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AN EFFICIENT DERIVATIVE FREE

ITERATIVE METHOD FOR SOLVING SYSTEMS

OF NONLINEAR EQUATIONS

Janak Raj Sharma, Himani Arora

We present a derivative free method of fourth order convergence for solving
systems of nonlinear equations. The method consists of two steps of which
first step is the well-known Traub’s method. First-order divided difference
operator for functions of several variables and direct computation by Taylor’s
expansion are used to prove the local convergence order. Computational ef-
ficiency of new method in its general form is discussed and is compared with
existing methods of similar nature. It is proved that for large systems the
new method is more efficient. Some numerical tests are performed to com-
pare proposed method with existing methods and to confirm the theoretical
results.

1. INTRODUCTION

The problem of finding solutions of the system of nonlinear equations F (x) =
0, where F : D → D, D is an open convex domain in Rm, by iterative methods is an
important and interesting task in numerical analysis and applied scientific branches.
One of the basic procedures for solving nonlinear equations, is the quadratically
convergent Newton’s method (see [8, 10]),

x(k+1) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, 2, . . . ,

where [F ′(x)]−1 is the inverse of first Fréchet derivative F ′(x) of the function F (x).

In many practical situations it is preferable to avoid the calculation of deriva-
tive F ′(x) of the function F (x). In such situations a method that uses only the
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computed values of F (x) is more appropriate. For example, a basic derivative free
iterative method is the Traub’s method [20], which also converges quadratically
and follows the scheme

(1) x(k+1) = M2,1(x
(k)) = x(k) − [w(k), x(k) ;F ]−1F (x(k)),

where [w(k), x(k) ;F ]−1 is the inverse of the first order divided difference [w(k), x(k) ;F ]

of F and w(k) = x(k) + βF (x(k)), β is an arbitrary non-zero constant. Here, Mp,i

is used for denoting ith method of convergence order p. For β = 1 the scheme (1)
reduces to the well-known Steffensen’s method [19].

To solve a scalar equation f(x) = 0, many higher order efficient methods
have been proposed in literature which do not involve derivative of the function
f(x), see [3, 9, 12, 13, 14, 15, 17, 18, 21, 23] and references therein. However,
for systems of nonlinear equations higher order derivative free methods are very
rare in literature. Recently, based on Steffensen’s scheme, i.e. when β = 1 in
(1), a family of seventh order methods has been proposed in [21]. Some important
methods of this family are

y(k) = M2,1(x
(k)),(2)

z(k) = M4,1(x
(k), y(k))

= y(k) − ([y(k), x(k) ;F ] + [y(k), w(k) ;F ]− [w(k), x(k) ;F ])−1F (y(k)),

x(k+1) = M7,1(x
(k), y(k), z(k))

= z(k) − ([z(k), x(k) ;F ] + [z(k), y(k) ;F ]− [y(k), x(k) ;F ])−1F (z(k))

and

y(k) = M2,1(x
(k)),(3)

z(k) = M4,2(x
(k), y(k)) = y(k) − [y(k), x(k) ;F ]−1

× ([y(k), x(k) ;F ]− [y(k), w(k) ;F ] + [w(k), x(k) ;F ])[y(k), x(k) ;F ]−1F (y(k)),

x(k+1) = M7,2(x
(k), y(k), z(k))

= z(k) − ([z(k), x(k) ;F ] + [z(k), y(k) ;F ]− [y(k), x(k) ;F ])−1F (z(k)).

These algorithms are notable not only for their simple structure but also their
efficiency. The fourth order scheme M4,1(x

(k), y(k)) is the generalization of the
method proposed by Ren et al. [17] whereas M4,2(x

(k), y(k)) is the generalization
of the method by Liu et al. [9].

In this paper, our aim is to develop a derivative free method with higher
convergence order and minimum computational cost. In order to achieve this goal,
we here propose a method with fourth order of convergence by considering the
structure of the scheme in such a way that it utilizes as minimum number of function
evaluations as possible so that it may have low computational cost. Thus, we show
that the present method is more efficient than existing derivative free methods,
particularly for larger systems.
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Rest of the paper is organized as follows. In section 2, the fourth order scheme
is developed and its convergence analysis is studied. In section 3, the computational
efficiency of new method is discussed and is compared with the methods which lie in
the same category. Various numerical examples are considered in section 4 to show
the consistent convergence behavior of the method and to verify the theoretical
results. Section 5 contains the concluding remarks.

