a set of vertices {t1, . . . , tk} ∈ δ(F ) such that the pair (x1, . . . , xk; t1, . . . , tk)
is an ordered pair and

ωig(tk−i+1) < 0,

or equivalenty, such that (−1)kwig(ti) > 0. Therefore, for any i = 1, . . . , k, ti ∈
{y1, . . . , yk}, since otherwise we get g(ti) = 0.Moreover, {y1, . . . , yk} and {t1, . . . , tk}
are ordered subsets and hence there exists i such that ti = yi. Then, we will have
0 < (−1)kwig(ti) = (−1)kwig(yi) = (−1)kwizi, which is a contradiction with the
fact that (−1)k+1ziwi > 0.

5. CHARACTERIZATION OF THE DIRICHLET–TO–ROBIN MAP

Our next objective is to characterize the kernels on δ(F ) that are the ker-
nels associated to a Dirichlet–to–Robin map. The results in the previous section
show that the matrices associated with these kernels are necessarily symmetric
M–matrices, in fact a particular class of M–matrices. Recall that a symmetric
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M–matrix is a positive semidefinite symmetric matrix whose off–diagonal entries
are non–positive, see [2]. For the case of the combinatorial Laplacian of a net-
work, Curtis et al. characterized in [8] those singular, symmetric and diagonally
dominant M–matrices that are the response matrices of a circular planar network.
This case corresponds to λ = 0 and σ a constant weight. Now, our proposal is to
generalized the above–mentioned result to the general case, in order to include a
wider class of M–matrices.

We first observe that the response matrices
do not identify the associated difference operator;
that is, a given singular, symmetric and diagonally
dominant M–matrix can be the response matrix
associated with multiple Schrödinger operators of
a circular planar network as the following simple
example shows.

Let us consider the star network (Γ, c)
on n ≥ 3 vertices with central vertex x0 and
peripherical vertices x1, . . . , xn, see Figure 1. Let
F = {x0}, δ(F ) = {x1, . . . , xn}, σ ∈ Ω(F̄ ) and
the conductances are given by c(x0, xi) = ci > 0.

c1

c2

x1

x2

x3

x4

c3

c4

c5

x5xi

ci

cn

xn

x0

Figure 1. The star network

on n vertices.

Then, by using Doob transform given in Proposition 2 we see that

Lqσ (u)(x0) =
u(x0)

σ(x0)

n∑

i=1

ciσ(xi)−
n∑

i=1

ciu(xi),

∂u

∂n
F

(xi) + qσ(xi)u(xi) =
ciσ(x0)

σ(xi)
u(xi)− ciu(x0), i = 1, . . . , n

for all u ∈ C(F̄ ). Therefore, given g ∈ C(δ(F )), the unique solution of the problem
Lqσ(u) = 0 on F and u = g on δ(F ) is given by u(xi) = g(xi) for all i = 1, . . . , n
and

u(x0) =
σ(x0)

n
∑

i=1

ciσ(xi)

n∑

i=1

cig(xi).

As a consequence, the Dirichlet–to–Robin operator for the star network with weight
σ and conductance c, denoted here by Λc,σ, is given by

(20) Λc,σ(g)(xi) =
ciσ(x0)

σ(xi)
g(xi)−

ciσ(x0)
n
∑

k=1

ckσ(xk)

n∑

k=1

ckg(xk)

for all g ∈ C(δ(F )). Clearly, Λc,σ(g) = 0 iff g is a multiple of σ|δ(F )
.

Let σ̂ ∈ Ω(δ(F )) defined as σ̂(xi) =
σ(xi)

√

1− σ(x0)2
, i = 1, . . . , n and for any
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0 < ω0 < 1, consider ω ∈ Ω(F̄ ) defined as

ω(x0) = ω0 and ω(xi) =
√
1− ω2

0 σ̂(xi), i = 1, . . . , n.

Observe that σ̂ is the unique eigenfunction of Λc,σ corresponding to the zero
eigenvalue that is a weight on δ(F ). Moreover, ω has been built by normalizing an
arbitrary extension of σ̂.

We now look for a conductance d on Γ such that Λd,ω = Λc,σ. From Equation
(20) this happens iff

(21)
ciσ(x0)g(xi)

σ(xi)
−

ciσ(x0)
n
∑

k=1

ckg(xk)

n
∑

k=1

ckσ(xk)

=
diω0g(xi)

ασ(xi)
−

diω0

n
∑

k=1

dkg(xk)

α
n
∑

k=1

dkσ(xk)

where di = d(x0, xi), i = 1, . . . , n and α =

√
1− ω

2
0

1− σ2(x0)
. If g = εxj

, j = 1, . . . , n,

then
cicjσ(x0)
n
∑

k=1

ckσ(xk)

=
didjω0

α
n
∑

k=1

dkσ(xk)

, i 6= j.

If β =

ασ(x0)
n
∑

k=1

dkσ(xk)

ω0

n
∑

k=1

ckσ(xk)

, then β =
didj

cicj
for all i, j = 1, . . . , n with i 6= j.

Therefore,
didj
cicj

=
dkdj
ckcj

for all i, k = 1, . . . , n with i, k 6= j

and hence dj =
ασ(x0)

ω0
cj =

√
σ
2(x0)(1− ω

2
0)

ω2
0(1− σ2(x0))

cj for all j = 1, . . . , n since n ≥ 3.

Notice that d = c iff ω = σ.

Therefore, for an arbitrary extension of the weight σ on F = {x0} there exists
a conductance function such that the Dirichlet–to–Robin operator associated with
the Schrödinger operator with the new conductances and weight coincides with the
initial one.

