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ROMAN DOMINATION IN CARTESIAN PRODUCT

GRAPHS AND STRONG PRODUCT GRAPHS

Ismael González Yero, Juan Alberto Rodŕıguez-Velázquez

A map f : V → {0, 1, 2} is a Roman dominating function for G if for every
vertex v with f(v) = 0, there exists a vertex u, adjacent to v, with f(u) = 2.

The weight of a Roman dominating function is f(V ) =
∑

u∈V

f(u). The mini-

mum weight of a Roman dominating function on G is the Roman domination
number of G. In this paper we study the Roman domination number of Carte-
sian product graphs and strong product graphs.

1. INTRODUCTION

The behavior of several graph parameters in product graphs has become an
interesting topic of research [10, 11]. For instance, we emphasize the Shannon
capacity of a graph [14], which is a certain limiting value involving the vertex
independence number of strong product powers of a graph, and Hedetniemi’s col-
oring conjecture for the categorical product [8, 11], which states that the chromatic
number of any categorical product graph is equal to the minimum value of the chro-
matic numbers of its factors. Also, one of the oldest open problems on domination
in graphs is related to the Cartesian product graphs. The problem was presented
first by Vizing in 1963 [16]. Vizing’s conjecture states that the domination num-
ber of any Cartesian product graph is greater than or equal to the product of the
domination numbers of its factors.

Vizing’s conjecture has become one of the most interesting problems on dom-
ination in graphs, and has led to other Vizing-like results for several parameters,
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including some not related to standard domination. Much research has been devel-
oped in this sense and the conjecture has been proved for several families of graphs.
The surveys [1, 6] contain almost all the results obtained on the conjecture. Also,
these surveys contain some references to similar open problems on product graphs.
Nevertheless, the conjecture remains open. One variant of domination is the con-
cept of Roman domination introduced by Cockayne et al. in [3], according to
some connections with historical problems of defending the Roman Empire, for
instance [15]. Roman domination has been studied further by other authors, see
[4, 5, 9, 18]. In this article we obtain Vizing-like results for the Roman domination
number of Cartesian product graphs and strong product graphs.

We begin by establishing the principal terminology and notation which we use
throughout the article. Hereafter G = (V,E) denotes a finite simple graph. For two
adjacent vertices u and v of G we use the notation u ∼ v and, in this case, we say
that uv is an edge of G, i.e., uv ∈ E. For a vertex v of G, N(v) = {u ∈ V : u ∼ v}
denotes the set of neighbors that v has in G, and is called the open neighborhood

of v. The closed neighborhood of v is defined as N [v] = N(v) ∪ {v}. For a set
D ⊆ V, the open neighborhood is N(D) = ∪v∈DN(v) and the closed neighborhood

is N [D] = N(D) ∪ D. A set D is a dominating set if N [D] = V. The domination

number γ(G) is the minimum cardinality of a dominating set in G. We say that a
set S is a γ(G)-set if it is a dominating set and |S| = γ(G).

A map f : V → {0, 1, 2} is a Roman dominating function for a graph
G if for every vertex v with f(v) = 0, there exists a vertex u ∈ N(v) such that

f(u) = 2. The weight of a Roman dominating function is given by f(V ) =
∑

u∈V

f(u).

The minimum weight of a Roman dominating function on G is called the Roman

domination number of G and it is denoted by γR(G).

Any Roman dominating function f on a graphG induces three setsB0, B1, B2,
where Bi = {v ∈ V : f(v) = i}. Thus, we write f = (B0, B1, B2). It is clear that
for any Roman dominating function f = (B0, B1, B2) on a graph G = (V,E) of

order n we have that f(V ) =
∑

u∈V

f(u) = 2|B2| + |B1| and |B0| + |B1| + |B2| = n.

We say that a function f = (B0, B1, B2) is a γR(G)-function if it is a Roman
dominating function and f(V ) = γR(G).

Several results about Roman dominating sets have been obtained recently
[3, 4, 5, 9, 15, 18], and it is natural to try to relate the Roman domination number
to the standard domination number. For instance, [3, 9] contain the following
result, which we use as a tool in this article.