2. DEVELOPMENT OF THE METHOD

As stated above an efficient iterative method is one which possesses a higher
convergence order with minimum computational cost. The most obvious barrier
in the development of an efficient iterative scheme for solving systems of nonlinear
equations is the evaluation of inverse of a matrix since it requires a lengthy and
cumbersome computational work. Therefore, while constructing a numerical algo-
rithm it will be more appropriate if the number of matrix inversions is as small as
possible. Keeping this in mind we consider the following scheme:

y(k) = M2,1(x
(k)),(4)

x(k+1) = y(k) − (a I + [w(k), x(k) ;F ]−1(b [y(k), x(k) ;F ] + c [y(k), w(k) ;F ]))

× [w(k), x(k) ;F ]−1F (y(k)),

where M2,1(x
(k)) is the iterative scheme defined by (1), I is the identity matrix and

a, b, c are some parameters to be determined.

In order to find the convergence order of scheme (4) we first define the divided
difference operator for multivariable function F (see [5]). The divided difference
operator of F is a mapping [·, · ;F ] : D ×D ⊂ Rm ×Rm → L(Rm) defined by

(5) [x+ h, x ;F ] =

∫

1

0

F ′(x+ th) dt, ∀x, h ∈ Rm.

Expanding F ′(x+ th) in Taylor series around the point x and integrating, we have

(6) [x+ h, x ;F ] =

∫

1

0

F ′(x+ th) dt = F ′(x) +
1

2
F ′′(x)h +

1

6
F ′′′(x)h2 +O(h3),

where hi = (h, h,
i· · ·, h), h ∈ Rm.

Let e(k) = x(k) − α. Assuming that Γ = [F ′(α)]−1 exists, then, developing F (x(k))
and its first three derivatives around α, we have

F (x(k)) = F ′(α)(e(k) +A2(e
(k))2 +A3(e

(k))3 +A4(e
(k))4 +O((e(k))5)),(7)

F ′(x(k)) = F ′(α)(I + 2A2e
(k) + 3A3(e

(k))2 + 4A4(e
(k))3 +O((e(k))4)),(8)

F ′′(x(k)) = F ′(α)(2A2 + 6A3e
(k) + 12A4(e

(k))2 +O((e(k))3))(9)

and

F ′′′(x(k)) = F ′(α)(6A3 + 24A4e
(k) +O((e(k))2)),(10)
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where Ai =
1

i!
ΓF (i)(α) ∈ Li(R

m, Rm) and (e(k))i = (e(k), e(k),
i· · ·, e(k), e(k)), e(k) ∈

Rm.

We can now analyze the behavior of the scheme (4) through the following theorem.

Theorem 1. Let the function F : D ⊂ Rm → Rm be sufficiently differentiable

in an open neighborhood D of its solution α. If an initial approximation x(0) is

sufficiently close to α, then the local order of convergence of method (4) is at least

4 provided, a = 3, b = −1 and c = −1.

Proof. Let ẽ(k) = w(k) − α. Employing Eq. (6) for x + h = w(k), x = x(k),
h = ẽ(k) − e(k) and then using (8)-(10), we have

[w(k), x(k) ;F ] = F ′(α)(I+A2(ẽ
(k)+e(k))+A3((ẽ

(k))2+ẽ(k)e(k)+(e(k))2)+O((e(k))3)).

Since ẽ(k) = w(k) − α = x(k) + βF (x(k))− α = e(k) + βF (x(k)) = (I + βF ′(α))e(k)

+O((e(k))2). Thus, from the equation above it follows that

[w(k), x(k) ;F ] = F ′(α)D(e(k)) +O((e(k))3),

where D(e(k)) = I +A2(2I + βF ′(α))e(k) +A3(3I + 3βF ′(α) + β2(F ′(α))2)(e(k))2.
Then, we obtain

(11) [w(k), x(k) ;F ]−1 =
(

[D(e(k))]−1 +O((e(k))3)
)

Γ.

