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SOME RESULTS FOR CARLITZ’S ¢-BERNOULLI
NUMBERS AND POLYNOMIALS

Yuan He

A further investigation for Carlitz’s g-Bernoulli numbers and polynomials is
performed, and several new formulae for these numbers and polynomials are
established by applying summation transform techniques. Special cases as
well as immediate consequences of the main results are also presented.

1. INTRODUCTION

The classical Bernoulli polynomials B,,(x) are usually defined by the following
exponential generating function:

ot > n
(1.1) f_ - = ZBH(I)ZL_! (It < 2m).
n=0
In particular, the rational numbers B,, = B, (0) are called the classical Bernoulli
numbers. These numbers and polynomials play important roles in many different
branches of mathematics including number theory, combinatorics, special functions
and analysis. Numerous interesting properties for them can be found in many
books; see, for example, [9, 23, 30]).
In the present paper, we consider Carlitz’s g-Bernoulli numbers 3,,(¢) and
g-Bernoulli polynomials §,(x,q), which are respectively given by means of (see,

c.g., [5a 6])

1, ifn=1,
0, ifn>1,

(1.2) Bola) =1, q(aBl@)+1)" = Bulq) = {
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and
(L3)  Bule.) = (¢"Bla) +[al,)" = Y (})a“Be(@lal; ™ (n>0),
k=0

where ¢ € C with |¢] < 1 and C being complex number field, and [z], is the
g-number defined by (see, e.g., [3, 11])

(1.4) [:v]qzl__qq =1+4q+-+qg" L

Obviously, 8,(q) = 8,(0,¢q) and hn% [z]q = =
q—r

Since the above Carlitz’s g-Bernoulli numbers and ¢-Bernoulli polynomials
first appeared, different properties for them have been well studied by many au-
thors; see, for example, [18, 19, 20, 31, 33]. In fact, Carlitz’s ¢g-Bernoulli numbers
and polynomials can be defined by the following exponential generating functions
(see, e.g., [24, 27]):

—+oo —+o0
m _|m m t’”
(1.5) Yo a1 —g— ") =) Bale)— (It +logql < 2m),
m= n=0
and
—+o0
(1.6) Z grelrtmlat(1 — g — " t™y) = Z Bn(z q (|t + logq| < 2m).

From (1.5) and (1.6), one can easily get
(1.7) lim 5,(¢) = B, and lim 3,(z,q) = Bn(z).
qg—1 qg—1

If the left-hand side of (1.6) is denoted by Fy(t,«) then the Mellin transform gives

1 +oo 9 +oo qac+2n 1— q too qn
1.8 — F (—t,z)t°~*dt =
(18) F(s)/o o(=h) ;[ﬁn]a +s—1n:0 [z +nlg™"

with s € Cand x # 0, —1, —2, . ... Based on the observation on (1.8), the ¢-Hurwitz
zeta function can be defined by (see, e.g., [24])

+o00 n

“+o0
. ) — q" B 2—s q
(1.9) Cq(s,7) 7;3[:0+n]3 +(1 Q)<3_1>nz [z +n)g "

where s € C with Re(s) > 1 and z ¢ Z5 = {0,—1,—2,...}. In particular, the case
z =1and ¢ — 1 in (1.9) respectively, gives the g-zeta function given by SATOH
[27] and the classical Hurwitz zeta function ((s, z):

—+o0

(1.10) C(s,x)zz(n%x)s (s € C,Re(s) > 12 ¢ Zg = {0,-1,-2,...}).

n=
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Recently, CHOI, ANDERSON and SRIVASTAVA [8] systematically studied Car-
litz’s g-Bernoulli numbers and polynomials, and discovered some interesting prop-
erties between Carlitz’s ¢g-Bernoulli numbers and polynomials and some related
numbers and polynomials and functions. Inspired by their work, in this paper, we
perform a further investigation for Carlitz’s g-Bernoulli numbers and polynomials,
and give some new formulae for these numbers and polynomials by applying sum-
mation transform techniques. We determine that various known results including
the recent one presented in [4] are derived as special cases.