Lemma 1. [3, 9] For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Results about Roman domination in product graphs have been developed
in [12, 13]. In the first one the exact value for the Roman domination number
of lexicographic products of graphs was obtained, and in the second one, some
particular cases of the Cartesian products of paths and cycles were studied. In
this article we study the Roman domination number of Cartesian product graphs
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and strong product graphs. More precisely, we study the relationships between the
Roman domination number of product graphs and the domination number (Roman
domination number) of the factors.

For two graphs G and H with sets of vertices V1 = {v1, . . . , vn1
} and V2 =

{u1, . . . , un2
}, respectively, the Cartesian product of G and H is the graph G�H =

(V,E), where V = V1 × V2 and two vertices (vi, uj) and (vk, uℓ) are adjacent in
G�H if and only if

• vi = vk and uj ∼ uℓ, or

• vi ∼ vk and uj = uℓ.

The strong product G ⊠ H of the graphs G and H is defined on the Cartesian
product of the vertex sets of the factors. Two distinct vertices (vi, uj) and (vk, uℓ)
of G⊠H are adjacent with respect to the strong product if and only if

• vi = vk and uj ∼ uℓ, or

• vi ∼ vk and uj = uℓ, or

• vi ∼ vk and uj ∼ uℓ.

So, the Cartesian product graph G�H is a subgraph of the strong product graph
G⊠H.

2. CARTESIAN PRODUCT GRAPHS

Currently there are few known results on the Roman domination number of
Cartesian product graphs. As far as we know, the only results on this topic are as
follows. In [13] some particular cases of Cartesian product of paths and cycles were
studied. Also, the Roman domination number of C5t�C5k was studied in [18] and
the Roman domination number of some grid graphs was studied in [3, 4]. Also, the
following general relationship between the Roman domination number of Cartesian
product graphs and the domination number of its factors was obtained in [17]:

(1) γR(G�H) ≥ γ(G)γ(H).

The following lemma will be helpful in obtaining the results presented here.

Lemma 2. Let G be a graph. For any γR(G)-function f = (B0, B1, B2),

(i) |B2| ≤ γR(G)− γ(G).

(ii) |B1| ≥ 2γ(G)− γR(G).

Proof. Since B2 ∪ B1 is a dominating set for G and B1 ∩ B2 = ∅, we have
γ(G) ≤ |B2|+ |B1|. So, (i) is deduced as γ(G) ≤ 2|B2|+ |B1|− |B2| = γR(G)−|B2|,
and (ii) is obtained as 2γ(G) ≤ 2|B2|+2|B1| = 2|B2|+ |B1|+ |B1| = γR(G)+ |B1|.
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Theorem 3. For any graphs G and H,

(i) γR(G�H) ≥ 2γ(G)γR(H)

3
.

(ii) γR(G�H) ≥ γ(G)γR(H) + γ(G�H)

2
.

Proof. Let V1 and V2 be the vertex sets of G and H, respectively. Let f =
(B0, B1, B2) be a γR(G�H)-function. Let S = {u1, u2, . . . , uγ(G)} be a dominating
set for G. Let {A1, A2, . . . , Aγ(G)} be a vertex partition of G such that ui ∈ Ai and
Ai ⊆ N [ui] (Notice that this partition always exists, and it needs not be unique).
Let {Π1,Π2, . . . ,Πγ(G)} be a vertex partition of G�H, such that Πi = Ai × V2 for
every i ∈ {1, . . . , γ(G)}.

For every i ∈ {1, . . . , γ(G)}, let fi : V2 → {0, 1, 2} be a function such that

fi(v) = max{f(u, v) : u ∈ Ai}. For every j ∈ {0, 1, 2}, let X
(i)
j = {v ∈ V2 :

fi(v) = j}. Now, let Y
(i)
0

⊆ X
(i)
0

such that for every v ∈ Y
(i)
0

, N(v) ∩ X
(i)
2

= ∅.
Hence, we have that f ′

i = (X
(i)
0

− Y
(i)
0

, X
(i)
1

+ Y
(i)
0

, X
(i)
2

) is a Roman dominating
function on H. Thus,

γR(H) ≤ 2|X(i)
2

|+ |X(i)
1

|+ |Y (i)
0

| ≤ 2|B2 ∩ Πi|+ |B1 ∩ Πi|+ |Y (i)
0

|.

