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ON THE METRIC DIMENSION AND FRACTIONAL

METRIC DIMENSION OF THE HIERARCHICAL

PRODUCT OF GRAPHS

Min Feng, Kaishun Wang

A set of vertices W resolves a graph G if every vertex of G is uniquely deter-

mined by its vector of distances to the vertices in W . The metric dimension

for G, denoted by dim(G), is the minimum cardinality of a resolving set of G.

In order to study the metric dimension for the hierarchical product Gu2

2
⊓Gu1

1

of two rooted graphs Gu2

2
and Gu1

1
, we first introduce a new parameter, the

rooted metric dimension rdim(Gu1

1
) for a rooted graphGu1

1
. IfG1 is not a path

with an end-vertex u1, we show that dim(Gu2

2
⊓Gu1

1
) = |V (G2)| · rdim(Gu1

1
),

where |V (G2)| is the order of G2. If G1 is a path with an end-vertex u1,

we obtain some tight inequalities for dim(Gu2

2
⊓Gu1

1
). Finally, we show that

similar results hold for the fractional metric dimension.

1. INTRODUCTION

All graphs considered in this paper are nontrivial and connected. For a graph
G, we often denote by V (G) and E(G) the vertex set and the edge set of G,
respectively. For any two vertices u and v of G, denote by dG(u, v) the distance
between u and v in G, and write RG{u, v} = {w | w ∈ V (G), dG(u,w) 6= dG(v, w)}.
If the graph G is clear from the context, the notations dG(u, v) and RG{u, v} will
be written d(u, v) and R{u, v}, respectively. A subset W of V (G) is a resolving set

of G if W ∩R{u, v} 6= ∅ for any two distinct vertices u and v. A metric basis of G
is a resolving set of G with minimum cardinality. The cardinality of a metric basis
of G is the metric dimension for G, denoted by dim(G).

Metric dimension was introduced independently by Harary and Melter
[15], and by Slater [24]. As a graph parameter it has numerous applications,
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among them are computer science and robotics [18], network discovery and verifi-
cation [5], strategies for the Mastermind game [8] and combinatorial optimization
[23]. Metric dimension has been heavily studied, see [3] for a number of references
on this topic.

The problem of finding the metric dimension for a graph was formulated as
an integer programming problem independently by Chartrand et al. [7], and by
Currie andOellermann [10]. In graph theory, fractionalization of integer-valued
graph theoretic concepts is an interesting area of research (see [22]). Currie and
Oellermann [10] and Fehr et al. [11] defined fractional metric dimension as
the optimal solution of the linear relaxation of the integer programming problem.
Arumugam andMathew [1] initiated the study of the fractional metric dimension
for graphs. For more information, see [2, 12, 13].

Let g : V (G) −→ [0, 1] be a real function. For W ⊆ V (G), denote g(W ) =
∑

v∈W

g(v). The weight of g is defined by |g| = g(V (G)). We call g a resolving

function of G if g(R{u, v}) ≥ 1 for any two distinct vertices u and v. The minimum
weight of a resolving function of G is called the fractional metric dimension for G,
denoted by dimf (G).

It was noted in [14, p.204] and [18] that determining the metric dimension for
a graph is an NP-complete problem. So it is desirable to reduce the computation for
the metric dimension for product graphs to the computation for some parameters
of the factor graphs; see [6] for cartesian products, [16] for lexicographic products,
and [25] for corona products. Recently, the fractional metric dimension for the
above three products was studied in [2, 12, 13].

In order to model some real-life complex networks, Barrière et al. [4]
introduced the hierarchical product of graphs and showed that it is associative. A
rooted graph Gu is the graph G in which one vertex u, called root vertex, is labeled
in a special way to distinguish it from other vertices. Let Gu1

1
and Gu2

2
be two

rooted graphs. The hierarchical product Gu2

2
⊓ Gu1

1
is the rooted graph with the

vertex set {x2x1 | xi ∈ V (Gi), i = 1, 2}, having the root vertex u2u1, where x2x1

is adjacent to y2y1 whenever x2 = y2 and {x1, y1} ∈ E(G1), or x1 = y1 = u1 and
{x2, y2} ∈ E(G2). See [17, 19, 20, 21] for more information.