The inverse [D(e(k))]−1 of D(e(k)) is given by (see [1, 2])

(12) [D(e(k))]−1 = I +X2e
(k) +X3(e

(k))2 +O((e(k))3),

where X2 and X3 satisfy the definition

(13) D(e(k))[D(e(k))]−1 = [D(e(k))]−1D(e(k)) = I.

Solving the system (13), we get

X2 = −A2(2I + βF ′(α))

and

X3 = A2

2(4I + 4βF ′(α) + β2(F ′(α))2)−A3(3I + 3βF ′(α) + β2(F ′(α))2).

Thus, we find

[w(k), x(k);F ]−1=(I−A2(2I + βF ′(α))e(k)+(A2

2(4I+4βF ′(α) + β2(F ′(α))2)(14)

−A3(3I + 3βF ′(α) + β2(F ′(α))2))(e(k))2 +O((e(k))3))Γ.

The first step of (4), using (7) and (14) to requisite terms, yields

E(k) = y(k) − α = e(k) − [w(k), x(k) ;F ]−1F (x(k))(15)

= A2(I + βF ′(α))(e(k))2 +O((e(k))3).
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Employing (6) for x+ h = y(k), x = x(k) and h = E(k) − e(k), it follows that

(16) [y(k), x(k) ;F ] = F ′(α)(I +A2(E
(k) + e(k)) +A3(e

(k))2 +O((e(k))3)).

Similarly, for x+ h = y(k), x = w(k), h = E(k) − ẽ(k), Eq. (6) gives

(17) [y(k), w(k) ;F ] = F ′(α)(I +A2(E
(k) + ẽ(k)) +A3(ẽ

(k))2 +O((e(k))3)).

Then, from Eqs. (14), (16) and (17)

aI + [w(k), x(k) ;F ]−1(b [y(k), x(k) ;F ] + c [y(k), w(k) ;F ])(18)

= (a+ b+ c)I −A2((b + c)I + bβF ′(α))e(k) + (A2

2(3(b+ c)I

+ (4b+ 2c)βF ′(α) + bβ2(F ′(α))2)− A3(2(b+ c)I + (3b+ c)βF ′(α)

+ bβ2(F ′(α))2))(e(k))2 +O((e(k))3)).

Post-multiplying Eq. (18) by [w(k), x(k) ;F ]−1 and simplifying

θ = (aI + [w(k), x(k) ;F ]−1(b [y(k), x(k) ;F ] + c [y(k), w(k) ;F ]))[w(k), x(k) ;F ]−1(19)

=
(

(a+ b+ c)I − A2((2a+ 3(b+ c))I + (a+ 2b+ c)βF ′(α))e(k)

+ (A2

2((4a+ 9(b+ c))I + (4a+ 11b + 7c)βF ′(α) + (a+ 3b+ c)β2(F ′(α))2)

− A3((3a+ 5(b + c))I + (3a+ 6b + 4c)βF ′(α) + (a+ 2b+ c)β2(F ′(α))2))(e(k))2

+O((e(k))3)
)

Γ.

Substituting (19) and Taylor series of F (y(k)) in the second step of (4), then using
(15), we obtain

e(k+1) = x(k+1) − α = E(k) − θF ′(α)(E(k) + A2(E
(k))2 +O((E(k))3))(20)

= −B1A2(I + βF ′(α))(e(k))2 + A2

2(B2I +B3βF
′(α) +B4β

2(F ′(α))2)(e(k))3

+ (A3A2(B5I +B6βF
′(α) +B7β

2(F ′(α))2 +B4β
3(F ′(α))3)

− A3

2(5B8I + 2B9βF
′(α) +B10β

2(F ′(α))2 +B11β
3(F ′(α))3))(e(k))4 +O((e(k))5).

where

B1 = a+ b+ c− 1, B2 = 2a+ 3b+ 3c, B3 = 3a+ 5b+ 4c, B4 = a+ 2b+ c,

B5 = 3a+ 5b+ 5c, B6 = 6a+ 11b+ 9c, B7 = 4a+ 8b+ 5c, B8 = a+ 2b+ 2c,

B9 = 5a+ 11b+ 9c, B10 = 6a+ 15b+ 9c and B11 = a+ 3b+ c.