Hence,

γR(G�H) = 2|B2|+ |B1| =
γ(G)
∑

i=1

(2|B2 ∩ Πi|+ |B1 ∩ Πi|)

≥
γ(G)
∑

i=1

(γR(H)− |Y (i)
0

|) = γ(G)γR(H)−
γ(G)
∑

i=1

|Y (i)
0

|.

So,

(2)

γ(G)
∑

i=1

|Y (i)
0

| ≥ γ(G)γR(H)− γR(G�H).

Now, for every v ∈ V2, let Zv ∈ {0, 1}γ(G) be a binary vector associated to v as

follows: Zv
i = 1 if v ∈ Y

(i)
0

and Zv
i = 0 if v 6∈ Y

(i)
0

. So, tv = ‖Zv‖2 counts the
number of components of Zv equal to one. Hence,

(3)
∑

v∈V2

tv =

γ(G)
∑

i=1

|Y (i)
0

|.

Notice that, if Zv
i = 1 and u ∈ Ai, then the vertex (u, v) belongs to B0.

Moreover, (u, v) is not adjacent to vertices of B2∩Πi. So, since B0 is dominated by
B2, there exists u′ ∈ Xv = {x ∈ V1 : (x, v) ∈ B2} which is adjacent to u. Hence,
Sv = (S − {ui ∈ S : Zv

i = 1}) ∪Xv is a dominating set for G.
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Now, if tv > |Xv|, then we have

|Sv| = |S| − tv + |Xv| = γ(G)− tv + |Xv|
< γ(G)− tv + tv = γ(G),

which is a contradiction. So, we have tv ≤ |Xv| and we obtain

(4)
∑

v∈V2

tv ≤
∑

v∈V2

|Xv| = |B2|,

which leads to,

(5) 2
∑

v∈V2

tv ≤ 2|B2|+ |B1| = γR(G�H).

Thus, by (2), (3) and (5) we deduce

γR(G�H) ≥ γ(G)γR(H)− γR(G�H)

2
,

and, as a consequence, (i) follows.

Now, by Lemma 2 (i) and (4) we have

(6)
∑

v∈V2

tv ≤ |B2| ≤ γR(G�H)− γ(G�H).

Thus, by (2), (3) and (6) we obtain (ii).

Lemma 1 and Theorem 3 lead to the following result.

Corollary 4. For any graphs G and H,

(i) γR(G�H) ≥ γR(G)γR(H)

3
.

(ii) γ(G�H) ≥ γ(G)γR(H)

3
.

Note that if there exists a graph that satisfies the above inequalities, then
Vizing’s conjecture is false.

The following inequality related to Vizing’s conjecture was obtained in [2]:

(7) γ(G�H) ≥ γ(G)γ(H)

2
.

If γR(H) >
⌈

3γ(H)

2

⌉

, then γR(H) ≥
⌈

3γ(H)

2

⌉

+1. Thus, Corollary 4 (ii) leads to a

result which improves the above inequality.

Remark 5. Let G and H be two graphs. If γR(H) >
⌈3γ(H)

2

⌉

, then

γ(G�H) ≥ γ(G)γ(H)

2
+

γ(G)

3
.
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A graph H is a Roman graph if γR(H) = 2γ(H). Roman graphs were intro-
duced in [3] where the authors presented some classes of Roman graphs and they
proposed some open problems. Theorem 3 (i) leads to the following result.

Corollary 6. For any graph G and any Roman graph H,

(i) γR(G�H) ≥ 4

3
γ(G)γ(H).

(ii) γ(G�H) ≥ 2

3
γ(G)γ(H).

Let F be the class of all graphs with a dominating set S = {u1, u2, . . . , uγ(G)}
such that N [ui] ∩ N [uj] = ∅, for every i, j ∈ {1, . . . , γ(G)}, i 6= j. In this case
the set S is called an efficient dominating set. Notice that F is the family of all
graphs having a perfect code (a subset S ⊂ V is a perfect code in a graph G if
|N [v] ∩ S| = 1, for every v ∈ V.) Examples of graphs belonging to F are the path
graphs Pn, the cycle graphs C3k and the cube graph Q3 = K2�K2�K2. Examples
of Roman graphs belonging to F are C3k, P3k, P3k+2 and Q3. Note that P3k+1 ∈ F

but P3k+1 are not Roman paths, while C3k+2 are Roman cycles but C3k+2 6∈ F.