2. THE STATEMENT OF THE RESULTS

We begin by describing the falling factorial (z) of order k and rising factorial
x*) of order k (z € C and k non-negative integer):

(2.1) @ =zz-1)(xz—-2)...(x—k+1) (E>1), (x)o=1,
and
(2.2) t® =g+ )@+2)...(c+k-1) (k>1), =1

We now recall the following addition theorem of Carlitz’s g-Bernoulli polynomials
(see, e.g., [8]),

n

(2.3) e+ ya) =Y (1)d Bkl ™ (n=0).

k=0

Clearly, 8, (y,q) = fn(—z + (z +y), ¢) for non-negative integer n, so from (2.3) we
obtain that for non-negative integers m,n,

i@w) (ntk)a ﬂn&kréyq

k=

m—k

n—i—k)w [:C]
(n+k)r

OMS
/"\
v

(=)

n+k+r

n+k+7r\ i n r—i
Xy ( ; )q Bi(x +y, q)[—aly
i=0

Since [z]y = (—¢%)[—=]q then from (2.4) we get

i (m) (n+k)x Brti+r (Y @) i ( ) m-‘rn)w 1)M7k
k (n+k), (n+k)r
k=0 k=0
n+k+r

a3 (") By, g) [l

If we change the order of the summations in the right hand side of (2.5) then
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(26) i (Zl)q(n—i-k)w Brtk+r(Y,q) [x];n—k

P (n+k)r
m—+n—+r m m—k
_ (m4n—i)z g, _mAntr—i m\ (n+k+7r)(=1)
Z q Bi(z +y,q)[~2l; Z(k)( ; )7@“;%-
=0 k=0
Observe that for non-negative integers n, k, r,
27) Ak =mn+k)n+k-1)(nt+k—r+1)=1!- ("j’“)
So from (2.6) and (2.7), we discover
| " m n4+E\ (nik)z Brtk+r(¥s Q) { m—k
(28) r;(k)( r )q n i k), ()
mantr ; — m\ n+k+r
= Y @y alp Sy () (TR,
i=0 k=0

Notice that for a complex number s and non-negative integers p, h (cf. the identity
of Wu described in [10, 14, 29]),

(29) é(—nﬁk (D) (51 7) mresa(1 4 ettt = (1),

Hence, by applying (2.9) to (2.8), we obtain

210) > (1) By, @)lely
k=0
=3 (3)a" P Bmsn(a + y, @) [-aly -,
k=0
Since Carlitz’s g-Bernoulli polynomials satisfy the symmetric distribution (see, e.g.,
8])
(211) ﬁn(l - Z, qil) = (_Q)nﬁn(xu Q) (n > 0)7
so by setting  + y + z = 1 in (2.10), in view of (2.11) and [z]; = (—¢*)[—x],, we
immediately get the following result.

Theorem 2.1. Let m,n be non-negative integers. Then for x +y+ z =1,
212) (0" (7)™ By, @) el
k=0

= (1" 3 ()0 sl el

k=0



308 Yuan He

It is worth noticing that the case n = 0 in the formula (2.10) gives the formula
(2.3) and the formula (2.10) can be also derived by applying the generating function
methods, see [16]. Theorem 2.1 above can be regarded as the corresponding g-
analogue of a result of SUN [32], namely

@13 Y (M) Bns) = (<17 3 (1) B (o)
k=0

If weset x =1 and y = z = 0 in Theorem 2.1, we get that for non-negative integers
m,n,

@14) Y (P)a (@) = (0" Y ())a " Bnn(a ),
k=0

which is a g-analogue of the familiar formula described in [13]

(2.15) (—1)’”%(’}3) B = (— "Zn:() Bysr  (m,n>0).

k=0 k=0

For some similar results on the g-Bernoulli numbers attached to formal group to
(2.14), one is referred to [27].