In this paper, we study the (fractional) metric dimension for the hierarchical
product Gu2

2
⊓ Gu1

1
of rooted graphs Gu2

2
and Gu1

1
. In Section 2, we introduce a

new parameter, the rooted metric dimension rdim(Gu) for a rooted graph Gu. If
G1 is not a path with an end-vertex u1, we show that dim(Gu2

2
⊓Gu1

1
) = |V (G2)| ·

rdim(Gu1

1
). If G1 is a path with an end-vertex u1, we obtain some tight inequalities

for dim(Gu2

2
⊓Gu1

1
). In Section 3, we show that similar results hold for the fractional

metric dimension.

2. METRIC DIMENSION

In order to study the metric dimension for the hierarchical product of graphs,
we first introduce the rooted metric dimension for a rooted graph.
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A rooted resolving set of a rooted graph Gu is a subset W of V (G) such that
W ∪ {u} is a resolving set of G. A rooted metric basis of Gu is a rooted resolving
set of Gu with the minimum cardinality. Here the cardinality of a rooted metric
basis of Gu is called rooted metric dimension of Gu and denoted by rdim(Gu).

The following observation is obvious.

Observation 2.1. If there exists a metric basis of G containing u, then rdim(Gu) =
dim(G)− 1. If any metric basis of G does not contain u, then rdim(Gu) = dim(G).

For graphs H1 and H2 we use H1∪H2 to denote the disjoint union of H1 and
H2 and H1 +H2 to denote the graph obtained from the disjoint union of H1 and
H2 by joining every vertex of H1 with every vertex of H2.

Observation 2.2. ([7]) Let G be a graph of order n. Then 1 ≤ dim(G) ≤ n − 1.
Moreover,

(i) dim(G) = 1 if and only if G is the path Pn of length n.

(ii) dim(G) = n− 1 if and only if G is the complete graph Kn on n vertices.

Proposition 2.3. ([7, Theorem 4]) Let G be a graph of order n ≥ 4. Then

dim(G) = n − 2 if and only if G = Ks,t (s, t ≥ 1), G = Ks + Kt (s ≥ 1, t ≥ 2),
or G = Ks + (K1 ∪Kt) (s, t ≥ 1), where Kt is a null graph and Ks,t is a complete

bipartite graph.

Proposition 2.4. Let Gu be a rooted graph of order n. Then 0 ≤ rdim(Gu) ≤ n−2.
Moreover,

(i) rdim(Gu) = 0 if and only if G = Pn and u is one of its end-vertices.

(ii) rdim(Gu) = n − 2 if and only if G = Kn, or G = K1,n−1and u is the

centre.

Proof. If G is a complete graph, by Observation 2.2 (ii) we have dim(G) = n−1, so
Observation 2.1 implies that rdim(Gu) = n− 2. If G is not a complete graph, then
1 ≤ dim(G) ≤ n− 2, which implies that 0 ≤ rdim(Gu) ≤ n− 2 by Observation 2.1.

(i) Since rdim(Gu) = 0 if and only if {u} is a metric basis of G, by Observa-
tion 2.2 (i), (i) holds.

(ii) Suppose that rdim(Gu) = n − 2. Then dim(G) = n − 1 or n − 2. If
dim(G) = n − 1, then G = Kn. Now we consider dim(G) = n − 2. If n = 3, then
dim(G) = 1, which implies thatG = K1,2 and u is the centre. Now suppose that n ≥
4. Then G is one of graphs listed in Proposition 2.3. If s, t ≥ 2 or G = Ks + (K1 ∪
Kt), then there exists a metric basis containing u, implying that rdim(Gu) = n−3,
which is a contradiction. Hence G = K1,n−1. Since any metric basis of K1,n−1 does
not contain the centre, the vertex u is the centre of K1,n−1. The converse is routi-
ne.

Next, we express the metric dimension for the hierarchical product Gu2

2
⊓Gu1

1

in terms of rdim(Gu1

1
).

Let Gu1

1
and Gu2

2
be two rooted graphs. For any two vertices x2x1 and y2y1
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of Gu2

2
⊓Gu1

1
, observe that

(1) d(x2x1, y2y1) =

{

dG1
(x1, y1), if x2 = y2,

dG2
(x2, y2) + dG1

(x1, u1) + dG1
(y1, u1), if x2 6= y2.

