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ONLINE LOCAL VOLATILITY CALIBRATION BY

CONVEX REGULARIZATION

Vinicius Albani, Jorge P. Zubelli

We address the inverse problem of local volatility surface calibration from
market given option prices. We integrate the ever-increasing flow of option
price information into the well-accepted local volatility model of Dupire. This
leads to considering both the local volatility surfaces and their corresponding
prices as indexed by the observed underlying stock price as time goes by in
appropriate function spaces. The resulting parameter to data map is defined
in appropriate Bochner-Sobolev spaces. Under this framework, we prove key
regularity properties. This enables us to build a calibration technique that
combines online methods with convex Tikhonov regularization tools. Such
procedure is used to solve the inverse problem of local volatility identifi-
cation. As a result, we prove convergence rates with respect to noise and a
corresponding discrepancy-based choice for the regularization parameter. We
conclude by illustrating the theoretical results by means of numerical tests.

1. INTRODUCTION

A number of interesting problems in nonlinear analysis are motivated by
questions from mathematical finance. Among those problems, the robust identifi-
cation of the variable diffusion coefficient that appears in Dupire’s local volatility
model [9, 14] presents substantial difficulties for its nonlinearity and ill-posedness.
In previous works tools from Convex Analysis and Inverse Problem theory have
been used to address this problem. See [7] and references therein.

In this work, we incorporate the fact that as time evolves more data is avail-
able for the identification of Dupire’s volatility surface. Thus we develop an online
approach to the ill-posed problem of the local volatility surface calibration. Such
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surface is characterized by a non-negative two-variable function σ = σ(τ,K) of the
time to expiration τ and the strike price K.

In what follows, we consider that the local volatility surfaces are indexed by
the observed underlying asset price S0. The reason for that stems from the fact
that if we try to use information of prices observed on different dates, there is no
financial or economical reason for the volatility surface to stay exactly the same.
Thus, in principle we may have different volatility surfaces, although such change
may be small.

Let us quickly review the standard Black-Scholes setting and Dupire’s local
volatility model. Recall that an option or derivative is a contract whose value
depends on the value of an underlying stock or index. Perhaps the most well
known derivative is a European call option, where the holder has the right (but
not the obligation) to buy the underlying at time t = T for a strike value K. We
shall denote the stochastic process defining such underlying S(t) = S(t, ω), where
as usual we assume that it is an adapted stochastic process on a suitable filtered
probability space (Ω,U ,F, P̃), where F = {Ft}t∈R is a filtration [18].

It is well known [9, 14, 18] that, by setting the current time as t = 0, the
value C of a European call option with strike K and expiration T = τ satisfies:

(1)


−∂C
∂τ

+
1

2
σ2(τ,K)K2 ∂

2C

∂K2
− bK ∂C

∂K
= 0 τ > 0, K ≥ 0

C(τ = 0,K) = (S0 −K)+, for K > 0,
lim

K→+∞
C(τ,K) = 0, for τ > 0,

lim
K→0+

C(τ,K) = S0, for τ > 0

where b is the difference between the continuously compounded interest and divi-
dend rates of the underlying asset. In what follows, we assume that such quantities
are constant. Defining the diffusion parameter a(τ,K) = σ(τ,K)2/2, Problem (1)
leads to the following parameter to solution map:

F : D(F ) ⊂ X −→ Y
a ∈ D(F ) 7−→ F (a) = C ∈ Y

where X and Y are Hilbert spaces to be properly defined below. D(F ) is the domain
of the parameter to solution map (not necessarily dense in X) and C = C(a, τ,K)
is the solution of Problem (1) with diffusion parameter a.

The inverse problem of local volatility calibration, as it was tackled in previous
works [5, 6, 7, 10], consists in given option prices C, find an element ã of D(F )
such that F (ã) = C in the least-square sense below. Indeed, the operator F is
compact and weakly closed. Thus, this inverse problem is ill-posed. In [5, 6, 7, 10]
different aspects of the Tikhonov regularization were analyzed. In our case, it is
characterized by the following: Find an element of

argmin
{
‖F (a)− C‖2Y + αfa0(a)

}
subject to a ∈ D(F ) ⊂ X,
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where fa0 is a weakly lower semi-continuous convex coercive functional. The analy-
sis presented in [5, 6, 7, 10] was based on an a priori choice of the regularization
parameter with convex regularization tools.

In contrast, in the present work we explore the dependence of the local volatil-
ity surface on the observed asset price in order to incorporate different option price
surfaces in the same procedure of Tikhonov regularization. More precisely, we
consider the map

U : D(U) ⊂ X 7−→ Y
A ∈ D(U) 7−→ U(A) : S ∈ [Smin, Smax] 7→ C(S, a(S))

where C(S,A(S)) is the solution of (1) with S0 = S and σ2/2 = a(S). Moreover,
A maps S ∈ [Smin, Smax] to a(S) ∈ D(F ) in a well-behaved way.

In this context the inverse problem becomes the following: Given a family of
option prices C ∈ Y, find Ã ∈ D(U) such that U(Ã) = C. We shall see that the
operator U is also compact and weakly closed. Thus, this problem is also ill-posed.
The corresponding regularized problem is defined by the following:

Find an element of

argmin

{∫ Smax

Smin

‖F (a(S))− C(S)‖2Y dS + αfA0(A)

}
subject to A ∈ D(U).

The article is organized as follows.

In Section 2, we present the setting of the direct problem. In Section 3, we define
properly the forward operator and prove some key regularity properties that are
important in the analysis of the inverse problem. This is done in Theorem 1 and
Propositions 4, 5, 6 and 7. That way, we extend the local volatility calibration
problem to local volatility families. In Section 4, we tie up the inverse problem
with convex Tikhonov regularization under an a priori choice of the regularization
parameter. This framework generalizes in a nontrivial way the structure used in
previous works [5, 6, 7, 10] since it requires the introduction of more tools, in
particular that of Bochner spaces. In this setting, we develop a convergence analysis
in a general context, based on convex regularization tools, see [22]. The convergence
of the regularized solutions to the true one, with respect to δ → 0, is stated in
Theorem 2. In Section 5 we establish the Morozov discrepancy principle for the
present problem with convergence rates. This is done in Theorems 3 and 4, and it
allows us to find the regularization parameter appropriately for the present problem.
See [3, 20]. Illustrative numerical tests are presented in Section 6.

2. PRELIMINARIES

We start by setting the so-called direct problem. It is based on the pricing of
European call options by a generalization of the Black-Scholes-Merton model.
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Performing the change of variables y := log(K/S0) and τ := T on the
Cauchy problem (1) and defining u(S0, τ, y) := C(S0, τ, S0ey) and a(S0, τ, y) :=
1

2
σ2(S0, τ, S0ey), it follows that u(S0, τ, y) satisfies

(2)


−∂u
∂τ

+ a(S0, τ, y)

(
∂2u

∂y2
− ∂u

∂y

)
+ b

∂u

∂y
= 0 τ > 0, y ∈ R

u(τ = 0, y) = S0(1− ey)+, for y ∈ R,
lim

y→+∞
u(τ, y) = 0, for τ > 0,

lim
y→−∞

u(τ, y) = S0, for τ > 0.

Note that, σ and a are assumed strictly positive and are related by a smooth
bijection (since σ > 0). Thus, in what follows we shall work only with the local
variance a instead of volatility σ. This simplifies the analysis that follows.

Denote by D := (0, T ) × R the set where problem (2) is defined. From
[10] we know that (2) has a unique solution in W 1,2

2,`oc(D), the space of functions
u : (τ, y) ∈ D 7→ u(τ, y) ∈ R such that, it has locally squared integrable weak
derivatives up to order one in τ and up to order two in y.

We now define the set where the diffusion parameter a lives. For fixed ε > 0,
take scalar constants a1, a2 ∈ R such that 0 < a1 ≤ a2 < +∞ and a fixed function
a0 ∈ H1+ε(D), with a0 < a < a1. Define

(3) Q := {a ∈ a0 +H1+ε(D) : a1 ≤ a ≤ a2}

Note that Q is weakly closed and has nonempty interior under the standard topol-
ogy of H1+ε(D). See the first two chapters of [6, 7] and references therein.