We next give a more general form of Theorem 2.1. In a similar consideration
0 (2.6), we have

(2.16) Z( ) R (4 k) B (v, @) 2]y "
k=0

m+n—r

_ Z q(m+n 1)16 (w—i—y q)[ ]m-‘,—n r—i

3 (1) mok (Y (MR g,

k=0
which together with (2.7) yields

m

(2.17) Z( )("+k) g B (y, @) 2]

k=0

m4n—r

= Y d"T iy ) aly

S ) ()

k=0

Clearly, (—m)®) = (=1)*m(m —1)---(m —k+1) and (n+k)! =n!- (n+1)* for
non-negative integers k, m, which yields
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m

i) e ()T

k=0
(k)n+1)(k)
R n—z—r'zk' (n+1—d—r)k)"

Note that for non-negative integer n and complex numbers a,b (cf. the Chu-
Vandermonde summation formula stated in [3, 11]),

n

(2'19) Z (—n)(k) AL _ (b— a)(”)'

k! pk) b(n)
k=0

Hence, by applying (2.19) to (2.18), we get

T

n!~(z'—|—7')(i+r—1)~~-(i+r—m+1):( n )(i—&—r)'

il-rl-(m4+n—i—r)! i+r—m i

NE

(2.20)

=
Il
=]

Combining (2.17) and (2.20) gives

NE

(2.21) (’;Z) ("+k)q(”+’“”ﬁ +h—r(y, @)y "

r

=
Il
=]

—Z( )" ) B o+ el

If we set © +y+ 2z =1 in (2.21), in light of (2.11) and [z], = (—¢*)[—z],, We get

NE

(2.22) (%) (”+k)q<”+’“ Bk (y, @) 2]y

r

=
Il
=]

1y S0 () (R e

k=0

Thus, by substituting m for m +r and n for n+r in (2.22), we immediately obtain
the following result.

Theorem 2.2. Let m,n,r be non-negative integers. Then for x +y+ 2z =1,

(2.23) mZJrT (m;— 7’) (n +h+ 7’)q(nJrk)sﬁﬂnJrk (v, q) [I];nJrrfk

k=0 "
= n+r\/m+k+r
= (_1)m+n+r ICZO ( . ) ( . )q_(m+k)6m+k (Z, q—l)[x];z-i-r—k'
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Clearly, the case r = 0 in Theorem 2.2 gives Theorem 2.1. On the other
hand, if we set ¢ — 1 in Theorem 2.2, we get that for non-negative integers m,n,r,
(see, e.g., [15])

m-+r
(2.24) Z (m;—r) (n—|—f—|—7’)Bn+k(y)Im+r—k
k=0
n—+r
_ (_1)m+n+r Z (71 ]—L— 7‘) (m +7]_€ + 7‘) Bm+k (Z):EnJrrfk.
k=0

If we set x = 1 and y = 2z = 0 in Theorem 2.2, we obtain that for non-negative
integers m,n,r,

m-+r

(225 Y (m,j 7’) (” i 7’) 4" Buri(q)

:
k=0
=y S () ()

r

which is a g-analogue of a formula on the classical Bernoulli numbers due to AGOH
(see, e.g., [1, 25])

m-+r
m+7r\/n+k+r
(2.26) kzo (" () B
n+r k
= (=1)mtntr Z (n;:r) (m +r +T)Bm+k (m,n,r > 0).
k=0

It is worth mentioning that since B, = (—1)"B, for positive integer n > 2, the
case r = 1 in (2.26) gives the following result for non-negative integers m, n,

(227) ()" (m,j 1) (n+k +7) By
k=0

+(—1)"Zn: (nzl)(m—l-k-l-l)Berk =0 (m+n>1),
k=0

which was obtained by MomiyaAMA [21] who made use of p-adic integral over Z,
and used (2.27) to give a brief proof of of the famous Kummer congruence. The
case m = n in (2.26), for non-negative integer n and odd integer r > 1, gives

n+r

(2.28) S0 (”*fH)BnM —0,

k=0
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which can be derived by applying the extended Zeilberger’s algorithm (see, e.g.,
[7]). In particular, the case r =1 in (2.28) was first discovered by KANEKO [17].

