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ASYMPTOTICS OF THE STIRLING NUMBERS OF THE

SECOND KIND REVISITED

Guy Louchard

Using the Saddle point method and multiseries expansions, we obtain from

the generating function of the Stirling numbers of the second kind
{n
m

}

and Cauchy’s integral formula, asymptotic results in central and non-central

regions. In the central region, we revisit the celebrated Gaussian theorem

with more precision. In the region m = n − nα, 1 > α > 1/2, we analyze

the dependence of
{n
m

}

on α. An extension of some Moser and Wyman’s

result to full m range is also provided. This paper fits within the framework

of Analytic Combinatorics.

1. INTRODUCTION

Let
{

n
m

}

be the Stirling numbers of the second kind. Their generating function is

given by

∑

n

m!

n!

{

n
m

}

zn = f(z)m, f(z) := ez − 1,

and f(z) is an entire function. In the following all asymptotics are meant for
n → ∞.

Without being exhaustive, let us summarize some related literature. If we

associate a random variable Jn with
{

n
m

}

(see Sec. 2 for details), we denote by

M and σ2 the corresponding mean an variance. We define the central region by
x = O(1), where x = (m −M)/σ. The asymptotic Gaussian approximation in the
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194 G. Louchard

central region is proved by Harper [9] and Canfield [3], see also Bender [1],
Sachkov [18] and Hwang [12].

In the non-central region, m = n − nα, 0 < α < 1, most of the previous
papers use the solution of

(1)
ρeρ

eρ − 1
=

n

m
.

As shown in the next section, this actually corresponds to a Saddle point.

Let us mention

• Hsu [10]:

For t = o(n1/2)

{

n
n− t

}

=
(n− t)2t

2tt!

[

1 +
f1(t)

n− t
+

f2(t)

(n− t)2
+ · · ·

]

,

with

f1(t) =
1

3
t(2t + 1).

• Moser and Wyman [14]:

For t = o(
√
n),

(2)

{

n
n− t

}

=

(

n

t

)

q−t

[

1 +
(t)2
12

q +
(t)2
288

q2 + . . .

]

,

where

q =
2

n− t
, (t)r := t(t− 1) . . . (t− r + 1).

For n−m → ∞, n → ∞,

(3)

{

n
m

}

=
n!(eρ − 1)m

2ρnm!(πmρH)1/2

[

1 − 1

mρ

(

15C2
3

16ρ2H
− 3C4

4ρH2

)

+ . . .

]

,

where

H =
eρ(eρ − 1 − ρ)

2(eρ − 1)2
,

C3, C4 are functions of ρ.

• Good [8]:

For κ bounded above and below by positive constants,
{

n
n− t

}

=
(n)!(eρ − 1)τ

τ !ρn [2πτ (1 + κ− (1 + κ)2e−ρ)]
1/2

[

1 +
g1(κ)

τ
+

g2(κ)

τ2
+ . . .

]

,

with

τ = n− t, κ :=
n

n− t
, g1(κ) =

3λ4 − 5λ2
3

24
,
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λi = κi(ρ)/σi, λ0, . . . , λ2 are not used here,

κi = (∂/∂u)
i

(ln (f (ρeu)))|u=0
, f(x) = (ex − 1)/x,

σ = κ2(ρ)1/2, κ1 = κ, κ2 = (κ1 + 1)(ρ− κ1).

• Bender [1]:

Uniformly for ε < m/n < 1 − ε, with ε > 0,

{

n
m

}

∼ n!e−βm

m!ρn−1(1 + eβ)σ
√

2πn
,

where
n

m
= (1 + eβ) ln(1 + e−β),

ρ = ln(1 + e−β), σ2 =
(m

n

)2
[

1 − eβ ln(1 + e−β)
]

,

It is easy to see that ρ here coincides with the solution of (1). Bender’s expression
is similar to Moser and Wyman’s result (3).

• Bleick and Wang [2]:

Let ρ1 be the solution of

ρ1e
ρ1

eρ1 − 1
=

n + 1

m
.