Lemma 2.5. Let x2x1 and y2y1 be two distinct vertices of Gu2

2
⊓Gu1

1
.

(i) If x2 = y2, then

R{x2x1, y2y1} =

{

{x2z | z ∈ RG1
{x1, y1}}, if u1 6∈ RG1

{x1, y1},
V (Gu2

2
⊓Gu1

1
) \ {x2z | z 6∈ RG1

{x1, y1}}, if u1 ∈ RG1
{x1, y1}.

(ii) If x2 6= y2, then {x2z, y2z} ∩R{x2x1, y2y1} 6= ∅ for any z ∈ V (G1).

Proof. (i) If u1 6∈ RG1
{x1, y1}, then dG1

(x1, u1) = dG1
(y1, u1). By (1), the inequal-

ity d(x2x1, z2z1) 6= d(y2y1, z2z1) holds if and only if z2 = x2 and dG1
(x1, z1) 6=

dG1
(y1, z1). It follows that R{x2x1, y2y1} = {x2z | z ∈ RG1

{x1, y1}}. If u1 ∈
RG1

{x1, y1}, then dG1
(x1, u1) 6= dG1

(y1, u1). By (1), the equality d(x2x1, z2z1) =
d(y2y1, z2z1) holds if and only if z2 = x2 and dG1

(x1, z1) = dG1
(y1, z1). It follows

that R{x2x1, y2y1} = V (Gu2

2
⊓Gu1

1
) \ {x2z | z 6∈ RG1

{x1, y1}}.
(ii) Suppose that x2z 6∈ R{x2x1, y2y1}. Then d(x2x1, x2z) = d(y2y1, x2z).

By (1),

dG1
(x1, z) = dG2

(y2, x2) + dG1
(y1, u1) + dG1

(z, u1) ≥ dG2
(x2, y2) + dG1

(y1, z),

which implies that

dG2
(x2, y2) + dG1

(x1, u1) + dG1
(z, u1) ≥ 2dG2

(x2, y2) + dG1
(y1, z) > d(y2y1, y2z).

Hence, y2z ∈ R{x2x1, y2y1}, as desired.

Lemma 2.6. Let Gu1

1
and Gu2

2
be two rooted graphs. Then

rdim(Gu2

2
⊓Gu1

1
) ≥ |V (G2)| · rdim(Gu1

1
).

Proof. Let W be a rooted metric basis of Gu2

2
⊓ Gu1

1
. For v ∈ V (G2), write

W v = {z | vz ∈ W}. For any two distinct vertices x, y of G1, there exists a
vertex wz in W ∪ {u2u1} such that d(vx, wz) 6= d(vy, wz). If w = v, by (1) we get
dG1

(x, z) 6= dG1
(y, z), which implies that z ∈ (W v ∪{u1})∩RG1

{x, y}. If w 6= v, by
(1) we have dG1

(x, u1) 6= dG1
(y, u1), which implies that u1 ∈ RG1

{x, y}. Therefore,
we have (W v ∪ {u1})∩RG1

{x, y} 6= ∅, which implies that W v is a rooted resolving
set of Gu1

1
. Since W is the disjoint union of all W v’s, one gets

rdim(Gu2

2
⊓Gu1

1
) = |W | =

∑

v∈V (G2)

|W v| ≥ |V (G2)| · rdim(Gu1

1
),

as desired.
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Theorem 2.7. Let Gu1

1
and Gu2

2
be two rooted graphs. If G1 is not a path with an

end-vertex u1, then

dim(Gu2

2
⊓Gu1

1
) = |V (G2)| · rdim(Gu1

1
).

Proof. By Lemma 2.6, we only need to prove that

(2) dim(Gu2

2
⊓Gu1

1
) ≤ |V (G2)| · rdim(Gu1

1
).