3. THE FORWARD OPERATOR

Since we assume that the local variance surface is dependent on the current
price, we have to introduce proper spaces for the analysis of the problem. As it
turns out, we have to make use of Bochner integral techniques. See [13, 21, 27].
The main reference for this section is [16].

We start with some definitions. Given a time interval, say [0, T ], the realized
prices S(t) vary within [Smin, Smax]. After reordering S(t) in ascending order, we
perform the change of variables s = S(t) − Smin, denote S = Smax − Smin. Thus
s ∈ [0, S]. Hence, for each s, we denote a(s) := a(s, τ, y) the local variance surface
corresponding to s.

Definition 1. Given A ∈ L2(0, S,H1+ε(D)), with A : s 7→ a(s) (see [27]), we
define its Fourier series Â = {â(k)}k∈Z by

â(k) :=
1

2S

∫ S

0

a(s) exp(−iksπ/S)ds+
1

2S

∫ 0

−S
a(−s) exp(−iksπ/S)ds.
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It is well defined, since {s 7→ a(s) exp(−iks2π/S)} is weakly measurable and
L2(0, S,H1+ε(D)) ⊂ L1(0, S,H1+ε(D)) by the Cauchy-Schwartz inequality.

We now define a class of Bochner-type Sobolev spaces:

Definition 2. Let H`(0, S,H1+ε(D)) be the space of A ∈ L2(0, S,H1+ε(D)), such
that

‖A‖` :=
∑
k∈Z

(1 + |k|`)2‖â(k)‖2H1+ε(D)C
<∞,

where H1+ε(D)C = H1+ε(D)⊕iH1+ε(D) is the complexification of H1+ε(D). More-
over, H`(0, S,H1+ε(D)) is a Hilbert space with the inner product

〈A, Ã〉` :=
∑
k∈Z

(1 + |k|`)2〈a(k), ã(k)〉H1+ε(D)C .

Proposition 1. [16, Lemma 3.2] For ` > 1/2, each A ∈ H`(0, S,H1+ε(D)) has a
continuous representative and the map i` : H`(0, S,H1+ε(D)) ↪→ C(0, S,H1+ε(D))
is continuous (bounded). Moreover, we have the estimate

(4) sup
s∈[0,S]

‖u(s)‖H1+ε(D) ≤ ‖U‖l
(

2

∞∑
k=0

1

(1 + k`)2

)1/2

.

Defining the application 〈A, x〉H1+ε(D) := {s 7→ 〈a(s), x〉} for each x in H1+ε(D)

and A in H`(0, S,H1+ε(D)), it follows that 〈A, x〉H1+ε(D) is an element of H`[0, S]
and the inequality ‖〈A, x〉H1+ε(D)‖H`[0,S] ≤ ‖A‖`‖x‖H1+ε(D) holds. Moreover, for
every A,B ∈ L2(0, S,H1+ε(D)), we have the identity

〈A,B〉L2(0,S,H1+ε(D)) =
∑
k∈Z
〈â(k), b̂(k)〉H1+ε(D)C .

Lemma 1. Assume that ` > 1/2. If the sequence {An}n∈N converges weakly to Ã
in H`(0, S,H1+ε(D)), then, the sequence {ak(s)}k∈N weakly converges to ã(s) in
H1+ε(D) for every s ∈ [0, S].

Proof. Take a {An}n∈N and Ã as above. We want to show that, given a weak
zero neighborhood U of H1+ε(D), then for a sufficiently large n, an(s)− a(s) ∈ U
for every s ∈ [0, S]. A weak zero neighborhood U of H1+ε(D) is defined by a set of
α1, . . . , αK ∈ H1+ε(D) and an ε > 0 such that g ∈ H1+ε(D) is an element of U if
maxk=1,...,K |〈g, αn〉| < ε.

Since the immersion H`[0, S] ↪→ C([0, S]) is compact and H`[0, S] is reflex-
ive, it follows that each weak zero neighborhood of H`[0, S] is a zero neighbor-
hood of C([0, S]). Furthermore, from Proposition 1 we know that 〈A, α〉H1+ε(D) ∈
H`[0, S] with its norm bounded by ‖A‖`‖α‖H1+ε(D), for every n ∈ N and α ∈
H1+ε(D). Thus, we take the smallest closed ball centered at zero, B, which con-

tains 〈Ã, αk〉H1+ε(D) with k = 1, . . . ,K and every 〈An, αk〉H1+ε(D) with n ∈ N
and k = 1, . . . ,K. Therefore, choosing ε > 0 as above, it is true that for each k =
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1, . . . ,K, there are fk,1, . . . , fk,M(k) ∈ H`[0, S] and ηk > 0, such that ‖f‖C([0,S]) < ε
for every f ∈ B with maxm=1,...,M(k) |〈f, fk,m〉| < ηk. Hence, we define Ck,m :=

αk ⊗ fk,m ∈ H`(0, S,H1+ε(D))∗ and the weak zero neighborhood A = ∩Kk=1Ak of
H`(0, S,H1+ε(D)) with

Ak := {A ∈ H`(0, S,H1+ε(D)) : |〈A, Ck,m〉| ≤ ηk, m = 1, . . . ,M(k)}.

As A is a weak zero neighborhood of H`(0, S,H1+ε(D)), it is true that for suffi-

ciently large n, An−Ã ∈ A, which implies that an(s)− ã(s) ∈ U for every s ∈ [0, S],
i.e., {an(s)}n∈N weakly converges to ã(s) for every s ∈ [0, S].

Define the set Q := {A ∈ H`(0, S,H1+ε(D)) : a(s) ∈ Q, ∀s ∈ [0, S]}, i.e.,
each A in Q is the map A : s ∈ [0, S] 7→ a(s) ∈ Q. Note that Q is the space of
Q-valued paths, with Q defined in (3).

Proposition 2. For ` > 1/2, the set Q is weakly closed and its interior is nonempty
in H`(0, S,H1+ε(D)).

Proof. By Lemma 1 and the fact that Q is weakly closed it follows that Q is weakly
closed. The interior of Q is nonempty since the inclusion H`(0, S,H1+ε(D)) ↪→
C(0, S,H1+ε(D)) is continuous and bounded. Note that, given ε > 0, it follows

that Ã = {s 7→ ã(s)} with a+ ε ≤ ã(s) ≤ a+ ε for every s ∈ [0, S] is in the interior
of Q.

We stress that, in what follows, we always assume that ` > 1/2, since it is
enough to state our results concerning regularity aspects of the forward operator.

We define below the forward operator, that associates each family of local
variance surfaces to the corresponding family of option price surfaces, determined
by the Cauchy problem (2). Thus, for a given a0 ∈ Q we define:

U : Q −→ L2(0, S,W 1,2
2 (D)),

A 7−→ U(A) : s ∈ [0, S] 7→ F (s, a(s)) ∈W 1,2
2 (D),

where [U(A)](s) = F (s, a(s)) := u(s, a(s)) − u(s, a0) and u(s, a) is the solution of
the Cauchy problem (2) with local variance a. The following results state some reg-
ularity properties concerning the forward operator. See [7] and references therein.

Proposition 3. The operator F : [0, S]×Q −→ W 1,2
2 (D) is continuous and com-

pact. Moreover, it is sequentially weakly continuous and weakly closed.

We define below the concept of Frechét equi-differentiability for a family of
operators.

Definition 3. We call a family of operators {Fs : Q −→ W 1,2
2 (D) | s ∈ [0, S]}

Frechét equi-differentiable, if for all ã ∈ Q and ε > 0, there is a δ > 0, such that

sup
s∈[0,S]

‖Ft(ã+ h)−Fs(ã)−F ′s(ã)h‖ ≤ ε‖h‖,

for ‖h‖H1+ε(D) < δ and F ′s(ã) the Frechét derivative of Fs(·) at ã.
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Using this concept, we have the following proposition.

Proposition 4. The family of operators {F (s, ·) : Q −→ W 1,2
2 (D) | s ∈ [0, S]} is

Frechét equi-differentiable.