In particular, if σ is constant then, qσ = 0 on F̄ and hence the corresponding
Schrödinger operator is the combinatorial Laplacian and the Dirichlet–to–Robin
map becomes the classical Dirichlet–to–Neumann map. Therefore, the above re-
sults tell us that the Dirichlet–to–Neumann map does not identify uniquely the
Schrödinger operator and, in fact, it appears as the Dirichlet–to–Robin map of an
infinite family of Schrödinger operators.

The following definitions follow the terminology of [8]. Suppose that A =
{aij} is a matrix, S = (s1, . . . , sk) is an ordered subset of the rows and T =
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(t1, . . . , tm) is an ordered subset of the columns. Then, A(S;T ) denotes the k ×m
matrix obtained by taking the entries of A which are in rows s1, . . . , sk and columns
t1, . . . , tm. If (S;T ) is a circular pair of indices, A(S;T ) is called a circular minor

of A.

For any n ≥ 2, σ ∈ Ω(δ(F )) and λ ≥ 0, let Φλ,σ be the set of irreducible
and symmetric n–matrices, M, for which λ is the lowest eigenvalue and σ is the
eigenvector associated with λ, satisfying the following condition

If M(S;T ) is a k × k circular minor of M, then (−1)kdetM(S;T ) ≥ 0.

This condition says that if M ∈ Φλ,σ and (S;T ) is a circular pair of indices, then
the matrix −M(S;T ) is totally non–negative. In particular, if M ∈ Φλ,σ, then M
is an M–matrix.

If we denote by µ = |δ(F )|−
1
2χ

δ(F )
, the unique constant weight on δ(F ), then

Φ0,µ = DσΦ0,σDσ, for arbitrary σ. The next results were obtained in [8].

Lemma 10 ([8, Theorem 3]). Suppose that M is in Φ0,µ. Then, there is a circular

planar graph with a conductivity c such that M = Λ, where Λ is the Dirichlet–

to–Neumann map associated with the combinatorial Laplacian for the conductance

c.

Suppose that Γ is a circular planar network with n boundary vertices, and
π = π(Γ) is the set of circular pairs (P ;Q) which are connected through Γ.
Then, Γ is called a critical circular planar network, if removing any edge breaks
at least one of the connections (P ;Q) in π. A subset Φλ,σ(π) of Φλ,σ is defined
by the following condition: For each circular pair of indices (P ;Q), (P ;Q) ∈ π iff
(−1)kdetM(P ;Q) > 0.

Lemma 11 ([8, Theorem 4]). Suppose Γ is a critical planar graph with m edges

and π = π(Γ). Then, the map which sends conductance c to Λ is a diffeomorphism

of (R+)m onto Φ0,µ(π).

Given M ∈ Φλ,σ, we say that u ∈ C(F̄ ) is M–harmonic iff L (u) = 0 on F,
where L is the combinatorial Laplacian whose conductance is uniquely associated
with the matrix Dσ(M − λI)Dσ given in Lemma 11.

Theorem 12. For any n ≥ 2, σ ∈ Ω(δ(F )) and λ ≥ 0, suppose M is in Φλ,σ. Then,
there is a circular planar graph with conductance c such that for any ω ∈ Ω(F̄ )
satisfying ω = kσ on δ(F ), M = Λq, where Λq is the Dirichlet–to–Robin map

associated with the operator Lq, with q = qω + λχ
δ(F )

and conductances cω =
c

ω ⊗ ω
. Moreover, if M ∈ Φλ,σ(π), then there is a unique critical circular planar

network with conductance c and a unique ω ∈ Ω(F̄ ), M–harmonic function such

that M = Λq.

Proof. Let M ∈ Φλ,σ, then M̂ = Dσ(M − λI)Dσ ∈ Φ0,µ. Applying Lemma 10,

there is a circular planar graph with conductances c such that M̂ = Λ, where Λ is
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the Dirichlet–to–Neumann map associated with the combinatorial Laplacian, L c,
of the network. Consider ω̃ ∈ C(F̄ ) such that ω̃ = σ on δ(F ) and ω̃ > 0 on F

and define ω = ||ω̃||−1ω̃ ∈ Ω(F̄ ). Then, ω = kσ on δ(F ) where k =

√
∑

x∈δ(F )

ω2(x).

Consider the conductance cω =
c

ω ⊗ ω
, the corresponding combinatorial Laplacian,

L cω , qω the associated potential and Λqω the corresponding Dirichlet–to–Robin
map. Then, applying the Doob transform, we obtain that Dω ◦ L cω

qω
◦ Dω = L c

and moreover Dω ◦Λqω ◦Dω = Λ, and hence M − λI is the matrix associated with
Λqω .

On the other hand, if M ∈ Φλ,σ(π), then Lemma 11 assures that there is a

unique critical circular planar network with conductivity c such that M̂ = Λ. In
addition, if we choose ω̃ the unique solution of the Dirichlet problem L c(u) = 0 on
F and u = σ on δ(F ), the minimum principle assures that ω̃ > 0 on F and hence
ω = ||ω̃||−1ω̃ ∈ Ω(F̄ ) is a M–harmonic function satisfying that M = Λqω .

Consider now τ ∈ Ω(F̄ ) such that it is M–harmonic and Λqτ = M = Λqω .
Then 0 = Λqτ (τ) = Λqω(τ), which implies that τ = αω on δ(F ). Therfore, τ = αω
on F̄ since τ is M–harmonic. Finally α = 1 because τ and ω are weights.
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