Let W be a rooted metric basis of Gu1

1
. Then W 6= ∅. Write W = {vw | v ∈

V (G2), w ∈ W}. Note that |W | = |V (G2)| · rdim(Gu1

1
). In order to prove (2), we

only need to show that W is a resolving set of Gu2

2
⊓Gu1

1
. It suffices to show that,

for any two distinct vertices x2x1 and y2y1 of Gu2

2
⊓Gu1

1
,

(3) W ∩R{x2x1, y2y1} 6= ∅.

If x2 = y2 and u1 6∈ RG1
{x1, y1}, then W ∩ RG1

{x1, y1} 6= ∅, by Lemma 2.5
(i) we obtain (3). If x2 = y2 and u1 ∈ RG1

{x1, y1}, by Lemma 2.5 (i) we have
vw ∈ W ∩ R{x2x1, y2y1} for any v 6= x2 and any w ∈ W , which implies that (3)
holds. If x2 6= y2, since {x2w, y2w} ⊆ W for any w ∈ W , the inequality (3) holds
by Lemma 2.5 (ii).

Combining Observation 2.1 and Theorem 2.7, we have the following result.

Corollary 2.8. Let Gu1

1
and Gu2

2
be two rooted graphs.

(i) If there exists a metric basis of G1 containing u1 and G1 is not a path,

then

dim(Gu2

2
⊓Gu1

1
) = |V (G2)|(dim(G1)− 1).

(ii) If any metric basis of G1 does not contain u1, then

dim(Gu2

2
⊓Gu1

1
) = |V (G2)| dim(G1).

The binomial tree Tn is the hierarchical product of n copies of the complete
graph on two vertices, which is a useful data structure in the context of algorithm
analysis and designs [9]. It was proved that the metric dimension for a tree can be
expressed in terms of its parameters in [7, 15, 24].

Corollary 2.9. Let n ≥ 2. Then dim(Tn) = 2n−2.

Proof. Note that dim(T2) = 1. Now suppose n ≥ 3. Since Tn = (K0
2 ⊓ · · · ⊓K0

2 )⊓
(K0

2
⊓K0

2
) and rdim(K0

2
⊓K0

2
) = 1, the desired result follows by Theorem 2.7.

We always assume that 0 is one end-vertex of Pn. In the remaining of this
section, we prove some tight inequalities for dim(Gu ⊓ P 0

n).

Proposition 2.10. Let Gu be a rooted graph with diameter d. Then

dim(Gu ⊓ P 0

n) ≤ dim(Gu ⊓ P 0

n+1) for 1 ≤ n ≤ d− 1,(4)

dim(Gu ⊓ P 0

n) = dim(Gu ⊓ P 0

n+1
) for n ≥ d.(5)
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Proof. If G = K2, then Gu ⊓ P 0
n is the path, which implies that (5) holds. Now

we only consider |V (G)| ≥ 3. Suppose that Wn+1 is a metric basis of Gu ⊓ P 0
n+1

.
Let Pn = (z0 = 0, z1, . . . , zn−1). Define πn : V (Gu ⊓ P 0

n+1
) −→ V (Gu ⊓ P 0

n) by

πn(vzi) =

{

vzn−1, if i = n,
vzi, if i ≤ n− 1.

Then πn(Wn+1) is a resolving set of Gu ⊓ P 0
n , which implies that dim(Gu ⊓ P 0

n) ≤
dim(Gu ⊓ P 0

n+1) for any positive integer n. So (4) holds.

In order to prove (5), we only need to show that Wn is a resolving set of
Gu ⊓P 0

n+1
for n ≥ d. Pick any two distinct vertices v1zi and v2zj of Gu ⊓P 0

n+1
. It

suffices to prove that

(6) Wn ∩RGu⊓P 0

n+1

{v1zi, v2zj} 6= ∅.

Without loss of generality, we may assume that 0 ≤ i ≤ j ≤ n. If j ≤ n− 1,
then RGu⊓P 0

n+1

{v1zi, v2zj} ⊇ RGu⊓P 0
n
{v1zi, v2zj}; and so (6) holds. Now suppose

j = n.

Claim. There exist two distinct vertices w1 and w2 of G such that

(7) Wn ∩ {w1zk | 0 ≤ k ≤ n− 1} 6= ∅ and Wn ∩ {w2zk | 0 ≤ k ≤ n− 1} 6= ∅.