Proof. Given ã ∈ Q and ε > 0, define w = F (s, ã+ h)−F (s, ã)− ∂aF (s, ã)h, it is
equivalent to w = u(s, ã + h) − u(s, ã) − ∂au(s, ã)h. We denote v := u(s, ã + h) −
u(s, ã). Thus, by linearity w satisfies

−wτ + ã(wyy − wy) + bwy = h(vyy − vy),

with homogeneous boundary condition. Such problem does not depend on s, as
ã is independent of s. From the proof of Proposition 3 (see also [10]), we have
‖w‖W 1,2

2 (D) ≤ C‖h‖L2(D)‖v‖W 1,2
2 (D). By the continuity of the operator F, given

ε > 0 we can chose h ∈ H1+ε(D) with ‖h‖H1+ε(D) ≤ δ, such that ‖v‖W 1,2
2 (D) ≤ ε/C

and thus the assertion follows.

The following theorem is the principal result of this section, since it states
some properties that are at the core of the inverse problem analysis [12, 22]. The
proof is presented in Appendix.

Theorem 1. The forward operator U : Q −→ L2(0, S,W 1,2
2 (D)) is well defined,

continuous and compact. Moreover, it is sequentially weakly continuous and weakly
closed.

The next result states necessary conditions for the convergence analysis, see
[12, 22]. Its proof can be found in Appendix.

Proposition 5. The operator U(·) admits a one sided derivative at Ã ∈ Q in the

direction H, such that Ã+H ∈ Q. The derivative U ′(Ã) satisfies∥∥∥U ′(Ã)H
∥∥∥
L2(0,S,W 1,2

2 (D))
≤ c‖H‖H`(0,S,H1+ε(D)).

Moreover, U ′(Ã) satisfies the Lipschitz condition∥∥∥U ′(Ã)− U ′(Ã+H)
∥∥∥
L(H`(0,S,H1+ε(D)),L2(0,S,W 1,2

2 (D)))
≤ γ‖H‖H`(0,S,H1+ε(D))

for all Ã,H ∈ Q such that Ã, Ã+H ∈ Q.

The following result is a consequence of the compactness of U(·).

Proposition 6. The Frechét derivative of the operator U(·) is injective and com-
pact.
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Proof. Take H ∈ ker
(
U ′(Ã)

)
. Thus, from the proof of Proposition 5, we have

h(s) · (uyy − uy) = 0. However, for each s, G = uyy − uy is the solution of{
∂τG =

1

2

(
∂2
yy − ∂y

)
(a(s)G+ bG)

G |τ=0 = δ(y) ,

i.e., G is the Green’s function of the Cauchy problem above. Thus, G > 0 for every
y,τ > 0 and s ∈ [0, S]. Therefore h(t) = 0. Since this holds for every s ∈ [0, S], then
the result follows.

We now make use of the bounded embedding of the space L2(0, S,W 1,2
2 (D))

into the space L2(0, S, L2(D)), since it implies that U satisfies the same results
presented above with L2(0, S, L2(D)) instead of L2(0, S,W 1,2

2 (D)). Thus, we char-
acterize the range of U ′(A) as a subset of L2(0, S, L2(D)) and the range of U ′(A)∗

as a subset of H`(0, S,H1+ε(D)) in order to proceed in Section 4 the convergence
analysis.

Proposition 7. The operator U ′(A†)∗ has a trivial kernel.

Proof. For simplicity take b = 0. Denote by L := −∂τ + a(∂yy− ∂y) the parabolic
operator of Equation (2) with homogeneous boundary condition and Guyy−uy the
multiplication operator by uyy−uy. Thus, for each s ∈ [0, S], we have ∂au(s, ã(s)) =
L−1Guyy−uy , where L−1 is the left inverse of L with null boundary conditions. By

definition of U ′(Ã)∗ : L2(0, S, L2(D))→ H`(0, S,H1+ε(D)), we have,〈
U ′(Ã)H,Z

〉
L2(0,S,L2(D))

= 〈H,Φ〉H`(0,S,H1+ε(D)),

∀ H ∈ H`(0, S,H1+ε(D)) and ∀ Z ∈ L2(0, S, L2(D)), with Φ = U ′(Ã)∗Z. Thus,

given any Z ∈ ker
(
U ′(Ã)∗

)
, it follows that

0 =
〈
U ′(Ã)H,Z

〉
L2(0,S,L2(D))

=

∫ S

0

〈
L−1Guyy−uyh(s), z(s)

〉
L2(D)

ds

=

∫ S

0

〈
Guyy−uyh(s), [L−1]∗z(s)

〉
L2(D)

ds =

∫ S

0

〈
Guyy−uyh(s), g(s)

〉
L2(D)

ds,

where g is a solution of the adjoint equation

gτ + (ag)yy + (ag)y = z

for each s ∈ [0, S], with homogeneous boundary conditions. Since z(t) ∈ L2(D), we
have that g(s) ∈ H1+ε(D) (see [19]) and g ∈ L2

(
0, S,H1+ε(D)

)
. Since G > 0, from

the proof of Proposition 6 and the fact that h ∈ H`(0, S,H1+ε(D)) is arbitrary, it
follows that g = 0. Therefore Z = 0 almost everywhere in s ∈ [0, S]. It yields that
ker (U ′(a)∗) = {0}.
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Remark 1. From the last proposition it follows that

ker{U ′(Ã)} = {0} ⇒ R
{(
U ′(Ã)

)∗}
= H`(0, S,H1+ε(D)).

In other words, the range of the adjoint operator of the Frechét derivative of the forward
operator U at Ã is dense in H`(0, S,H1+ε(D)).

We present below the tangential cone condition for U . It follows almost di-
rectly by the above results and Theorem 1.4.2 from [6]. See also [8].

Proposition 8. The map U(·) satisfies the local tangential cone condition∥∥∥U(A)− U(Ã)− U ′(Ã)(A− Ã)
∥∥∥
L2(0,S,W 1,2

2 (D))
≤ γ

∥∥∥U(A)− U(Ã)
∥∥∥
L2(0,S,W 1,2

2 (D))

for all A, Ã in a ball B(A∗, ρ) ⊂ Q with some ρ > 0 and γ < 1/2.

As a corollary we have the following result:

Corollary 1. The operator U is injective.

4. THE INVERSE PROBLEM

Following the notation of Section 3, we want to define a precise and robust
way of relating each family of European option price surfaces to the corresponding
family of local volatility surfaces, both parameterized by the underlying stock price.
We first present an analysis of existence and stability of regularized solutions, then
we establish some convergence rates. We also prove Morozov’s discrepancy principle
for the present problem with the same convergence rates.

The inverse problem of local volatility calibration can be restated as:

Given a family of European call option price surfaces Ũ = {s 7→ ũ(s)} in the space
L2(0, S, L2(D)), find the correspondent family of local variance surfaces A† = {s 7→
a†(s)} ∈ Q, satisfying

(5) Ũ = U(A†).

In what follows we assume that for a given data Ũ , the inverse problem (5) has
always a unique solution A† in Q. Such uniqueness follows by the forward operator
being injective. Note that, Ũ is noiseless, i.e., is known without uncertainties. This
is an idealized situation, thus, to be more realistic, we assume that we can only
observe corrupted data Uδ, satisfying a perturbed version of (5),

(6) Uδ = Ũ + E = U(A†) + E

where E = {s 7→ E(s)} compiles all the uncertainties associated to this problem

and Ũ is the unobservable noiseless data. We assume further that, the norm of E
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is bounded by the noise level δ > 0. Moreover, for each s ∈ [0, S], we assume that
‖E(s)‖ ≤ δ/S. These hypotheses imply that

(7) ‖Uδ−Ũ‖L2(0,S,L2(D)) ≤ δ and ‖uδ(s)− ũ(s)‖L2(D) ≤ δ/S for every s ∈ [0, S].