A 2-packing of a graph G is a set of vertices in G that are pairwise at distance
more than two. The 2-packing number P2(G) of a graph G is the size of a largest
2-packing in G. The 2-packing number is a graph invariant closely related to the
domination number. In fact, it is well known that P2(G) ≤ γ(G), cf. [10, 11].

Let G ∈ F. Since every efficient dominating set S = {u1, u2, . . . , uγ(G)} is a 2-
packing, we have γ(G) ≤ P2(G). So, we conclude that if G ∈ F, then P2(G) = γ(G)
(The converse is not true.) We recall that if P2(G) = γ(G), then Vizing’s conjecture
holds for G [11]. As a consequence, by Theorem 3 (ii) we deduce the following
result, which improves the inequality (1) when G ∈ F.

Corollary 7. Let G and H be two graphs. If G ∈ F, then

γR(G�H) ≥ 1

2
max {γ(G) (γR(H) + γ(H)) , γ(H) (γR(G) + γ(G))} .

Theorem 8. Let G and H be two graphs. If G ∈ F, then

γR(G�H) ≥ γ(G)γR(H).

Proof. Let V1 and V2 be the vertex sets of G and H, respectively. Let S =
{u1, . . . , uγ(G)} be an efficient dominating set for G, i.e., {N [u1], . . . , N [uγ(G)]}
is a vertex partition of G and, as a consequence, {Π′

1
,Π′

2
, . . . ,Π′

γ(G)
} is a vertex

partition of G�H, where Π′
i = N [ui]× V2 for every i ∈ {1, . . . , γ(G)}.

Proceeding analogously to the proof of Theorem 3, we consider a γR(G�H)-
function f = (B0, B1, B2) and, for every i ∈ {1, . . . , γ(G)}, we define the function
fi : V2 → {0, 1, 2} as fi(v) = max{f(u, v) : u ∈ N [ui]}. In addition, for every

j ∈ {0, 1, 2} we define X
(i)
j = {v ∈ V2 : fi(v) = j}.

Now, if v ∈ X
(i)
0

, then for every u ∈ N [ui] we have that (u, v) ∈ B0. Hence,
since ui has no neighbors in V1−N [ui] and B2 dominates B0, there exists (ui, v

′) ∈
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B2 such that v′ is adjacent to v. We conclude that every v ∈ X
(i)
0

has a neighbor

v′ ∈ X
(i)
2

and, as a consequence, fi = (X
(i)
0

, X
(i)
1

, X
(i)
2

) is a Roman dominating
function on H, for every i ∈ {1, . . . , γ(G)}. Therefore, the result is deduced as
follows:

γR(G�H) = 2|B2|+ |B1| =
γ(G)
∑

i=1

(2|B2 ∩ Π′
i|+ |B1 ∩ Π′

i|)

≥
γ(G)
∑

i=1

(

2|X(i)
2

|+ |X(i)
1

|
)

≥ γ(G)γR(H). �

An interesting consequence of Theorem 8 is the following result.

Corollary 9. Let G and H be two graphs. If G ∈ F and H is a Roman graph,

then

γR(G�H) ≥ 2γ(G)γ(H).

Theorem 10. For any graphs G and H of order n1 and n2, respectively,

γR(G�H) ≤ min{n1γR(H), n2γR(G)}.

Proof. Let f1 be a γR(G)-function. Let f : V1×V2 → {0, 1, 2} be a function defined
by f(u, v) = f1(u). If there exists a vertex (x, y) ∈ V1 × V2 such that f(x, y) = 0,
then f1(x) = 0. Since f1 is Roman, there exists u ∈ V1, adjacent to x, such that
f1(u) = 2. Hence, we obtain that f(u, y) = 2 and (x, y) is adjacent to (u, y). So, f
is a Roman dominating function. Therefore,

γR(G�H) ≤
∑

(u,v)∈V1×V2

f(u, v) =
∑

v∈V2

∑

u∈V1

f1(u) =
∑

v∈V2

γR(G) = n2γR(G).

Analogously we obtain that γR(G�H) ≤ n1γR(H) and the result follows.