Suppose for the contradiction that there exists a vertex w ∈ V (G) such that
Wn ⊆ {wzk | 0 ≤ k ≤ n− 1}. If the degree of w in G is one, then there exists an
induced path (w, x, y) in G. For any wzk ∈ Wn, we have d(xz1, wzk) = k + 2 =
d(yz0, wzk), contrary to the fact that Wn is a metric basis of Gu⊓P 0

n . If the degree
of w in G is at least two, pick two distinct neighbors x and y of w in G. Then
d(xz0, wzk) = k + 1 = d(yz0, wzk) for any wzk ∈ Wn, a contradiction. Hence our
claim is valid.

Now we prove (6) for j = n. By the claim, we may pick two distinct vertices
w1 and w2 satisfying (7).

Case 1. v1 = v2. Since {w1zk | 0 ≤ k ≤ n− 1} or {w2zk | 0 ≤ k ≤ n− 1} is
a subset of RGu⊓P 0

n+1

{v1zi, v1zn}, the inequality (6) holds.

Case 2. v1 6= v2.

Case 2.1. i = 0. Without loss of generality, we may assume that w1 6= v2.
Pick zk satisfying w1zk ∈ Wn. Then

d(v1z0, w1zk) = dG(v1, w1)+k ≤ d+k ≤ n+k < dG(v2, w1)+n+k = d(v2zn, w1zk),

which implies that w1zk ∈ RGu⊓P 0

n+1

{v1z0, v2zn}. So (6) holds.

Case 2.2. i ≥ 1. Note that

RGu⊓P 0

n+1

{v1zi, v2zn} = RGu⊓P 0

n+1

{v1zi−1, v2zn−1} ⊇ RGu⊓P 0
n
{v1zi−1, v2zn−1}.

Then (6) holds.
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Proposition 2.11. For any rooted graph Gu, we have

(8) dim(G) ≤ dim(Gu ⊓ P 0

n) ≤ |V (G)| − 1.

Proof. Let z be the other end-vertex of Pn. Fix a vertex v0 ∈ V (G) and write
S = {vz | v ∈ V (G) \ {v0}}. Since {z} is a resolving set of Pn, the set S resolves
G⊓ Pn by (1). Hence dim(Gu ⊓P 0

n) ≤ |S| = |V (G)| − 1. Since Gu is isomorphic to
Gu ⊓ P 0

1
, Proposition 2.10 implies that dim(G) ≤ dim(Gu ⊓ P 0

n).

For m ≥ 2, we have dim(Ku
m ⊓P 0

n) = m− 1. This shows that the inequalities
(4) and (8) are tight.

Example 2.12. For m ≥ 3 and n ≥ 2, we have dim(Pu
m ⊓ P 0

n) = 2. In fact, write
Pk = (z0 = 0, z1, . . . , zk−1), then {z0zn−1, zm−1zn−1} is a resolving set of Pu

m ⊓ P 0

n .

Example 2.13. Let Cm be the cycle with length m. Then dim(Cu
m ⊓ P 0

n) = 2. In fact,
write Pn = (z0 = 0, z1, . . . , zn−1) and Cm = (c0, c1, . . . , cm−1, c0), then {c0zn−1, c1zn−1}
is a resolving set of Cu

m ⊓ P 0

n .

3. FRACTIONAL METRIC DIMENSION

In order to study the fractional metric dimension for the hierarchical product
of graphs, we first introduce the fractional rooted metric dimension for a rooted
graph.

Similar to the fractionalization of metric dimension, we give a fractional ver-
sion of the rooted metric dimension for a rooted graph. Let Gu be a rooted graph
of order n. Write

Pu = {{v, w} | v, w ∈ V (G), v 6= w, d(v, u) = d(w, u)}.
Suppose that Pu 6= ∅. Write V (G) \ {u} = {v1, . . . , vn−1} and Pu = {α1, . . . , αm}.
Let Au be the m× (n− 1) matrix with

(Au)ij =

{

1, if vj resolves αi,
0, otherwise.