Proposition 1 gives that U(·) is compact, implying that the associated inverse prob-
lem is ill-posed. It means that such inverse problem cannot be solved directly in a
stable way. Hence, we must apply regularization techniques. This, roughly speak-
ing, relies on stating the original problem under a more robust setting. More
specifically, instead of looking for an Aδ ∈ Q satisfying (6), we shall search for an
Aδ ∈ Q minimizing the Tikhonov functional

(8) FU
δ

A0,α(A) = ‖Uδ − U(A)‖2L2(0,S,L2(D)) + αfA0(A).

The functional fA0
has the goal of stabilizing the inverse problem and allows

us to incorporate a priori information through A0.

We shall see later that, the minimizers of (8) are approximations for the
solution of (5).

In order to guarantee the existence of stable minimizers for the functional
(8), we assume that fA0 : Q → [0,∞] is convex, coercive and weakly lower semi-
continuous. A classical reference on convex analysis is [11]. Note that, these
assumptions are not too restrictive, since they are fulfilled by a large class of func-
tionals on H`(0, S,H1+ε(D)). A canonical example is

fA0
(A) = ‖A −A0‖2H`(0,S,H1+ε(D)),

which leads us to the classical Tikhonov regularization.

Recall that U is weakly continuous and Q is weakly closed. Combining that
with the required properties of fA0

we can apply [22, Theorem 3.22], which gives for
a fixed Uδ ∈ L2(0, S, L2(D)) the existence of at least one element of Q minimizing

FUδA0,α
(·), the functional defined in (8).

For the sake of completeness, we present the definition of stability of a mini-
mizer:

Definition 4 (Stability). If Ã is a minimizer of (8) with data U , then it is called
stable if for every sequence {Uk}k∈N ⊂ L2(0, S,W 1,2

2 (D)) converging strongly to U ,
the sequence {Ak}k∈N ⊂ Q of minimizers of FUkA0,α

(·) has a subsequence converging

weakly to Ã.

Then, by [22, Theorem 3.23], it follows that the minimizers of (8) are stable
in the sense of Definition 4.

By [22, Theorem 3.26], when the noise level δ and the regularization parameter
α = α(δ) vanish, we can find a sequence of minimizers of (8) converging weakly to
the solution of (5). In other words, the minimizers of (5) are indeed approximations
of the family of true local volatility surfaces. In addition, as one interpretation of
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this theorem, we can say that the smaller the noise level δ is, if the regularization
parameter α is properly chosen, the less dependent on the regularization functional
and the a priori information the Tikhonov minimizers are.

Making use of convex regularization tools, we provide some convergence rates
with respect to the noise level. In order to do that, we need some abstract concepts,
as the Bregman distance related to fA0 , q-coerciveness and the source condition
related to operator U . Such ideas were also used in [5, 6, 7, 10], but here they are
extended to the context of online local volatility calibration. For the definitions of
Bregman distance and q-coerciveness see Appendix.

In what follows we always assume that (5) has a (unique) solution which is
an element of the Bregman domain DB(fA0

).

Before stating the result about convergence rates, we need the following aux-
iliary lemma, which introduces the so-called source condition. For a review on
Convex Regularization, see [22, Chapter 3].

Lemma 2. For every ξ† ∈ ∂fA0
(A†), there exists ω† ∈ L2(0, S, L2(D)) and E ∈

H`(0, S,H1+ε(D)) such that ξ† =
[
U ′(A†)

]∗
ω† + E holds. Moreover, E can be

chosen such that ‖E ‖H`(0,S,H1+ε(D)) is arbitrarily small.

Lemma 2 follows by R(U ′(A†)∗) being dense in H`(0, S,H1+ε(D)). See Pro-
position 7 in Section 3. Observe also that, we identify L2(0, S, L2(D))∗ and
H`(0, S,H1+ε(D))∗ with L2(0, S, L2(D)) and H`(0, S,H1+ε(D)), respectively, since
they are Hilbert spaces.

Theorem 2 (Convergence Rates). Assume that (5) has a (unique) solution. Let
the map α : (0,∞)→ (0,∞) be such that α(δ) ≈ δ as δ ↘ 0. Furthermore, assume
that the convex functional fA0

(·) is also q-coercive with constant ζ, with respect to
the norm of H`(0, S,H1+ε(D)). Then under the source condition of Lemma 2 it
follows that

Dξ†(Aδα,A†) = O(δ) and ‖U(Aδα)− Uδ‖ = O(δ).

Proof. Let A† and Aδα denote the solution of (5) and the minimizer of (8), respec-
tively. It follows that, ‖U(Aδα)−Uδ‖2 +αfA0

(Aδα) ≤ ‖U(A†)−Uδ‖2 +αfA0
(A†) ≤

δ2 + αfA0
(A†).

Since, Dξ†(Aδα,A†) = fA0(Aδα) − fA0(A†) − 〈ξ†,Aδα −A†〉, it follows by Lemma 2
and the above estimate that,

‖U(Aδα)− Uδ‖2 + αDξ†(Aδα,A†) ≤ δ2 − α(〈ω†,U ′(A†)(Aδα −A†)〉+ 〈E ,Aδα −A†〉).

By Proposition 8, it follows that |〈ω†,U ′(A†)(Aδα −A†)〉| ≤ (1 + γ)‖ω†‖‖U(Aδα)−
U(A†)‖ ≤ (1+γ)‖ω†‖(δ+‖U(Aδα)−Uδ‖). Thus, ‖U(Aδα)−Uδ‖2 +αDξ†(Aδα,A†) ≤
δ2 + α(1 + γ)‖ω†‖(δ + ‖U(Aδα)− Uδ‖) + α‖E ‖ · ‖Aδα −A†‖.
Since ‖E ‖ is arbitrarily small, it follows that, (ζ−‖E ‖)/ζ > 0. Moreover, since fA0

is q-coercive with constant ζ we divide the estimates in two cases, when q = 1 and
q > 1. For the case q = 1, the above inequalities imply that,

(‖U(Aδα)−Uδ‖−α(1+γ)‖ω†‖/2)2+α(1−1/ζ‖E ‖)Dξ†(Aδα,A†) ≤ (δ+α(1+γ)‖ω†‖)2
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Hence, the assertions follow. For the case q > 1, we denote β1 = ‖E ‖/ζ and we
have that,

β1(Dξ†(Aδα,A†))1/q ≤ βq1
q

+
1

q
Dξ†(Aδα,A†).

Thus, assuming that β1 = O(δ1/q), we have the estimate:

(9)
(
‖U(Aδα)− Uδ‖ − α1 + γ

2
‖ω†‖

)2

+ α
q − 1

q
Dξ†(Aδα,A†) ≤

(δ + α(1 + γ)‖ω†‖)2 + α
βq1
q
,

and the assertions follow.

Note that the rates obtained in Theorem 2 state that, in some sense, the
distance between the true local variance and the Tikhonov solution is of order
O(δ). This can be seen as a measure of the reliability of Tikhonov minimizers for
this specific example.

5. MOROZOV’S PRINCIPLE

We now establish a relaxed version of Morozov’s discrepancy principle for the
specific problem under consideration [20]. This is one of the most reliable ways of
finding the regularization parameter α as a function of the data Uδ and the noise
level δ. Intuitively, the regularized solution should not fit the data more accurately
than the noise level. We remark that this statement does not follow immediately
because, the parameter now has to be chosen as a function of the noise level δ and
the data Uδ. Thus, it is necessary to prove that such functional in fact satisfies the
required criteria to achieve the desired convergence rates.

From Equation (7), it follows that any A ∈ Q satisfying

(10) ‖U(A)− Uδ‖ ≤ δ

could be an approximate solution for (5). If Aδα is a minimizer of (8), then Mo-
rozov’s discrepancy principle says that the regularization parameter α should be
chosen through the condition

(11) ‖U(Aδα)− Uδ‖ = δ

whenever it is possible. In other words, the regularized solution should not satisfy
the data more accurately than up to the noise level.

Since the identity (11) is restrictive, in what follows we combine two strate-
gies. The first one is the relaxed Morozov’s discrepancy principle studied in [3].
The second one is the sequential discrepancy principle studied in [2].

Note that, in the analysis that follows, we also require that if fA0
(A) = 0

then A = A0.