We are now in the position to give the corresponding g-analogue of Gessel’s
formula presented in [4] on the classical Bernoulli numbers. By setting z = a,y =0
and z =1 — a in Theorem 2.2, we have

(2.29) mif (m; r) (n +I; —+ T)‘J(Mk)“ﬁnﬂ(q)[a]y“—k
k=0
= (—1)’”*"”% (”;ﬂ“) (m +f+r)
k=0

x ¢~ "B k(1= a, g ) [alp R

Since Carlitz’s ¢-Bernoulli polynomials satisfy the difference equation (see, e.g.,

[8]):
(2.30) 4B (@ +1) = Bulz) = ng"[2]; " + (¢ = Dlaly  (n>0),
then for non-negative integers a, n,

a—1

(231)  Bu(l—a,q) =¢""Bule) = D¢ {ng"li—al; " + (g — Vi —al;}.

i=1

Hence, in view of [z]; = (—¢")[—x]q, the formula (2.31) can be rewritten as
a—1 . )

(2.32) Bu(l=a,q) = ¢* ' Bul(@)+(=1)" Y _ ¢ nfa—il} ' —(¢—1)[a—i]} }.
i=1

If we apply (2.32) to (2.29) we get

m-+r

(2.33) Z (m];”) (”Jr’;+T)Q(n+k)aﬁn+k(q)[a]?”_k
k=0
n+r
= (—1mtntr I;J (n ;: r) (m +:€ + r) ql*(m+k+a)6m+k(qfl)[a];wrrfk
n+r a—1
T k —m a—1i)(m —4
+ (=1)"* kz_%(n:r> (m+r +7’>(_1)kq ( +k);q( ) (mtk)—i+1

x {(m+k)a—drh =t = (¢ = Da— 73 Halptr
Note that [z], = q””_l[:v]qfl and [z + 9], = [*], + ¢°[y]4, then

[a];l-i-r—k _ q(a—l)(n+r—k) ([i]q’l + q—i[a — )""‘T_k

qfl
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n+r—k

(a D=l Z (n—’_r_ ) ']2*1 (qii[a—i]qfl)n—iﬂm_k_j

r+1—=k

3y =gt 5 (T e )T

n+j5—1
Jj=

By applying (2.34) to the second sum of the right hand side of (2.33) and changing
the order of the summation, we obtain

m-+r
+ +k+ n+k)a m—+r—
e3) 3 (")) sl
k=0
= n+r\/m+k+r
_ (_1)m+n+r Z ( . ) ( 7- )ql—(m+k+a)6m+k(q—l)[a];z-i-r—k
k=0
X n+r\/m+k+r\/m+r—k
n+r - _1\k
b Z Z( k )( T )(n+j—1)( 1)
j=1-n k=0
a—1 . ) ) )
% Z q(afl)(m+n+r)71(m+r+27j)+1{(m + k)[l];lirljfl . [a _ i];njgrfg
=1
-1 _ 1)[Z]n+J71 . [CL _ /L']m+r+17j ]

q

Observe that for 1 —n < j <r+1,

e ()G ) e

B (r+1)- (ntr)l (mtr)
m-D-+D!-(n+7i-D!- (r+1-)!

+
X% 7'—|—1—] NE - (m4r+1)*

m(k) ’

which together with (2.19) yields that for 1 —n < j <r+1,

n+r
@ S (L)) ) e
k=
_ 4 () mtr) D)+ e (G4 1)
G+ (n+ji—D-(r+1—j)! (m+r—j) '

In the same way, for 1 —n < j < r 4+ 1, we have

n+r

w801

k=0
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(n+r)| . (m+T)' . (_1)T-+1—jr(r_ 1)]
rl-n+j7—-D! (r+1-j)! (mtr+1_j) .

Thus, combining (2.35), (2.37) and (2.38) gives the following result.