The integer programming formulation of the rooted metric dimension for Gu is
given by

Minimize f(x1, . . . , xn−1) = x1 + · · ·+ xn−1

Subject to Aux ≥ 1

where x = (x1, . . . , xn−1)
T, xi ∈ {0, 1} and 1 is the m × 1 column vector all of

whose entries are 1. The optimal solution of the linear programming relaxation of
the above integer programming problem, where we replace xi ∈ {0, 1} by xi ∈ [0, 1],
gives the fractional rooted metric dimension for Gu, which we denote by rdimf (G

u).

Let Gu be a rooted graph which is not a path with an end-vertex u. A rooted

resolving function of a rooted graph Gu is a real value function g : V (G) −→ [0, 1]
such that g(R{v, w}) ≥ 1 for each {v, w} ∈ Pu. The fractional rooted metric

dimension for Gu is the minimum weight of a rooted resolving function of Gu.
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Proposition 3.1. Let Gu be a rooted graph which is not a path with an end-vertex

u. Then

(i) rdimf (G
u) ≤ rdim(Gu).

(ii) rdimf (G
u) ≤ |V (G)| − 1

2
.

(iii) dimf (G)− 1 ≤ rdimf (G
u) ≤ dimf (G).

Proof. (i) Let W be a rooted metric basis of Gu. Define g : V (G) −→ [0, 1] by

g(v) =

{

1, if v ∈ W,
0, if v 6∈ W.

For any {x, y} ∈ Pu, there exists a vertex v ∈ W such that d(x, v) 6= d(y, v). Then
g(R{x, y}) ≥ g(v) = 1, which implies that g is a rooted resolving function of Gu.
Hence rdimf (G

u) ≤ |g| = |W | = rdim(Gu).

(ii) The function g : V (G) −→ [0, 1] defined by

g(v) =

{

0, if v = u,
1

2
, if v 6= u

is a rooted resolving function of Gu. Hence rdimf (G
u) ≤ |V (G)| − 1

2
.

(iii) It is clear that rdimf (G
u) ≤ dimf (G). Let g be a rooted resolving

function of Gu. Then the function h : V (G) −→ [0, 1] defined by

h(v) =

{

1, if v = u,
g(v), if v 6= u

is a resolving function of G. Hence dimf (G) ≤ rdimf (G
u) + 1, as desired.

If u is not an end-vertex of the path Pn, then rdimf (P
u
n ) = rdim(Pu

n ) =
dimf (Pn) = 1, which implies that the upper bounds in Proposition 3.1 (i) and

(iii) are tight. The fact that rdimf (K
u
n) =

n− 1

2
shows that the inequality in

Proposition 3.1 (ii) is tight.

Next, we study the fractional metric dimension for the hierarchical product
of graphs.

For two rooted graphs Gu1

1
and Gu2

2
, write

Pu1={{x, y} ⊆ V (G1)|x 6= y, dG1
(x, u1) = dG1

(y, u1)},
Pu2u1

={{x2x1, y2y1} ⊆V (Gu2

2
⊓Gu1

1
)|x2x1 6= y2y1, d(x2x1, u2u1) = d(y2y1, u2u1)}.

Lemma 3.2. Let Gu1

1
and Gu2

2
be two rooted graphs. If G1 is not a path with an

end-vertex u1, then

rdimf (G
u2

2
⊓Gu1

1
) ≥ |V (G2)| · rdimf (G

u1

1
).
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Proof. Suppose that g is a rooted resolving function of Gu2

2
⊓ Gu1

1
with weight

rdimf (G
u2

2
⊓Gu1

1
). For each z ∈ V (G2), define

gz : V (G1) −→ [0, 1], x 7−→ g(zx).

Write Pu1

= {{zx, zy} | z ∈ V (G2), {x, y} ∈ Pu1}. By (1), we have Pu1 ⊆
Pu2u1

. Hence gz(RG1
{x, y}) ≥ 1 for any {x, y} ∈ Pu1 , which implies that |gz | ≥

rdimf (G
u1

1
). Consequently,

rdimf (G
u2

2
⊓Gu1

1
) = |g| =

∑

z∈V (G2)

|gz| ≥ |V (G2)| · rdimf (G
u1

1
),

as desired.

Theorem 3.3. Let Gu1

1
and Gu2

2
be two rooted graphs. If G1 is not a path with an

end-vertex u1, then

dimf (G
u2

2
⊓Gu1

1
) = |V (G2)| · rdimf (G

u1

1
).