Then
{

n
m

}

=
n!(eρ1 − 1)m

(2π(n+ 1))1/2m!ρn
1
(1−G)1/2

×
[

1− 2 + 18G − 20G2(eρ1 + 1) + 3G3(e2ρ1 + 4eρ1 + 1) + 2G4(e2ρ1 − eρ1 + 1)

24(n+ 1)(1−G)3
+O

( 1

n2

)

]

,

where G =
ρ1

eρ1 − 1
. The series is convergent for for m = o(n2/3).

• Temme [20]:

For all m,
{

n
m

}

= eAmn−m

(

n

m

) ∞
∑

k=0

(−1)kfk(t0)m−k,

where

f0(t0) =

(

t0
(1 + t0)(ρ− t0)

)1/2

,

t0 =
n

m
− 1,

A = −n ln(ρ) + m ln(eρ − 1) −mt0 + (n−m) ln(t0).
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• Tsylova [21]:

Let m = tn + o(n2/3).
{

n
m

}

=
(γn)n√

2πδn(γn)m
exp

[

−(m− tn)2/(2δn)
]

(1 + o(1)),

with

γ(1 − e−1/γ) = γ, δ = e−1/γ(t− e−1/γ).

After some algebra, this coincides with Moser and Wyman’s result (with a smaller
range).

• Chelluri, Richmond and Temme [4]:

They prove, with other techniques, that Moser and Wyman’s expression
(3) is valid if n−m = Ω(n1/3) and that Hsu’s formula is valid for n−m = o(n1/3).

• Erdős and Szekeres, see Sachkov [18], p.164:

Let m < n/ lnn,

{

n
m

}

=
mn

m!
exp

[

( n

m
−m

)

e−n/m

]

(1 + o(1)).

Let us finally note that Hsu and Shiue [11] consider some generalized Stirling
numbers. Let us also mention Pemantle and Wilson [15] and Raichev and
Wilson [17] where they provide methods for deriving asymptotics of coefficients
of algebraic and generating functions. Many examples are given in the survey:
Pemantle and Wilson [16].

Let us summarize the motivation of this paper:

� The choice of m = n− t by most authors is usually such that t = o(nβ). We
want to be more precise by using m = n− nα for our non-central range. α is
chosen such that nα is integer.

� Previous papers simply use ρ as the solution of (1). They don’t compute the
detailed dependence of ρ on α , neither the precise behaviour of functions of
ρ they use. Moreover, most results are related to the case α < 1/2.

� We use multiseries expansions: multiseries are in effect power series (in which
the powers may be non-integral but must tend to infinity) and the variables
are elements of a scale: details can be found in Salvy and Shackell [19].
The scale is a set of variables of increasing order. The series is computed in
terms of the variable of maximum order, the coefficients of which are given in
terms of the next-to-maximum order, etc. This is more precise than mixing
different terms. Actually we implicitly used multiseries in our analysis of
Stirling numbers of the first kind in [13]. There, we analyzed the central
region around the mean Hn (the variance is also of order ln(n)): the result is
similar to Theorem 2.1. We also considered the large deviation m = nα, α >
1/2, the multiseries’ scale is the same as in Sec. 3.
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One of our referees suggested an extension of Moser and Wyman’s expression (3)
to a full m range. With his/her permission, we include this result in this paper.

Our work fits within the framework of Analytic Combinatorics. A preliminary
version of this paper was presented at ALEA 2012.

In Sec. 2, we revisit the asymptotic expansion in the central region and in
Sec. 3, we analyse the non-central region m = n−nα, α > 1/2. We use Cauchy’s
integral formula and the Saddle point method. Sec. 4 is devoted to Moser and
Wyman’s expression full m range extension. Sec. 5 provides a justification of the
Saddle point technique we use here.

2. CENTRAL REGION

Consider the random variable Jn, with probability distribution

P[Jn = m] = Zn(m), Zn(m) :=

{

n
m

}

Bn
,

where Bn is the n-th Bell number. The mean and variance of Jn are given by

M := E(Jn) =
Bn+1

Bn
− 1,

σ2 := V(Jn) =
Bn+2

Bn
− Bn+1

Bn
− 1.

Let ζ be the positive solution of
ζeζ = n.