Online Local Volatility Calibration by Convex Regularization 255

Definition 5 ([3]). Let the noise level δ > 0 and the data Uδ be fixed. Define the
functionals

L : A ∈ Q 7−→ L(A) = ‖U(A)− Uδ‖ ∈ R+ ∪ {+∞},(12)

H : A ∈ Q 7−→ H(A) = fA0(A) ∈ R+ ∪ {+∞},(13)

I : α ∈ R+ 7−→ I(α) = FU
δ

A0,α(Aδα) ∈ R+ ∪ {+∞}.(14)

We also define the set containing all minimizers of the functional (8) for each fixed
α ∈ (0,∞) as

Mα :=
{
Aδα ∈ Q : L(aδα) ≤ L(A), ∀A ∈ H`(0, S,H1+ε(D))

}
.

Note that we have extended L(A) to be equal to ‖U(A)− Uδ‖ when A ∈ Q and to
be equal to +∞ otherwise.

The first strategy above mentioned is defined as follows:

Definition 6 (Morozov Criteria). For prescribed 1 < τ1 ≤ τ2, choose α = α(δ,Uδ)
such that α > 0 and

(15) τ1δ ≤ ‖U(Aδα)− Uδ‖ ≤ τ2δ

holds for some Aδα in Mα.

If the first is not possible, then we consider the following:

Definition 7 (Sequential Morozov Criteria). For prescribed τ̃ > 1, α0 > 0 and
0 < q < 1, choose αn = qnα0 such that the discrepancy

(16) ‖U(Aδαn)− Uδ‖ ≤ τ̃ δ < ‖U(Aδαn−1
)− Uδ‖

is satisfied for some n ∈ N and some Aδαn ∈Mαn and Aδαn−1
∈Mαn−1 .

It follows by [25, Lemma 2.6.1] that the functional H(·) is non-increasing and
the functionals L(·) and I(·) are non-decreasing with respect to α ∈ (0,∞) in the
following sense, if 0 < α < β then we have

sup
Aδα∈Mα

L(Aδα) ≤ inf
Aδβ∈Mβ

L(Aδβ), inf
Aδα∈Mα

H(Aδα) ≥ sup
Aδβ∈Mβ

H(Aδβ) and I(α) ≤ I(β).

By [25, Lemma 2.6.3], the functional I(·) is continuous and the sets of dis-
continuities of L(·) and H(·) are at most countable and coincide. If we denote this
set by M, then L(·) and H(·) are continuous in (0,∞)\M.

Since the set Mα is weakly closed for each α > 0, we have the following:

Lemma 3. For each α > 0, there exist A1,A2 ∈Mα such that

L(A1) = inf
A∈Mα

L(A) and L(A2) = sup
A∈Mα

L(A).
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Proposition 9. Let 1 < τ1 ≤ τ2 be fixed. Suppose that ‖U(A0)−Uδ‖ > τ2δ. Then,
we can find α, α > 0, such that

L(A1) < τ1δ ≤ τ2δ < L(A2),

where A1 := Aδα and A2 := Aδα.

Proof. First, let the sequence {αn}n∈N converge to 0. Then, we can find a sequence
{An}n∈N withAn ∈Mαn for each n ∈ N. Now, letA† be an fA0

-minimizing solution

of (6). Hence, it follows that L(An)2 ≤ I(αn) ≤ FUδA0,αn
(A†) ≤ δ2 + αnfA0

(A†).
Thus, for a sufficiently large n ∈ N, L(An)2 < (τ1δ)

2, since αnfA0(a†) → 0. Thus,
we can set α := αn for this same n .

We now assume that αn → ∞. Taking An as before, we have the following

estimates H(An) ≤ 1

αn
I(αn) ≤ 1

αn
FUδA0,αn

(A0) =
1

αn
‖U(A0) − Uδ‖ → 0 whenever

n → ∞. Thus, lim
n→∞

fA0(An) = 0, which implies that {An}n∈N converges weakly

to A0. Then, by the weak continuity of U(·) and the lower semi-continuity of the
norm, it follows that

‖U(A0)− Uδ‖ ≤ lim inf
n→∞

‖U(An)− Uδ‖,

which shows the existence of α, such that

L(Aδα) > τ2δ.

Remark 2. For prescribed 1 < τ1 ≤ τ2, the discrepancy principle (15) always works if we
assume that there is no α > 0 such that the minimizers A1,A2 ∈Mα satisfy

(17) ‖U(A1)− Uδ‖ < τ1δ ≤ τ2δ < ‖U(A2)− Uδ‖.

In other words, only one of the inequalities of the discrepancy principle (15) could be
violated by the minimizers associated to α. A sufficient condition for such assumption is
the uniqueness of Tikhonov minimizers which we are not able to prove for this specific
case. Thus, we have to introduce the sequential discrepancy principle (16) whenever the
condition (17) is violated. Note that the discrepancy principle (15) is always preferable
since its lower inequality implies that the Tikhonov minimizers satisfying (15) do not
reproduce noise. Whereas the same conclusion cannot be achieved with the sequential
discrepancy principle (16). See also [24, Remark 4.7] for another discussion about the
discrepancy principle (15).

Under the condition (17) and Proposition 9, by [3, Theorem 3.10] we can
always find α := α(δ) > 0 and a Tikhonov minimizer Aδα ∈Mα, such that both the
inequalities of the discrepancy principle (15) are satisfied. Proposition 9 also implies
that the sequential discrepancy principle (16) is well posed. See [2, Lemma 2]. For
a convergence analysis under the sequential Morozov, see [17].

Theorem 3. Assume that the inverse problem (5) has a (unique) solution. If
condition (17) holds, then the regularizing parameter α = α(δ,Uδ) obtained through
Morozov’s discrepancy principle (15) satisfies the limits

lim
δ→0+

α(δ,Uδ) = 0 and lim
δ→0+

δ2

α(δ,Uδ) = 0.
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The same limits hold if α is chosen through the sequential discrepancy principle
(16).

Proof. Let {δn}n∈N be a sequence such that δn ↓ 0 and let Ũ be the noiseless data.

Thus, ‖Ũ −Uδn‖ ≤ δn. In addition, recall that the inverse problem (5) has a unique

solution A† and then U(A†) = Ũ . We only prove the case where the choice of the
regularization parameter is based on the discrepancy principle (15). Very similar
arguments to the ones that follow show the theorem’s claim when the choice is
based on the sequential discrepancy principle (16). See [2, Theorem 1]. Thus, it is
straightforward to build diagonal convergent subsequences with elements satisfying
one of both strategies, in order to prove the limits above asserted.

Let αn := α(δn,Uδn) denote the regularizing parameter chosen through (15).
Thus, we denote by An := Aδnαn its associated minimizer of (8) with respect to
δn, αn and Uδn . This defines the sequence {An}n∈N, which is pre-compact by the
coerciveness of fA0

. Choose a convergent subsequence, denoting it by {Ak}k∈N and

its weak limit by Ã. We shall see that Ã = A† and thus the original sequence is
bounded and has the unique cluster point A†.

The weakly lower semi-continuity of ‖U(·)−Ũ‖ and fA0
implies that ‖U(Ã)−

Ũ‖ ≤ lim
k→∞

(τ2 + 1)δk = 0. Thus, Ã is a solution of the inverse problem (5), which

is unique, then Ã = A†.
Since, for each k, Ak is a Tikhonov minimizer satisfying the discrepancy

principle (15), it follows by the weakly lower semi-continuity of fA0
that

(18) fA0
(A†) ≤ lim inf

k→∞
fA0

(Ak) ≤ lim sup
k→∞

fA0
(Ak) ≤ fA0

(A†).