Our aim is to find values of the parameters a, b and c in such a way that the proposed
iterative scheme (4) may produce order of convergence as high as possible. Thus,
it will suffice to equate the coefficients Bi (i = 1 to 3) to zero. Thus, solving

a+ b+ c = 1, 2a+ 3b+ 3c = 0, 3a+ 5b+ 4c = 0,
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we get a = 3, b = −1, c = −1. This set of values also satisfies B4 = 0. Therefore,
the error equation (20) reduces to

e(k+1) = (A2

2
(5I + 10βF ′(α) + 6β2(F ′(α))2 + β3(F ′(α))3)(21)

−A3(I + 2βF ′(α) + β2(F ′(α))2))A2(e
(k))4 +O((e(k))5).

This completes the proof of theorem 1. �

Finally, the fourth order scheme (4) is given by

y(k) = M2,1(x
(k)),(22)

x(k+1) = M4,3(x
(k), y(k)) = y(k) − (3 I − [w(k), x(k) ;F ]−1

× ( [y(k), x(k) ;F ] + [y(k), w(k) ;F ]))[w(k), x(k) ;F ]−1F (y(k)).

3. COMPUTATIONAL EFFICIENCY

To obtain an estimation of the efficiency of proposed method we use the

efficiency index. The efficiency of an iterative method is given by E = p
1

C (see [11]),
where p is the order of convergence and C is the computational cost per iteration.
For a system of m nonlinear equations with m variables, the computational cost
per iteration is given by (see [6])

(23) C(µ,m, ℓ) = A(m)µ+ P (m, ℓ),

where A(m) denotes the number of evaluations of scalar functions used in the
evaluation of F and [x, y ;F ], and P (m, ℓ) denotes the number of products needed
per iteration. The divided difference [x, y ;F ] of F is an m×m matrix with elements
(see [5, 16])

[x, y ;F ]ij =
fi(x1, . . . , xj , yj+1, . . . , ym)− fi(x1, . . . , xj−1, yj , . . . , ym)

xj − yj
, 1 ≤ i, j ≤ m.

In order to express the value of C(µ,m, ℓ) in terms of products, a ratio µ > 0
between products and evaluations of scalar functions, and a ratio ℓ > 1 between
products and quotients is required.

To compute F in any iterative function we evaluate m scalar functions (f1, f2,
. . . , fm) and if we compute a divided difference [x, y ;F ] then we evaluate m(m−1)
scalar functions, where F (x) and F (y) are computed separately. We must add m2

quotients from any divided difference and m products for multiplication of a vector
by a scalar. In order to compute an inverse linear operator we solve a linear system,
where we have m(m− 1)(2m− 1)/6 products and m(m− 1)/2 quotients in the LU
decomposition, and m(m − 1) products and m quotients in the resolution of two
triangular linear systems.

We compare the computational efficiency of present fourth order method M4,3

with existing second order method M2,1, fourth order methods M4,1 and M4,2, and
seventh order methods M7,1 and M7,2. Let us denote efficiency indices of Mp,i by
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Ep,i and computational cost by Cp,i. Taking into account the above considerations,
we have

C2,1 =
m

6
(2m2 + 6mµ+ 3m+ 9ℓm+ 6µ+ 3ℓ− 5) and E2,1 = 21/C2,1 .(24)

C4,1 =
m

3
(2m2 + 9mµ+ 3m+ 12ℓm+ 3ℓ− 5) and E4,1 = 41/C4,1 .(25)

C4,2 =
m

3
(2m2 + 9mµ+ 6m+ 12ℓm+ 6ℓ− 8) and E4,2 = 41/C4,2 .(26)

C4,3 =
m

6
(2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11) and E4,3 = 41/C4,3 .(27)

C7,1 =
m

2
(2m2 + 10mµ+ 3m+ 13ℓm− 2µ+ 3ℓ− 5) and E7,1 = 71/C7,1 .(28)

C7,2 =
m

2
(2m2 + 10mµ+ 5m+ 13ℓm− 2µ+ 5ℓ− 7) and E7,2 = 71/C7,2 .(29)

20 40 60 80 100
0
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10
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20
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Μ

Figure 1. Boundary R4,3;2,1 = 1 in (m,µ) -plane for ℓ = 1.