The above inequality is tight. It is achieved, for instance, for G = Pn, a path
graph of order n, and H = S1,r, a star graph with r ≥ 2 leaves. In this case we

have γR(S1,r) = 2 = 2γ(S1,r), γ(Pn) =
⌈

n

3

⌉

, γR(Pn) =
2n+ 1

3
if n ≡ 1(3) and

γR(Pn) = 2
⌈

n

3

⌉

if n 6≡ 1(3). So, γR(G�H) = 2n = nγR(H).

Corollary 11. For any graphs G and H of order n1 and n2, respectively,

γR(G�H) ≤ 2min{n1γ(H), n2γ(G)}.

Lemma 12. [3] A graph G is Roman if and only if it has a γR(G)-function f =
(A0, A1, A2) with |A1| = 0.

Theorem 13. Let G be a graph of order n and let H be a graph.
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(i) If G has at least one connected component of order greater than two, then

γR(G�H) ≤ (n+ 1)γR(H)− 2γ(H).

(ii) If G is a Roman graph, then

γR(G�H) ≤ 2n (γR(H)− γ(H)) + 2γ(G) (2γ(H)− γR(H)) .

Proof. Let f1 = (A0, A1, A2) be a γR(G)-function and let f2 = (B0, B1, B2) be a
γR(H)-function. We define the map f : V1 × V2 → {0, 1, 2} as follows.

• f(u, v) = f2(v) for every (u, v) /∈ (A0 ∪ A2)×B1.

• If (u, v) ∈ A0 ×B1, then f(u, v) = 0.

• If (u, v) ∈ A2 ×B1, then f(u, v) = 2.

Since every vertex from A0 × B1 has a neighbor in A2 × B1 and every vertex of
V1×B0 has a neighbor in V1×B2, we have that f is a Roman dominating function
on G�H. Thus,

(8) γR(G�H) ≤ nγR(H)− |A0||B1|+ |A2||B1| = nγR(H)− |B1|(|A0| − |A2|).

Since G has at least one component of order greater than two, it is satisfied that
|A0| ≥ |A2|+1 and, by Lemma 2 (ii), |B1|(|A0|−|A2|) ≥ 2γ(H)−γR(H). Therefore,
by (8) we deduce (i).

Now, if G is a Roman graph, then by Lemma 12 there exists a γR(G)-function
f = (A0, A1, A2) with |A1| = 0. Thus, |A0| + |A2| = n and, as a consequence,
|A0| − |A2| = n− 2γ(G). Therefore, by (8) we deduce (ii):

γR(G�H) ≤ nγR(H)− |B1|(|A0| − |A2|)
≤ nγR(H)− (2γ(H)− γR(H)) (n− 2γ(G))

= 2n (γR(H)− γ(H)) + 2γ(G) (2γ(H)− γR(H)) . �

For any Roman graph H, Theorem 13 leads to γR(G�H) ≤ 2nγ(H). Now,
for any non-Roman graph H we have γR(H)− 2γ(H) ≤ −1 and, as a consequence,
Theorem 13 leads to the following result.

Corollary 14. Let G be a graph of order n and let H be a graph. If G has at least

one connected component of order greater than two and H is not Roman, then

γR(G�H) ≤ nγR(H)− 1.

Proposition 15. [3] If G is a connected graph of order n, then γR(G) = γ(G) + 1
if and only if there exists a vertex of G of degree n− γ(G).

From Proposition 15 and Theorem 13 we derive the following result.
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Proposition 16. If G is a graph of order n1 having at least one connected com-

ponent of order greater than two and H is a connected graph of order n2 having a

vertex of degree n2 − γ(H), then

γR(G�H) ≤ n1(γ(H) + 1)− γ(H) + 1.

The above inequality is tight. For instance, if G is a path graph of order three
and H is the star K1,3 with one of its edges subdivided, then we have γ(H) = 2
and γR(G�H) = 8. So, Proposition 16 leads to the exact value of γR(G�H).

Theorem 17. For any graphs G and H of order n1 and n2, respectively,

γR(G�H) ≤ 2γ(G)γ(H) + (n1 − γ(G))(n2 − γ(H)).