Proof. Combining Proposition 3.1 and Lemma 3.2, we only need to prove that

(9) dimf (G
u2

2
⊓Gu1

1
) ≤ |V (G2)| · rdimf (G

u1

1
).

By Proposition 2.4 we have Pu1 6= ∅. Let g be a rooted resolving function of G1

with weight rdimf (G
u1

1
). Define

g : V (Gu2

2
⊓Gu1

1
) −→ [0, 1], x2x1 7−→ g(x1).

We shall show that, for any two distinct vertices x2x1 and y2y1 of Gu2

2
⊓Gu1

1
,

(10) g(R{x2x1, y2y1}) ≥ 1.

Case 1. x2 = y2. If u1 6∈ RG1
{x1, y1}, by Lemma 2.5 we get R{x2x1, y2y1} =

{x2z | z ∈ RG1
{x1, y1}}, which implies that g(R{x2x1, y2y1}) = g(RG1

{x1, y1}).
Since {x1, y1} ∈ Pu1 , we obtain (10). If u1 ∈ RG1

{x1, y1}, by Lemma 2.5 we have
R{x2x1, y2y1} ⊇ {vz | z ∈ V (G1)} for any v ∈ V (G2) \ {x2}, which implies that
g(R{x2x1, y2y1}) ≥ |g|, so (10) holds.

Case 2. x2 6= y2. Write W = {z | x2z ∈ R{x2x1, y2y1}} and S = {z | y2z ∈
R{x2x1, y2y1}}. By Lemma 2.5 we have W ∪ S = V (G1). Then

g(R{x2x1, y2y1}) ≥
∑

z∈W

g(x2z) +
∑

z∈S

= g(W ) + g(S)g(y2z) ≥ |g|,

which implies that (10) holds.

Therefore, g is a resolving function ofGu2

2
⊓Gu1

1
, which implies that dimf (G

u2

2
⊓

Gu1

1
) ≤ |g|. Since |g| = |V (G2)| · rdimf (G

u1

1
), we obtain (9). Our proof is accom-

plished.

By Theorem 3.3, we obtain the following corollary immediately.
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Corollary 3.4. Let n ≥ 2. Then dimf (Tn) = 2n−2.

Arumugam and Mathew [1] proposed a natural problem: Characterize
graphs for which dimf (G) = dim(G). By Corollaries 2.9 and 3.4, the binomial tree
Tn satisfies dimf (Tn) = dim(Tn). But this problem is still open.

It seems that there is a gap to determine dimf (G
u ⊓ P 0

n). We conclude this
paper by giving some tight inequalities involving it.

Proposition 3.5. For any rooted graph Gu, we have

dimf (G) ≤ dimf (G
u ⊓ P 0

n) ≤ dimf (G
u ⊓ P 0

n+1) ≤
|V (G)|

2
.

Proof. Write Pn = (z0 = 0, z1, . . . , zn−1). For a resolving function gn+1
of Gu ⊓

P 0
n+1

, we define g′n+1
: V (Gu ⊓ P 0

n) −→ [0, 1] by

g′n+1
(x2x1) =

{

gn+1(x2zn−1) + gn+1(x2zn), if x1 = zn−1,
gn+1

(x2x1), if x1 6= zn−1.

Then g′n+1
is a resolving function of Gu ⊓ P 0

n . Since |g′n+1
| = |gn+1

|, we have

dimf (G) = dimf (G
u ⊓ P 0

1
) ≤ dimf (G

u ⊓ P 0

n) ≤ dimf (G
u ⊓ P 0

n+1
).

For proving the last inequality, define h : V (Gu ⊓ P 0
n+1

) −→ [0, 1] by

h(x2x1) =

{ 1

2
, if x1 = zn,

0, if x1 6= zn.

Then h is a resolving function of Gu ⊓P 0
n+1

with weight
|V (G)|

2
. Hence dimf (G

u ⊓

P 0
n+1) ≤

|V (G)|
2

.

For m ≥ 2, we have dimf (K
u
m⊓P 0

n) =
m

2
. This shows that all the inequalities

in Proposition 3.5 are tight.
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