In other words, fA0(Ak)→ fA0(A†).
We now prove that α(δ,Uδ)→ 0. Assume that with respect to the sequence of

the beginning of the proof, there exist α > 0 and a subsequence {αk}k∈N such that
αk ≥ α for every k ∈ N. Denote also by {Ak}k∈N a sequence of minimizers of (8)
with respect to δk, αk and Uδk . Define further the sequence {Ak}k∈N of minimizers
of (8) with respect to δk, α and Uδk . Since L in non-decreasing, by the discrepancy
principle (15),

(19) ‖U(Ak)− Uδk‖ ≤ ‖U(Ak)− Uδk‖ ≤ τ2δk → 0

On the other hand, lim sup
k→∞

αfA0
(Ak) ≤ αfA0

(A†). By the coerciveness of fA0
,

the sequence has a convergent subsequence, denoted also by {Ak}k∈N, with limit
A ∈ Q. Thus, by the estimates (18) and (19), the weakly lower semi-continuity of

‖U(·)−Ũ‖ and fA0
, it follows that ‖U(A)−Ũ‖ = 0 and fA0

(A) ≤ fA0
(A†). Since the

inverse problem (5) has a unique solution, A = A† and thus fA0
(Ak) → fA0

(A†).
On the other hand, A is a minimizer of (8) with regularization parameter α and
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the noiseless data Ũ , since for each A ∈ Q, the following estimate hold:

‖U(A)− Ũ‖2 + αfA0(A) ≤ lim inf
k→∞

(
‖U(A)− Uδk‖2 + αfA0(A)

)
= ‖U(A)− Uδk‖2 + αfA0(A).

Since fA0
is convex, it follows that for every t ∈ [0, 1)

fA0
((1− t)A+ tA0) ≤ (1− t)fA0

(A) + tfA0
(A0) = (1− t)fA0

(A).

Thus, αfA0
(A) ≤ ‖U((1 − t)A + tA0) − Ũ‖2 + α(1 − t)fA0

(A). This implies that

αtfA0
(A) ≤ ‖U((1 − t)A + tA0) − Ũ‖2. Since Ũ = U(A), by Proposition 5 with

H = A0−A, αfA0
(A) ≤ lim

t→0+

1

t
‖U((1− t)A+ tA0)−Ũ‖2 = 0. Therefore, fA0

(A) =

0. But, by hypothesis, it could only hold if A = A0, i.e., A† = A0. However,
‖U(A0)−Uδ‖ ≥ τ2δ. This is a contradiction. We conclude that α(δ,Uδ)→ 0 when
δ → 0.

In order to prove the second limit, consider again the subsequence {Ak}k∈N
converging weakly to A†, the solution of the inverse problem (5), when δk ↓ 0.
Thus, since for each k Ak satisfies the discrepancy principle (15), it follows that

τ2
1 δ

2
k + αkfA0

(Ak) ≤ δ2
k + αkfA0

(A†). This implies that (τ2
1 − 1)

δ2k
αk
≤ fA0(A†) −

fA0
(Ak)→ 0.

The following theorem states that, if the regularization parameter α is chosen
through the discrepancy principle (15), we achieve the same convergence rates of
the Theorem 2.

Theorem 4. Assume that the inverse problem (5) has a (unique) solution. Suppose
that Aδα is a minimizer of (8) and α = α(δ,Uδ) is chosen through the discrepancy
principle (15) or the sequential discrepancy principle (16). Then, by the source
condition of Lemma 2, we have the estimates

(20) ‖U(Aδα)− U(A†)‖ = O(δ) and Dξ†(Aδα,A†) = O(δ),

with ξ† ∈ ∂fA0
(A†). The estimates are achieved whenever (15) is used.

Proof. Let A† be the solution of the inverse problem (5). If Aδα ∈ Mα, then, the
first estimate is trivial since ‖U(Aδα)− U(A†)‖ ≤ (τ2 + 1)δ.

If condition (17) holds, then by the first inequality of the discrepancy principle
(15), τ1δ

2 + αfA0(Aδα) ≤ δ2 + αfA0(A†), implying that fA0(Aδα) ≤ fA0(A†), since
τ1 − 1 > 0. Hence, for every ξ† ∈ ∂fA0

(A†) satisfying the source condition of
Lemma 2 and assuming that fA0

is 1-coerciveness with constant ζ, we have the
estimates:

Dξ†(Aδα,A†) ≤ |〈ξ†,Aδα −A†〉| = |〈U ′(A†)∗ω† + E ,Aδα −A†〉|(21)

≤ ‖ω†‖‖U ′(A†)(Aδα −A†)‖+ ‖E‖‖Aδα −A†‖

≤ (1 + γ)‖ω†‖‖U(Aδα)− U(A†)‖+
1

ζ
‖E‖Dξ†(Aδα,A†)
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Since ξ† can be chosen with ‖E‖ arbitrarily small, it follows that 1 − 1/ζ‖E‖ > 0
and then, by (15),

Dξ†(Aδα,A†) ≤
ζ

ζ − ‖E‖ (1 + γ)‖ω†‖‖U(Aδα)− U(A†)‖ ≤ τ2
ζ

ζ − ‖E‖ (1 + γ)‖ω†‖ · δ.

On the other hand, let α be given by the sequential discrepancy principle (16).
Since, αDξ†(Aδα,A†) ≤ ‖U(Aδα)− Uδ‖2 + αDξ†(Aδα,A†), then,

Dξ†(Aδα,A†) ≤
δ2

α
+ |〈ξ†,Aδα −A†〉|.

By the previous case, the second term in the right hand side of the above in-
equality has the order O(δ). By Theorem 3 the first term also vanishes. Since τ̃ δ ≤
‖U(Aδα/q)−U

δ‖, it follows that the first term is of order O
(
|fA0

(Aδα/q)− fA0
(A†)|

)
and |fA0

(Aδα/q)− fA0
(A†)| ≤ |〈ξ†,Aδα/q −A

†〉|. See [2, Proposition 10].

As mentioned above, the above rates obtained in terms of Bregman dis-
tance state that, in some sense, the distance between the true local variance
and the Tikhonov solution is of order O(δ). Under a more practical perspec-
tive, consider fA0

(A) = ‖A − A0‖2H`(0,S,H1+ε(D)). In this case, it follows that

‖Aδα −A†‖H`(0,S,H1+ε(D)) = O(δ1/2). In addition, if ` > 1/2 in H`(0, S,H1+ε(D)),
it follows by the inequality (4) that

sup
s∈[0,S]

‖aδα(s)− a†(s)‖H1+ε(D) ≤ C‖Aδα −A†‖H`(0,S,H1+ε(D)).

Thus, the convergence rates also follows uniformly in s and imply the convergence
rates obtained in previous works, such as [7, 10, 5]. This can be understood as
the online solution is at least as good as the solution obtained in the standard case,
i.e., the Tikhonov minimizers with only one price surface.

Remark 3. For fA0 q-coercive with q > 1, a reasoning as the one used in Equation (21),
gives that

Dξ†(A
δ
α,A†) ≤ β1(Dξ†(A

δ
α,A†))1/q + β2‖U(Aδα)− U(A†)‖

≤ βq1
q

+
1

q
Dξ†(A

δ
α, α) + β2‖U(Aδα)− U(A†)‖.

Assume further that β1 = O(δ1/q). Since ‖U(Aδα)− U(A†)‖ = O(δ), it follows that

‖Aδα −A†‖q ≤
1

ζ
Dξ(Aδα,A†) = O(δ).

6. NUMERICAL RESULTS

We first perform tests with synthetic data for testing accuracy and advantages
of the methods. Then, we present some examples with observed market prices.
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We note that Problem (2) is solved by a Crank-Nicolson scheme [1, Chapter
5]. Since we shall use a gradient-based method to solve numerically the minimiza-
tion of the Tikhonov functional (8). Let Jδ(A) and ∇Jδ(A) denote the quadratic
residual and its gradient, respectively. More precisely, the residual is given by

Jδ(A) := ‖U(A) − Uδ‖2L2(0,S,L2(D)) =
∫ S

0
‖F (s, a(s)) − uδ(s)‖2L2(D)ds and the gra-

dient is given by

(22) 〈∇Jδ(A),H〉H`(0,S,H1+ε(D)) = 2〈U(A)− Uδ,U ′(A)H〉L2(0,S,L2(D))

= 2

∫ S

0

∫
D

{[v(uyy − uy)h(t)](s, a(s))}(τ, y)dτ dy ds,

where, for each s ∈ [0, S], v is the solution of equation,

(23) vτ + (av)yy + (av)y + bvy = u(s, a)− uδ(s)

with homogeneous boundary condition. Note that, V = {V : s 7→ v(s)} is an
element of L2(0, S,W 1,2

2 (D)). We also numerically solve Problem (23) by a Crank-
Nicolson scheme. See [1, Chapter 5].