Proof. Let S1 be a γ(G)-set and let S2 be a γ(H)-set. Let B2 = S1 × S2,
B1 = (V1 − S1) × (V2 − S2) and B0 = S1 × (V2 − S2) ∪ (V1 − S1) × S2. Since B2

dominates B0, the map f : V1 × V2 → {0, 1, 2} defined by f(u, v) = i, for every
(u, v) ∈ Bi, is a Roman dominating function on G�H. Therefore, the result is
obtained as follows,

γR(G�H) ≤ 2|B2|+ |B1| = 2|S1||S2|+ |V1 − S1||V2 − S2|
= 2γ(G)γ(H) + (n1 − γ(G))(n2 − γ(H)). �

We know that γR(P3k+2) = 2γ(P3k+2) = 2(k + 1), γR(P3k+1) = 2k + 1 and
γ(P3k+1) = k+1. So, Theorem 17 leads to γR (P3k+1�P3k+2) ≤ 6k2+6k+2, while
by Theorem 10 we only get γR (P3k+1�P3k+2) ≤ 6k2 + 7k + 2 and by Theorem 13
we only get γR (P3k+2�P3k+1) ≤ 6k2 + 7k + 1.

From the above results we have that the bounds on the Roman domination
number and the domination number of the factor graphs lead to bounds on the
Roman domination number of the Cartesian product graphs. For example, it is
well known that for any graph G of order n and maximum degree ∆, γ(G) ≥ n

∆+ 1
,

cf. [7]. The following straightforward result allows us to derive several bounds on
γR(G�H).

Remark 18. For any graph G ∈ F of order n and minimum degree δ, γ(G) ≤ n

δ + 1
. As a

consequence, for any δ-regular graph G ∈ F it follows, γ(G) =
n

δ + 1
.

An example of a result derived from the above remark, Theorem 8 and The-
orem 10, is the following one.

Proposition 19. For any δ-regular graph G ∈ F of order n,

2n

δ + 1
≤ γR(G�K2) ≤

4n

δ + 1
.
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3. STRONG PRODUCT GRAPHS

In this section we obtain some results on the Roman domination number of
strong product graphs. We begin by recalling the following well-known result, cf.
[11].

Theorem 20. [11] For any graphs G and H,

max{P2(G)γ(H), γ(G)P2(H)} ≤ γ(G⊠H) ≤ γ(G)γ(H).

One immediate consequence of Theorem 20 is the following result.

Corollary 21. For any graph G ∈ F and any graph H, γ(G⊠H) = γ(G)γ(H).

The next result follows from Lemma 1 and Theorem 20.

Corollary 22. For any graphs G and H,

max{P2(G)γ(H), γ(G)P2(H)} ≤ γR(G⊠H) ≤ 2γ(G)γ(H).

Theorem 23. Let f1 = (A0, A1, A2) be a γR(G)-function and let f2 = (B0, B1, B2)
be a γR(H)-function. Then,

γR(G⊠H) ≤ γR(G)γR(H)− 2|A2||B2|.

Proof. We define the function f on G⊠H as follows:

f(u, v) =







2, (u, v) ∈ (A1 ×B2) ∪ (A2 ×B1) ∪ (A2 ×B2),
1, (u, v) ∈ A1 ×B1,
0, otherwise.

Note that the set (A0 ×B0)∪ (A0 ×B2)∪ (A2 ×B0) is dominated by A2 ×B2, the
set A1×B0 is dominated by A1 ×B2, and A0 ×B1 is dominated by A2 ×B1. Then
we have that f is a Roman dominating function on G⊠H.

Therefore,

γR(G⊠H) ≤ 2|A2||B2|+ 2|A1||B2|+ 2|A2||B1|+ |A1||B1|
= 4|A2||B2|+ 2|A1||B2|+ 2|A2||B1|+ |A1||B1| − 2|A2||B2|
= 2|A2|(2|B2|+ |B1|) + |A1|(2|B2|+ |B1|)− 2|A2||B2|
= (2|A2|+ |A1|)(2|B2|+ |B1|)− 2|A2||B2|
= γR(G)γR(H)− 2|A2||B2|. �

Now we present some interesting consequences of Theorem 23.

Corollary 24. For any nontrivial graphs G and H,

γR(G⊠H) ≤ γR(G)γR(H)− 2.
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The above inequality is achieved, for instance, if G and H are graphs of order
n1 and n2, containing a vertex of degree n1 − 1 and n2 − 1, respectively. In this
case, we have γR(G⊠H) ≤ γR(G)γR(H)− 2 = 2 · 2− 2 = 2.