3.1 Comparison Between Efficiencies

To compare the iterative methods Mp,i, we consider the ratio

(30) Rp,i;q,j =
log Ep,i

log Eq,j
=

Cq,j log(p)

Cp,i log(q)
.

It is clear that if Rp,i;q,j > 1, the iterative method Mp,i is more efficient than Mq,j .
Taking into account that the border between two computational efficiencies is given
by Rp,i;q,j = 1, this boundary is given by the equation µ written as a function of ℓ
and m; µ > 0, m is a positive integer > 2 and ℓ > 1.

M4,3 versus M2,1 case:

For this case the ratio (30) is given by

R4,3;2,1 =
2(2m2 + 6mµ+ 3m+ 9ℓm+ 6µ+ 3ℓ− 5)

2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11
.

The boundary R4,3;2,1 = 1, expressed by µ written as a function of ℓ and m, is

(31) µ =
2m2 − 3ℓ(m+ 3)− 9m+ 1

6(m− 2)
.
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The function µ has one vertical asymptote for m = 2 and for all ℓ > 1. Note that
the denominator of (31) is positive for m > 2 and the numerator is negative for
m = 2, . . . , 6, which shows that µ is always negative for m = 2, . . . , 6. That is, the
boundary is out of admissible region and as a consequence for 2 6 m 6 6, we have
E4,3 < E2,1, ∀µ > 0 and ℓ > 1. For m > 6 and a fixed value of ℓ, the boundary (31)
divides the efficiency region between M4,3 and M2,1 in (m,µ)-plane. In particular,
for ℓ = 1, the boundary is shown in Fig. 1, where E4,3 > E2,1 on the right and
E4,3 < E2,1 on the left of the boundary.

M4,3 versus M4,1 case:

R4,3;4,1 =
2(2m2 + 9mµ+ 3m+ 12ℓm+ 3ℓ− 5)

2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11
.

In this case it is easy to prove that R4,3;4,1 > 1, ∀ µ > 0, ℓ > 1 and m > 5. Thus,
we conclude that E4,3 > E4,1 for µ > 0, ℓ > 1 and m > 5. Also, for m = 4, ℓ > 1
we have R4,3;4,1 > 1 which implies that E4,3 > E4,1 and for m = 4, ℓ = 1 we have
R4,3;4,1 = 1 which gives E4,3 = E4,1 .

M4,3 versus M4,2 case:

R4,3;4,2 =
2(2m2 + 9mµ+ 6m+ 12ℓm+ 6ℓ− 8)

2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11
.

With the same values of µ, ℓ as in previous cases and ∀ m > 3 the ratio R4,3;4,2 > 1,
which implies that E4,3 > E4,2. Also, for m = 2, ℓ > 1 we have R4,3;4,2 > 1 which
gives E4,3 > E4,2 and for m = 2, ℓ = 1 we have R4,3;4,2 = 1 which means that
E4,3 = E4,2.

M4,3 versus M7,1 case:

R4,3;7,1 =
3(2m2 + 10mµ+ 3m+ 13ℓm− 2µ+ 3ℓ− 5) log(4)

(2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11) log(7)
.

Here, ∀ µ > 0 and ℓ > 1 we have R4,3;7,1 > 1 form > 3, which gives that E4,3 > E7,1

for m > 3.

M4,3 versus M7,2 case:

R4,3;7,2 =
3(2m2 + 10mµ+ 5m+ 13ℓm− 2µ+ 5ℓ− 7) log(4)

(2m2 + 18mµ+ 15m+ 21ℓm+ 15ℓ− 11) log(7)
.

In this case ∀ µ > 0 and ℓ > 1 we have R4,3;7,2 > 1 for m > 2, which means that
E4,3 > E7,2 for m > 2.

We summarize the above results in the following theorem.

Theorem 2. For all µ > 0 and ℓ > 1 we have:

(i) E4,3 < E2,1 for 2 6 m 6 6.
(ii) E4,3 > E4,1 for m > 4.
(iii) E4,3 > E4,2 and E4,3 > E7,2 for m > 2.
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(iv) E4,3 > E7,1 for m > 3.

Otherwise, the comparison depends on m, µ and ℓ.