This immediately leads to
ζ = W (n),

where W is the Lambert’s W function, see Corless and al. [5] (we use the principal
branch, which is analytic at 0). Let us set L := ln(n). We have the well-known
asymptotic expression

(4) ζ = L− lnL +
lnL

L
+ O

(

(lnL)2

L2

)

.

To simplify our expressions in the following, let

G := eζ/2 ∼
√

n/L

The multiseries’ scale is here {ζ,G}.
Our result can be summarized in the following local limit theorem

Theorem 2.1. Let x = (m−M)/σ. Then for x = O(1),

Zn(m) =

{

n
m

}

Bn
= e−x2/2 (1 + ζ)1/2√

2πG

[

1 +
x(−6ζ + 2x2ζ + x2 − 3)

6G(1 + ζ)3/2
+ O(1/G2)

]

.
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Proof. By Salvy and Shackell [19], we have

M = G2 + A1 + O(1/G2) ∼ n

L
, σ2 =

G2

1 + ζ
+ A2 + O(1/G2) ∼ n

L2
,

Bn

n!
= exp(T1)H0,(5)

T1 = − ln(ζ)ζG2 + G2 − ζ/2 − ln(ζ) − 1 − ln(2π)/2,(6)

A1 = −2 + 3/ζ + 2/ζ2

2(1 + 1/ζ)2
, A2 = −2 + 8/ζ + 11/ζ2 + 9/ζ3 + 2/ζ4

2(1 + 1/ζ)4
,

H0 =
1

(1 + 1/ζ)1/2
[

1 + A5/G
2 + O(1/G4)

]

,

A5 = −2 + 9/ζ + 16/ζ2 + 6/ζ3 + 2/ζ4

24(1 + 1/ζ)3
.

This leads to (from now on, we only provide a few terms in our expansions, but of
course we use more terms in our computations), using expansions in G,

σ =
G

(1 + ζ)1/2
+

A2(1 + ζ)1/2

2G
+ O(ζ3/2/G3), σ ∼ G√

ζ
∼

√
n

L
.

We now use the Saddle point technique (for a good introduction to this
method, see Flajolet and Sedgewick [6, ch. VIII]). Let ρ be the saddle point
and Ω the circle ρeiθ. By Cauchy’s theorem,

Zn(m) =
n!

m!Bn

1

2πi

∫

Ω

f(z)m

zn+1
dz =

n!

m!Bnρn
1

2π

∫ π

−π

f(ρeiθ)me−niθdθ

x =
n!

m!Bnρn
1

2π

∫ π

−π

em ln(f(ρeiθ))−niθdθ

=
n!

m!Bnρn
f(ρ)m

2π

∫ π

−π

exp

[

m

{

−1

2
κ2θ

2 − i

6
κ3θ

3 + . . .

}]

dθ,(7)

κi(ρ) =

(

∂

∂u

)i

ln(f(ρeu))|u=0
.(8)

See Good [7] for an ancient but neat description of this technique. Note that
ez − 1 = 0 for zk = 2kiπ, k integer. So our path is chosen such that to avoid these
values.

Let us now turn to the saddle point computation. ρ is the root (of smallest
modulus) of

mρf ′(ρ) − nf(ρ) = 0 i. e.
ρeρ

eρ − 1
=

n

m
,

which is, of course identical to (1). After some algebra, this gives

ρ =
n

m
+ W

(

− n

m
e−n/m

)

.
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In the central region, we choose

m = M + σx = G2 +
x

(1 + ζ)1/2
G + A1 +

xA2(1 + ζ)1/2

2G
+ O(ζ/G2).

This leads to

ln(m) = ζ +
x

(1 + ζ)1/2G
+ O(1/G2),

n

m
= ζ − ζx

(1 + ζ)1/2G
+

−A1ζ + ζx2/(1 + ζ)

G2
+ O(ζ3/2/G3),

ρ = ζ − ζx

(1 + ζ)1/2G
+

ζ(−A1 + x2/(1 + ζ) − 1)

G2
+ O(ζ3/2/G3),

ln(ρ) = ln(ζ) − x

(1 + ζ)1/2G
+ O(1/G2).

Let us remark that the coefficients of G powers are rational expressions in ζ.