In the following examples we assume that ` = 1 in H`(0, S,H1+ε(D)) and
the regularization functional is fA0(A) = ‖A −A0‖2H`(0,S,H1+ε(D)) with ε = 0.

6.1. Examples with Synthetic Data

Consider the following local volatility surface:

a(s, u, x) =


2

5

(
1− 2

5
e−1/2(u−s)

)
cos(1.25π x), (u, x) ∈ (0, 1]×

[
− 2

5
,

2

5

]
,

2

5
, otherwise.

We generate the data, i.e., evaluate the call prices with the above volatility, in
a very fine mesh. Then we add a zero-mean Gaussian noise with standard deviation
δ = 0.035, 0.01. We interpolate the resulting prices in coarser grids. This avoids a
so-called inverse crime [23].

In the present test, we assume that, r = 0.03, (τ, y) ∈ [0, 1] × [−5, 5]. We
generate the price data with step sizes ∆τ = 0.002 and ∆y = 0.01. Then, we solve
the inverse problem with the step sizes ∆τ = 0.01, 0.005 and ∆y = 0.1. We also
assume that the asset price is given by s ∈ [29.5, 32.5] with three different step
sizes, ∆s = 0.25, 0.1, 0.01.
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In what follows, we refer to standard Tikhonov as the case when we con-
sider a single price surface in the Tikhonov regularization. Whereas, we use the
terminology “online” Tikhonov whenever we use more than one single price surface.

Figure 1. Left: Original local volatility. Center: Reconstruction with noise level

δ = 0.035. Right: Reconstruction with δ = 0.01. When the noise level decreases, the

reconstructions become more accurate.

Figure 1 shows reconstructions of the local volatility surface from price data with
different noise levels. In addition, we can see that, when the noise level decreases, by
refining the accuracy of the data, the resulting reconstructions become more similar
to the original local volatility surface. This is an illustration of the Theorems 2, 3
and 4.

Figure 2. Comparison between standard and online Tikhonov. As the number of price

surfaces increases, the reconstructions become more accurate.

In Figure 2, we can see that the online Tikhonov presents better solutions than
the standard one, as we increase the number of price surfaces in the calibration
procedure. Here, the regularization parameter was obtained through the Morozov’s
discrepancy principle.
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Figure 3 shows the evolution of the
L2(D) distance between the reconstructions
and the original local variance as a function
of the number of surfaces of call prices: it
is constant for standard Tikhonov and non-
increasing for online Tikhonov.

6.2. Examples with Market Data

We now present some reconstructions of
the local volatility by online Tikhonov reg-
ularization from market prices. We solve
the inverse problem with the step sizes
∆τ = 0.01 and ∆y = 0.1. The regular-
ization parameter is chosen through the
discrepancy principle (15). We estimate
the noise level as half of the mean of the
bid-ask spread in market prices. The market
prices are interpolated linearly in the mesh
where the inverse problem is solved. In the
present example, we consider seven surfaces
of call prices in each experiment. The data

Figure 3. L2 distance between

original local variance and its

reconstructions, as a function of

the number of price surfaces. it is

constant for standard Tikhonov

and non-increasing for on line

Tikhonov.

corresponds to vanilla option prices on futures of Light Sweet Crude Oil (WTI)
and Henry Hub natural gas. For a survey on commodity markets, see the book
[15]. For a study of an application of Dupire’s local volatility model on commodity
markets, see [1, Chapter 4]. Note that, in order to use the framework developed in
the previous sections, we assumed that, the local volatility is indexed by the unob-
servable spot price, instead of the future price. For more details on such examples,
see Chapters 4 and 5 of [1]. Figures 4 and 5 present the best reconstructions of
local volatility for WTI and HH data, respectively. We collected the data prices
for Henry Hub natural gas and WTI oil between 2011/11/16 and 2011/11/25, i.e.,
seven consecutive commercial days. We used online Tikhonov regularization with
the standard quadratic functional.

Figure 4. Local Volatility reconstruction from European vanilla options on futures of

WTI oil.
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Figure 5. Local Volatility reconstruction from European vanilla options on futures of

Henry Hub natural gas.

7. CONCLUSION

In this paper we have used convex regularization tools to solve the inverse
problem associated to Dupire’s local volatility model when there is a steady flow of
data. We first established results concerning existence, stability and convergence of
the regularized solutions, making use of convex regularization tools and the regular-
ity of the forward operator. We also proved some convergence rates. Furthermore,
we established discrepancy-based choices of the regularization parameter, under a
general framework, following [3, 2]. Such analysis allowed us to implement the
algorithms and perform numerical tests.

The main contribution, vis a vis previous works, and in particular [7], is that
we extended the convex regularization techniques to incorporate the information
and data stream that is constantly supplied by the market. Furthermore, we have
proved discrepancy-based choices for the regularization parameter that are suitable
to this context with regularizing properties.

A natural extension of the current work is the application of these techniques
to the context of future markets, where the underlying asset is the future price of
some financial instrument or commodity. In such markets, vanilla options represent
a key instrument in hedging strategies of companies and in general they are far
more liquid than in equity markets. The warning here is that, in general, we do
not have an entire price surface. Actually in this case, we only have an option price
curve for each future’s maturity. Thus, in order to apply the techniques above to
this context, it is necessary to assembly all option prices for futures on the same
instrument (financial or commodity) in a unique surface in an appropriate way.
This was discussed in [1, Chapter 4] and will be published elsewhere.
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APPENDIX

In this appendix we collect technical results and definitions that were used in
the main body of the article. We also present proofs of two results from Section 3.

Bregman Distance and q-Coerciveness

The following definition is taken from [22, Definition 3.15].

Definition. Let X denote a Banach space and f : D(f) ⊂ X → R ∪ ∞ be a
convex functional with sub-differential ∂f(x) in x ∈ D(f). The Bregman distance
(or divergence) of f at x ∈ D(f) and ξ ∈ ∂f(x) ⊂ X∗ is defined by Dξ(x̃, x) =
f(x̃)− f(x)−〈ξ, x̃− x〉, for every x̃ ∈ X, with 〈·, ··〉 the dual product of X∗ and X.
Moreover, the set DB(f) = {x ∈ D(f) : ∂f(x) 6= ∅} is called the Bregman domain
of f.

We emphasize that the Bregman domain DB(f) is dense in D(f) and the
interior of D(f) is a subset of DB(f). The map x̃ 7→ Dξ(x̃, x) is convex, non-negative
and satisfies Dξ(x, x) = 0. In addition, if f is strictly convex, then Dξ(x̃, x) = 0 if
and only if x̃ = x. For a survey in Bregman distances see [4, Chapter I]. The notion
of q-coerciveness is defined as follow.

Definition. For 1 ≤ q < ∞ and x ∈ D(f), the Bregman distance Dξ(·, x) is said
to be q-coercive with constant ζ > 0 if Dξ(y, x) ≥ ζ‖y − x‖qX for every y ∈ D(f).

Equicontinuity

Let X and Y be locally convex spaces. Fix the sets BX ⊂ X and M ⊂
C(BX , Y ). A set M is called equicontinuous on BX if for every x0 ∈ BX and
every zero neighborhood, V ⊂ Y there is a zero neighborhood U ⊂ X such that
G(x0) − G(x) ∈ V for all G ∈ M and all x ∈ BX with x − x0 ∈ U. Furthermore,
M is called uniformly equicontinuous if for every zero neighborhood V ⊂ Y there
exists a zero neighborhood U ⊂ X such that G(x)−G(x′) ∈ V for all G ∈M and
all x, x′ ∈ BX with x− x′ ∈ U. The next technical result is from [16].

Proposition. Let F : [0, T ] × BX −→ Y be a function, and BX , X and Y be as
above. If M1 := {F (t, ·) : t ∈ [0, T ]} ⊂ C(BX , Y ), M2 := {F (·, x) : x ∈ BX} ⊂
C([0, T ], Y ) and M1 (respectively M2) is equicontinuous, then F is continuous.
Reciprocally, if F is continuous, then M1 is equicontinuous and if additionally BX
is compact, then M2 is equicontinuous, too.