In order to verify the results of Theorem 2 we plot graphs for the set (µ, ℓ) =
(1, 1). These graphs in (m,E)-variables are shown in Figures 2-5.
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Figure 2. Plots for E values of M4,3 and

M4,1 for m > 4.
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Figure 3. Plots for E values of M4,3 and

M4,2 for m > 2.
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Figure 4. Plots for E values of M4,3 and

M7,2 for m > 2.
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Figure 5. Plots for E values of M4,3 and

M7,1 for m > 3.

4. NUMERICAL RESULTS

In this section, some numerical problems are considered to illustrate the con-
vergence behavior and computational efficiency of the proposed method. A compar-
ison with the existing methods M2,1, M4,1, M4,2, M7,1 and M7,2 is also presented.
All computations are performed in Mathematica [22] using multiple-precision arith-
metic with 2048 digits. To confirm the theoretical order of convergence, we calculate
the computational order of convergence (pc) using the formula [12]

pc =
log(||F (x(k))||/||F (x(k−1))||)

log(||F (x(k−1))||/||F (x(k−2))||) ,

taking into consideration the last three approximations in the iterative process.
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According to the definition of the computational cost (23), an estimation of
the factor µ is claimed. In order to do this, we express the cost of the evaluation of
the elementary functions in terms of products, which depends on the computer, the
software and the arithmetics used [4, 7]. In Table 1, an estimation of the cost of
the elementary functions in product units is displayed, wherein the running time of
one product is measured in milliseconds. For the hardware and the software used
in the numerical work, the computational cost of quotient with respect to product
is ℓ = 3 (see Table 1).

Digits x ∗ y x/y
√
x exp(x) ln(x) sin(x) cos(x) arccos(x) arctan(x)

2048 0.0301 ms 3 1.5 77 78 77 77 119 118

Table 1. Estimation of computational cost of elementary functions computed with Mathematica
7.0 in a processor Intel (R) Core (TM) i5-2430M CPU @ 2.40 GHz (32-bit Machine) Microsoft

Windows 7 Ultimate 2009, where x =
√
3− 1 and y =

√
5.

The Traub’s method M2,1 and the present method M4,3 are tested by using
the values −0.01 and 0.01 for the parameter β. The following problems are chosen
for numerical tests:
Problem 1. Considering the system of two equations (see [21]):

(x− 1)4 + e−y − y2 + 3y + 1 = 0,

4 sin(x− 1)− log(x2 − x+ 1)− y2 = 0.

In this problem (m,µ) = (2, 120) are the values used in (24)-(29) for calculating compu-

tational costs and efficiency indices of the methods. The initial approximation chosen is

x(0) = {2,−2}t and the solution

α = {2.0704433766798807 . . . ,−1.5301712023005783 . . .}t.

Problem 2. Now considering the system of five equations (selected from [6]):

5
∑

j=1,j 6=i

xj − e−xi = 0, 1 ≤ i ≤ 5,

with initial value x(0) = {1, 1, 1, 1, 1}t. Solution of this problem is,

α = {0.20388835470224016 . . . , 0.20388835470224016 . . . , 0.20388835470224016 . . . ,

0.20388835470224016 . . . , 0.20388835470224016 . . .}t. The concrete values of para-

meters used in (24)-(29) are (m,µ) = (5, 77).

Problem 3. Next, Considering the mixed Hammerstein integral equation (see [10]):

x(s) = 1 +
1

5

∫

1

0

G(s, t)x(t)3dt,

where x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel G is

G(s, t) =

{

(1− s)t, t 6 s,

s(1− t), s 6 t.
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We transform the above equation into a finite-dimensional problem by using Gauss-
Legendre quadrature formula given as

∫

1

0

f(t) dt ≈
m
∑

j=1

̟jf(tj),

where the abscissas tj and the weights ̟j are determined for m = 8 by Gauss-Legendre
quadrature formula. Denoting the approximation of x(ti) by xi (i = 1, 2, . . . , 8), we obtain
the system of nonlinear equations

5xi − 5−
8

∑

j=1

aijx
3

j = 0,

where, for i = 1, 2, . . . , 8,

aij =

{

̟jtj(1− ti) if j 6 i,

̟jti(1− tj) if i < j,

wherein the abscissas tj and the weights ̟j are known and given in Table 2 for m = 8.