In order to show one example where Corollary 24 leads to a better result than
Corollary 22 we take a graph G such that γR(G) = γ(G) + 1 > 3 (see Proposition
15). In this case Corollary 24 leads to γR(G ⊠ G) ≤ (γ(G))2 + 2γ(G) − 1, while
Corollary 22 leads to γR(G⊠G) ≤ 2(γ(G))2.

If H = Pn or H = Cn, then we have that for any γR(H)-function f =

(B0, B1, B2), |B2| =
⌊

n

3

⌋

. Hence, Theorem 23 leads to the following result.

Corollary 25. Let G be a nontrivial graph. If H = Pn or H = Cn, then

γR(G⊠H) ≤















2n+ 1

3
γR(G)− 2

⌊

n

3

⌋

, n ≡ 1(3)

2
⌈

n

3

⌉

γR(G)− 2
⌊

n

3

⌋

, n 6≡ 1(3).

Every star graph G = K1,r satisfies the above inequality for n 6≡ 2(3). That

way we have γR (Cn ⊠K1,r) = γR (Pn ⊠K1,r) = 2
⌈

n

3

⌉

. Note that Cn ⊠K1,r and

Pn ⊠K1,r are Roman graphs for n 6≡ 2(3).

Theorem 26. Let G and H be two graphs. If G ∈ F, then

γR(G⊠H) ≥ γ(G)γR(H).

Proof. Let V1 and V2 be the vertex sets of G and H, respectively. Let S =
{u1, . . . , uγ(G)} be an efficient dominating set for G, i.e., {NG[u1], . . . , NG[uγ(G)]}
is a vertex partition for G. Let {Π1,Π2, . . . ,Πγ(G)} be the vertex partition of G⊠H
defined as Πi = NG[ui]× V2, for every i ∈ {1, . . . , γ(G)}.

Now, let f = (B0, B1, B2) be a γR(G ⊠ H)-function and, for every i ∈
{1, . . . , γ(G)}, let the function f (i) : V2 → {0, 1, 2} defined by f (i)(v) = max{f(u, v) :

(u, v) ∈ Πi}. Let {B(i)
0
, B

(i)
1

, B
(i)
2

} such that B
(i)
j = {v ∈ V2 : f (i)(v) = j} with

j ∈ {0, 1, 2} and i ∈ {1, . . . , γ(G)}.
If there is a vertex y of H such that f (i)(y) = 0 and NH [y] ∩ B

(i)
2

= ∅, then
f(ui, y) = 0 and (ui, y) is not adjacent to any vertex (a, b) of G⊠H with f(a, b) = 2,

a contradiction. Thus, f (i) = (B
(i)
0

, B
(i)
1

, B
(i)
2

) is a Roman dominating function on
H for every i ∈ {1, . . . , γ(G)}. As a consequence,

γR(G⊠H) = 2|B2|+ |B1| =
γ(G)
∑

i=1

(2|B2 ∩ Πi|+ |B1 ∩ Πi|)

≥
γ(G)
∑

i=1

(2|B(i)
2
|+ |B(i)

1
|) ≥

γ(G)
∑

i=1

γR(H) = γ(G)γR(H).

Therefore, the proof is complete.
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Cockayne et al. [3] gave some classes of Roman graphs and they posed the
following question: Can you find other classes of Roman graphs? The next result
is an answer to this question.

Theorem 27. If G ∈ F and H is a Roman graph, then G⊠H is a Roman graph.

Proof. If G ∈ F and H is Roman, then Theorem 26 leads to γR(G ⊠ H) ≥
2γ(G)γ(H). So, by Corollary 22 we obtain γR(G⊠H) = 2γ(G)γ(H). Corollary 21
concludes the proof.
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1. B. Brešar, P. Dorbec, W. Goddard, B. L. Hartnell, M. A. Henning, S.
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Escuela Politécnica Superior de Algeciras, (Revised August 10, 2013)
Universidad de Cádiz, Av. Ramón Puyol s/n,
11202 Algeciras
Spain

E-mail: ismael.gonzalez@uca.es

Departament d’Enginyeria Informàtica i Matemàtiques,
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