Now we present proofs of two results from Section 3, that were omitted
therein.

Proof of Theorem 1

Well Posedness : Take an arbitrary Ã ∈ Q, by the continuity of Ã (see Propo-
sition 1) and F, it follows that s 7→ F (s, ã(s)) is continuous and then weakly measur-

able. Therefore, s 7→ ‖F (s, a(s))‖W 1,2
2 (D) is bounded, then U(Ã) ∈ L2(0, S,W 1,2

2 (D)),

which asserts the well-posedness of U(·).
Continuity : As F : [0, S]×Q −→W 1,2

2 (D) is continuous, it follows by Proposition
1 that the set {F (s, ·) | s ∈ [0, S]} ⊂ C(Q,W 1,2

2 (D)) is uniformly equicontinuous,
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i.e., given ε > 0, there is a δ > 0 such that, for all a, ã ∈ Q satisfying ‖a− ã‖ < δ,

we have that sups∈[0,S] ‖F (s, a) − F (s, ã)‖ < ε. Thus, given ε > 0 and A, Ã ∈ Q
such that sups∈[0,S] ‖a(s) − ã(s)‖H1+ε(D) < δ, then, by the uniform equicontinuity
of {F (s, ·), s ∈ [0, S]}, it follows that

‖U(A)− U(Ã)‖2
L2(0,S,W 1,2

2 (D))
=

∫ S

0

‖F (s, a(s))− F (s, ã(s))‖2
W 1,2

2 (D)
ds < ε2 · S,

which asserts the continuity of U(·).
Compactness : It is sufficient to prove that, given an ε > 0 and a sequence {An}n∈Nin

Q converging weakly to Ã, it follows that there exist an n0 and a weak zero
neighborhood U of H`(0, S,H1+ε(D)) such that for n > n0, An − Ã ∈ U and

‖U(An)− U(Ã)‖L2(0,S,W 1,2
2 (D)) < ε.

Following the same arguments of the proof of Lemma 1, we can find a set
of functionals Cn,m ∈ H`(0, S,H1+ε(D))∗, defining such zero neighborhood U. We
first note that, since F is weak continuous, it follows that, given an ε > 0, there are
α1, . . . , αN ∈ H1+ε(D) and δ > 0, such that sups∈[0,S] ‖F (s, a) − F (s, ã)‖ < ε/S
for all a, ã ∈ B with

(24) max{|〈a− ã, αn〉H1+ε(D)| : n = 1, . . . , N} < δ.

By Proposition 1, the estimate 〈A, αn〉H1+ε(D) ∈ H`[0, S] holds with its norm
bounded by ‖A‖`‖αn‖H1+ε(D). Then, there is a closed and bounded ball A ⊂
H`[0, S] containing 〈A, αn〉H1+ε(D), for all n = 1, . . . , N, and A ∈ B.

For n = 1, . . . , N and the same δ > 0 of (24), there are fn,1, . . . , fn,M(n)

in H`[0, S] and ξn > 0 such that, ‖f‖C([0,S]) < δ for every f ∈ A satisfying the
estimate maxm=1,...,M(n) |〈f, αn〉H1+ε(D)| < ξn. Define Cn,m := αn⊗fn,m, with n =

1, . . . , N and m = 1, . . . ,M(n). It is an element of H`(0, S,H1+ε(D))∗, where, for
eachA ∈ H`(0, S,H1+ε(D)), we have that 〈A, Cn,m〉` = 〈〈A, αn〉H1+ε(D), fn,m〉H`[0,S]

and thus
〈A, Cn,m〉` =

∑
k∈Z

(1 + |k|`)2〈â(k), αn〉H1+ε(D)f̂n,m(k).

These functionals define a weak zero neighborhood U := ∩Nn=1Un with

Un := {A ∈ H`(0, S,H1+ε(D)) : |〈A, Cn,m〉`| < ξn, m = 1, . . . ,M(n)}.

Therefore, if {Ak}k∈N ⊂ B converges weakly to Ã ∈ B, then for a sufficient large k,

Ak − Ã ∈ U and by the definition of U, we have that for each n = 1, . . . , N, ξn >
|〈A − Ã, Cn,m〉`| = |〈〈A − Ã, αn〉H1+ε(D), fn,m〉H`[0,S]| for all m = 1, . . . ,M(n). By

the choice of the fn,m ∈ H`[0, S], it follows that ‖〈Ak − Ã, αn〉H1+ε(D)‖H`[0,S] < δ

for all n = 1, . . . , N, which implies that ‖U(Ak)− U(Ã)‖L2(0,S,W 1,2
2 (D)) ≤ ε · S.

Weak Continuity : The weak continuity follows directly from the proof of compact-
ness, as we use the same framework, only changing the compactness of F, by the
weakly equicontinuity of {F (s, ·) : s ∈ [0, S]} on bounded subsets of Q.
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Weak Closedness : Just note that the set Q is weakly closed and the operator U(·)
is weakly continuous.

Proof of Proposition 5

By Proposition 4, the family of operators {F (s, ·) : s ∈ [0, S]} is Frechét

equi-differentiable. Take Ã,H ∈ H`(0, S,H1+ε(D)), such that Ã, Ã + H ∈ Q.

Then, define the one sided derivative of U(·) at Ã in the direction H as U ′(Ã)H :=
{s 7→ ∂aF (s, ã(s))h(s)}, where for each s ∈ [0, S], dropping t to easy the notation,
∂aF (s, ã)h is the solution of

−vτ + a(vyy − vy) + bvy = h(uyy − uy)

with homogeneous boundary conditions and u = u(s, a(s)). From Proposition 3
we have the estimate ‖∂aF (s, ã(s))h(s)‖W 1,2

2 (D) ≤ C‖h(s)‖L2(D)‖uyy(s, ã(s)) −
uy(s, ã(s))‖L2(D). Note that, ‖uyy(s, a) − uy(s, a)‖L2(D) is uniformly bounded in

[0, S]×Q. Thus, U ′(Ã)H is well defined and∥∥∥U ′(Ã)H
∥∥∥2

L2(0,S,W 1,2
2 (D))

=

∫ S

0

‖∂aF (s, ã(s))h(s)‖2
W 1,2

2 (D)
ds(25)

≤ C
∫ S

0

‖h(s)‖L2(D)‖uyy(s, ã(s))− uy(s, ã(s))‖L2(D)ds

≤ c
∫ S

0

‖h(s)‖2L2(D)ds = c‖H‖2H`(0,S,H1+ε(D))

Therefore, U ′(Ã) can be extended to a bounded linear operator from the space
H`(0, S,H1+ε(D)) into L2(0, S,W 1,2

2 (D)).

Let Ã,H,G ∈ H`(0, S,H1+ε(D)) be such that, Ã, Ã +H, Ã + G, Ã +H + G
are in Q. Define v := u(s, a(s) + h(s))− u(s, a(s)). Thus,

w := ∂au(s, a(s) + h(s))g(s)− ∂au(s, a(s))g(s)

satisfies

−wτ + a(wyy − wy) = −g[vyy − vy]− h[(∂au(s, a+ h)g)yy − (∂au(s, a+ h)g)y],

with homogeneous boundary conditions (dropping the dependence on s). As above,
we have ∥∥∥U ′(Ã+H)G − U ′(Ã)G

∥∥∥2

L2(0,S,W 1,2
2 (D))

=

∫ S

0

‖w‖2
W 1,2

2 (D)
ds(26)

≤ c1
∫ S

0

‖g(s)‖2L2(D)‖vyy(s, ã(s))− vy(s, ã(s))‖2L2(D)ds

+ c2

∫ S

0

‖h(s)‖2L2(D)‖∂au(s, a(s) + h(s))g(s)‖2
W 1,2

2 (D)
ds

≤ C‖H‖2H`(0,S,H1+ε(D))‖G‖
2
H`(0,S,H1+ε(D)),
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which yields the Lipschitz condition.
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