In this case the concrete values of parameters are (m,µ) = (8, 11), which we use in (24)-

(29) for the calculation of costs and efficiency indices of the methods. Initial approximation

chosen for solving this problem is,

x(0) = {−0.5, −0.5, −0.5, −0.5, −0.5, −0.5, −0.5, −0.5}t,
towards the solution

α = {1.0020962450311568 . . . , 1.0099003161874888 . . . , 1.0197269609931769 . . . ,

1.0264357430306205 . . . , 1.0264357430306205 . . . , 1.0197269609931769 . . . ,

1.0099003161874888 . . . , 1.0020962450311568 . . .}t.

j tj ̟j

1 0.0198550717512318 . . . 0.0506142681451881 . . .

2 0.1016667612931866 . . . 0.1111905172266872 . . .

3 0.2372337950418355 . . . 0.1568533229389436 . . .

4 0.4082826787521750 . . . 0.1813418916891809 . . .

5 0.5917173212478249 . . . 0.1813418916891809 . . .

6 0.7627662049581644 . . . 0.1568533229389436 . . .

7 0.8983332387068133 . . . 0.1111905172266872 . . .

8 0.9801449282487681 . . . 0.0506142681451881 . . .

Table 2. Abscissas and weights of Gauss-Legendre quadrature formula for m = 8.

Problem 4. Lastly, considering the system of twenty equations:

{

x2

ixi+1 − 1 = 0, 1 ≤ i ≤ 19,

x2

20x1 − 1 = 0.

The initial approximation chosen is x(0) = {1.5, 1.5, . . . , 1.5}t for obtaining the solution

α = {1, 1, . . . , 1}t. Here the concrete values of parameters used in (24)-(29) are (m,µ) =

(20, 2).
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Methods ||x(1) − α|| ||x(2) − α|| ||x(3) − α|| pc C E

M2,1(β = −.01) 1.22(−1) 2.12(−2) 6.96(−4) 1.967 744 1.000932

M2,1(β = .01) 1.29(−1) 2.67(−2) 1.21(−3) 1.955 744 1.000932

M4,1 2.21(−1) 3.34(−2) 5.57(−5) 3.917 1500 1.000925

M4,2 2.83(−1) 7.81(−2) 1.51(−3) 3.676 1508 1.000920

M4,3(β = −.01) 3.31(−2) 1.60(−5) 1.12(−18) 4.000 1506 1.000921

M4,3(β = .01) 4.20(−2) 4.55(−5) 8.40(−17) 4.000 1506 1.000921

M7,1 7.12(−2) 3.49(−7) 7.44(−46) 6.944 2256 1.000863

M7,2 1.21(−1) 2.90(−5) 1.59(−30) 7.008 2264 1.000860

Table 3. Performance of methods for Problem 1.

Methods ||x(1) − α|| ||x(2) − α|| ||x(3) − α|| pc C E

M2,1(β = −.01) 7.62(−2) 2.14(−4) 1.65(−9) 2.000 2480 1.000280

M2,1(β = .01) 8.18(−2) 2.72(−4) 2.94(−9) 2.000 2480 1.000280

M4,1 7.08(−3) 1.34(−11) 1.74(−46) 4.000 6190 1.000224

M4,2 6.98(−3) 1.20(−11) 1.05(−46) 4.000 6225 1.000223

M4,3(β = −.01) 1.10(−4) 7.55(−21) 1.71(−85) 4.000 6170 1.000225

M4,3(β = .01) 1.45(−4) 2.81(−20) 3.97(−83) 4.000 6170 1.000225

M7,1 1.06(−5) 1.01(−40) 7.32(−286) 7.000 9900 1.000197

M7,2 1.05(−5) 8.81(−41) 2.60(−286) 7.000 9935 1.000196

Table 4. Performance of methods for Problem 2.