Theorem 2.3. Let m,n,r,a be non-negative integers. Then

m—+r
(239) (m ; 7’) (n +f + r) P8 (@lal
k=0
n—+r
= (_1)m+n+r I;J (n ;: T) (m -‘rf + 7‘) ql_(m+k+a)6m+k (q_l)[a];‘”_k
a—1

+ Z q(afl) (mA4n+r)—i(m+r+2)+1

i=1

r+1
m+r n+r ijrant+ji—1 am4r—j
X{(r—i—l)Z( ; )(Hl_j)qa[z]q:ﬂ Ja— AT
j=0

r+1
— m+r n+r ijrant+ji—1 am4r4+1—j
S () (I e
j=1

It becomes obvious that the Theorem 2.3 can be regarded as a generalization
of the formula (2.25). And the case ¢ — 1 in Theorem 2.3 gives that for non-
negative integers m,n,r, a,

m-+r
(2.40) Z (m;— 7‘) (n +f + 7“) Bpiga™ Tk

k=0
n+r

m4n+r— n+r\/m+k+r ndr—
+(—1)mtnt 12( ! )( ! )Bm+ka+ k

a—1r+1

=(r+1) ZZ (m;—r) (ri'li_ij)in-kj—l(a _ i)m-kr—j7

i=1 j=0

which was discovered by GESSEL [4] who made use of the methods presented in
[13].

We next give another generalization of Theorem 2.1. Similarly to (2.6), we
have

2 41 Z( ) (nth) TL+/€+ 1)( )ﬁn-l-k-i-r(y Q)[ ]m F
k=0
m-+n—+r

— Z q(ernfl)zBZ(x_i_y q)[ ]m+n+r i
=0
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S (M) () 1 + ),

k=0

Observe that for non-negative integers n, k, r,

(2.42) n+k+1D)D =n+k+1)---(n+k+7r) =

which together with (2.41) yields

(2.43) Z% 2B ey (y, ) [ lg ™ g

507

m-+n—+r
— Z q(m+n 1)16 (w—i—y q)[ ]m+n+7‘ i

=0
- n—i—k—i—r (—1)m*k
X/;J( )( )(n—kf—kr)'

Hence, in light of (2.19), we obtain

.44 S () s

G
r

N (=) (1P

o n+7‘—z'z n+r+1—z)(k)

(=™ n!-r!~(r—z)(r—z—l—l)---(r—i—i—m—l)
il (m+n+r—i)l '

Combining (2.43) and (2.44) gives
(%)
(2.45) Zm: N jmag ()l
— (n +k+ r) ’ a
N r
— i <Z) (n—r—k)mﬁ (LL' + )[_:C]n—k + (_1)mr (m4n+1-r)x
= 2 7(771 . 7’) q m—+k+r Y, q q q
B T
r—1
r—1 ( . ) i
m+n v 1T —Z
X [=alp Tty "B i( 4 y,9) -

— <m+n+z) m+n+i+1’
n
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Thus, by setting © + y + z = 1 in (2.45), in light of (2.11) and [x], = (—¢%)[—2]4,
we state the following result.

Theorem 2.4. Let m,n,r be non-negative integers. Then for x +y+ 2z =1,

(2.46) (—=1)™ Zm: ()

()

= (="t Z Wq(erkM)ﬁerkw(Z, g )"
k=0

r
r—1
_i_(_1)1n-|—n-|—7‘7a[J:]rn-i-n-l-lTZ_1 ( ( ) q—zﬁ(z q—l) [x]gilii
4 pard (m—i—n—i—r—l—i) n m+n+r—i

n

q(n+k+r)$ﬁn+k+r (y, Q) [I]:In_k

We next discuss some special cases of Theorem 2.4. Clearly, the case r = 0
in Theorem 2.4 gives the Theorem 2.1. If we set » = 1 in Theorem 2.4, we obtain
that for non-negative integers m, n,

(247) (_1)7” Z (T]Z) q(n+k+1)mﬂ7;1i+7kﬁ/7lq) [;[:]Zzn_k
k=0
1\ " n —(m+k+1)M nek (—[a]g)m
= (m+n+n(" ")

which is a g-analogue of Sun’s formula on the classical Bernoulli polynomials (see,
e.g., [7, 15, 32))

NE

(2.48) (~1)™ (m)xm—kwﬂ_l)nzﬂ:(Z)In_kBm+k+1(z)

k n+k+1 m+k+1
0 k=0

(_x)7rl+n+1
= (m,n > 0).
(")

b
Il

In fact, the formula (2.47) has other applications. For example, since Carlitz’s
g-Bernoulli polynomials can be expressed by the closed formula (see, e.g., [8]):

(2.49) fulr,a) = == (}) -V a2 = 0),

(1-q) =0 [k +1]q

by applying the derivative operation 9/9x to both sides of (2.49), with the help of

e k() =G = () - () ez
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one can easily derive that for non-negative integer n,

(2.51) %ﬁn(x,q) = lnq(nﬁn(x,q) - 1%qﬁn_l(ac,q)).

Hence, replacing z with 1 — z — y and applying the derivative operation 9/0y to
both sides of (2.47), in view of (2.51), we obtain that for non-negative integers m, n,

(252) (1" (’”) QD )R Bk (y,0) + (0= DBnersa (v )}

gsm

( ) —(metk41) = ’“{ —qBmr(z,q7h)

+(q_1)6m+k+l(zvq71)} (‘T+y+'z: 1)7

which is another g-analogue of Sun’s formula (2.13). On the other hand, if we set
x=a,y=0,z2=1—ain (2.47), by (2.32) and (2.34) we get

k=0

(2.53) (—1)mzm:( )q<n+k+1>a/3n+k+1(q) [a]m*

i n+k+1
_1\n S n\ —(m+k+a) Bm+k+1(q71) n—k
+(=D kz_o(k)q mt k1
1 n ( 1)k
m+n—+1 -
2 Z Z()(n+y—1)m+k+1
j=1—n k=0
a—1
~ Zq(afl)(m+n+1)7i(m+37j)+1{(m + k4 1)[2];1;1-1]—1 . [a . i];njl-l—j
i=1
1 andj—1 amt2—jy_ (D)™ om0
—( - 1)[1]11*1] fa— dq*l "t= (m+n+1)! [alg ‘

Note that from (2.38) we have

(2.54) ;; (Z) (nZ;E 1)(—1)k — {(1): i ii,g j <o,

and from (2.19), we obtain that for 1 —n <j <1,

n (_1)k _ m!-n!
(2.55) kz:( )(nﬂ_l)erkH T m4D(n+j— D (1 =)

=0
y i (k) (m+1)® m! - n!

m+2)<k> T (n+i-D(m+2-5)

k=0

Hence, combining (2.53), (2.54) and (2.55) gives the following result.
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Theorem 2.5. Let m,n,a be non-negative integers. Then

1\ ntha)a Btk (2) e
(2.56) (—1) +1;(k)q( e S S fa

1)m+1 i ( ) —(m+k+a) ﬂm+k+1(q 1) [a]n—k
k=0

m+k+1 q
m!-n! m+n+1 _ - (a—1)(m+n+1)—i(m+2)+1 m
= ————laj q [i]g-1 - la — 43~
(m+n+1)!
=1
a—1

+ (q—l _ 1) .m!-n! Z q(a—l)(m+n+l)—i(m+3)+l
i=1
1 ij
n+j—1
% :12 (m4+j—D (m+2—3)! [l

j n

It is obvious that the case a = 1 in Theorem 2.5 gives that for non-negative
integers m,n,

n+1 - m\ ntk+1Bnrr+1(q)
(2.57) (-1) kz(k)q n+k+1

m+1Z( ) (mAk+1) Bmrrsi(g™") _ ml-nl
m+k+1 (m+n+1)1"

which is a g-analogue of a formula of SAALSCHUTZ [26], later rediscovered by
GELFAND [12], namely

n+1 n+k+1 m+1 m+k+1
(2.58) Z( )n+k+1 Z()m+k+1

m!-n!

And the case ¢ — 1 in Theorem 2.5 gives that for non-negative integers m,n, a,

"+1 ntktl gm—k m+1 mtk+1 n—k
(2.59) Z( )n+k+1a Z()m+k+1a
_ m! - n! gmtntl ail Z-n(a _ Z-)m
T (mAn+1)

i=1

which was considered by NEUMAN and SCHONBACH [22] from the point of view of
numerical analysis. See also [2] for a different proof and a detailed introduction to
the formula (2.59).
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