Methods ||x(1) − α|| ||x(2) − α|| ||x(3) − α|| pc C E

M2,1(β = −.01) 3.94(−3) 5.12(−7) 8.88(−15) 2.000 1288 1.000538

M2,1(β = .01) 7.77(−4) 2.15(−8) 1.61(−17) 2.000 1288 1.000538

M4,1 3.38(−2) 1.15(−9) 1.63(−39) 4.000 3296 1.000421

M4,2 3.45(−2) 1.36(−9) 3.44(−39) 4.000 3376 1.000411

M4,3(β = −.01) 1.91(−4) 5.06(−19) 2.62(−77) 4.000 3160 1.000439

M4,3(β = .01) 3.87(−5) 8.98(−22) 2.70(−88) 4.000 3160 1.000439

M7,1 2.17(−4) 7.88(−33) 7.07(−232) 7.000 5304 1.000367

M7,2 2.22(−4) 1.00(−32) 4.05(−231) 7.000 5384 1.000361

Table 5. Performance of methods for Problem 3.

Methods ||x(1) − α|| ||x(2) − α|| ||x(3) − α|| pc C E

M2,1(β = −.01) 5.64(−1) 7.26(−2) 1.15(−3) 1.987 5520 1.000126

M2,1(β = .01) 5.97(−1) 8.84(−2) 1.83(−3) 1.983 5520 1.000126

M4,1 3.95(−1) 2.00(−3) 1.92(−12) 4.000 12960 1.000107

M4,2 4.11(−1) 2.88(−3) 1.13(−11) 4.000 13400 1.000103

M4,3(β = −.01) 1.65(−1) 2.98(−5) 3.88(−20) 4.000 10380 1.000134

M4,3(β = .01) 1.86(−1) 5.27(−5) 4.26(−19) 4.000 10380 1.000134

M7,1 1.80(−2) 1.01(−15) 1.88(−108) 7.000 20400 1.000095

M7,2 2.04(−2) 3.31(−15) 1.06(−104) 7.000 20840 1.000093

Table 6. Performance of methods for Problem 4.

The errors ||x(k) − α|| of approximations to the corresponding solutions of
problems 1-4, the computational order of convergence (pc), the computational costs
Cp,i given by (24)-(29) in terms of products and the corresponding computational
efficiencies Ep,i are displayed in Tables 3-6, where b(−a) denotes b×10−a. From the
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results displayed in Tables 3-6 it is clear that the accuracy in numerical values of
approximations to the solution increases as the iteration process proceeds, showing
stable nature of the methods. It can also be observed that the fourth order method
shows robust character in terms of accuracy when compared with the methods
of inferior and same order. The seventh order methods produce approximations of
greater accuracy due to their higher order of convergence, but possess less efficiency
than the new method. Calculated values of the computational order of convergence
displayed in the fifth column of Tables 3-6 verify the theoretical order of convergence
proved in Section 2. Numerical values of the efficiency index (E) displayed in the
last column of each table also confirm the theoretical results as stated in Theorem
2.

5. CONCLUSIONS

In the foregoing study, we have proposed an iterative method with fourth
order of convergence for solving systems of nonlinear equations. The scheme is
completely derivative free and therefore particularly suited to those problems in
which derivatives require lengthy computation. A development of first-order di-
vided difference operator for functions of several variables and direct computation
by Taylor’s expansion are used to prove the local convergence order of new method.
A comparison of efficiencies of the new scheme with existing schemes is shown. It is
observed that for large systems the present method has an edge over similar exist-
ing methods. Some numerical examples have been presented and the performance
is compared with existing methods. Computational results have confirmed robust
and efficient character of the proposed technique. Similar numerical experimenta-
tions have been carried out for a number of problems and results are found to be
on a par with those presented here.

Acknowledgements. The authors wish to thank the editor and referees for their
valuable suggestions on the first version of this paper. The author, Himani Arora,
would like to be thankful to the University Grants Commission, New Delhi for the
financial support under the Grant F. 2-13/2009 (SA-I).

REFERENCES

1. A. Cordero, J. L. Hueso, E. Mart́ınez, J. R.Torregrosa: A modified Newton-

Jarratt’s composition. Numer. Algor., 55 (2010), 87–99.

2. A. Cordero, J. L. Hueso, E. Mart́ınez, J. R.Torregrosa: Efficient high-order

methods based on golden ratio for nonlinear systems. Appl. Math. Comput., 217
(2011), 4548–4556.
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