Now we note that

eρ − 1 = ρeρ
m

n
,

ln (eρ − 1) = ρ + ln(ρ) + ln(m) − L,(9)

 L = ζ + ln(ζ),

so, by Stirling’s formula, with (6), the first part of (7) leads to

n!

m!Bnρn
f(ρ)m = exp [T2]H1H2,

T2 = m(ρ + ln(ρ) − ζ − ln(ζ)) − (−m + ln(2π)/2 + ln(m)/2) − ζF ln(ρ) − T1,

H1 = 1/H0 = (1 + 1/ζ)1/2 − A5(1 + 1/ζ)1/2

G2
+ O(1/G4),

H2 =
1

1 +
1

12m
+

1

288m2
+ O

(

1

m3

) = 1 − 1

12G2
+

x

12G3(1 + ζ)1/2
+ O

(

1

ζG4

)

.

Note carefully that there is a cancellation of the term m ln(m) in T2. Using all
previous expansions, we obtain

exp(T2) = e−x2/2+ln(ζ)H3,(10)

H3 = 1 +
x(−15ζ − 6ζ2 − 6A1 + x2 − 12A1ζ − 6A1ζ

2 + 2x2ζ − 9

6(1 + ζ)3/2G
+ O(ζ/G2).

We now turn to the integral in (7). We compute

(11) κ2 = −ρeρ(−eρ + 1 + ρ)

(eρ − 1)2
= ζ − ζx

(1 + ζ)1/2G
+ O(ζ2/G2) ∼ L,
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and similar expressions for the next κi that we don’t detail here. Note that
κ3, κ5, . . . are useless for the precision we attain here. We will only use the fact
that κ3 = O(L4/n). We proceed as in Flajolet and Sedgewick [6, ch. VIII].
Let us choose a splitting value θ0 such that mκ2θ

2
0
→ ∞,mκ3θ

3
0
→ 0, n → ∞. For

instance, we can use θ0 = L/
√
n. We must prove that the integral

Kn =

∫ 2π−θ0

θ0

em ln(f(ρeiθ))−niθdθ

is such that |Kn| is exponentially small. This is done in Appendix (Sec. 5).

Now we use the classical trick of setting

m

[

− κ2θ
2/2! +

∞
∑

l=3

κℓ(iθ)ℓ/ℓ!

]

= −u2/2.

Computing θ as a series in u, this gives, by Lagrange’s inversion,

θ =
1

G

∞
∑

1

aiu
i,

with, for instance

a1 =
1

ζ1/2
+

ζ1/2

2G2
+ O

(

ζ3/2

G3

)

.

This expansion n is valid in the dominant integration domain

|u| ≤ G

a1
θ0 = L.

Setting dθ =
dθ

du
du, we integrate on u = (−∞,∞): this extension of the range is

justified as in Flajolet and Sedgewick [6, ch. VIII]. Now, inserting the term ζ
coming in (10) as eln(ζ), this gives

H4 =
ζ1/2√
2πG

(

1 +
ζ

2G2
+ O(ζ2/G3)

)

.

Finally, combining all expansions, we obtain the multiseries expression

Zn(m) =

{

n
m

}

Bn
= e−x2/2H1H2H3H4 = R1,(12)

R1 = e−x2/2 (1 + ζ)1/2√
2πG

[

1 +
x(−6ζ + 2x2ζ + x2 − 3)

6G(1 + ζ)3/2
+ O(ζ/G2)

]

.

Note that the coefficient of the exponential term is asymptotically equivalent

to the dominant term of
1√
2πσ

, as expected. More terms in this expression can
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be obtained if we compute M,σ2, Bn/n! with more precision. Also, using (4), our
result can be put into expansions depending on n, L, . . . . �

To check the quality of our asymptotic, we have chosen n = 3000. This leads
to

ζ = 6.184346264 . . . ,

G = 22.02488900 . . . ,

M = 484.1556441 . . . ,

σ = 8.156422315 . . . ,

Bn = 0.2574879583 . . .106965,

Bas
n = 0.2574880457 . . .106965,

where Bas
n is given by (5). Figure 1 shows Zn(m) and

1√
2πσ

exp
[

− 1

2
·
(

m−M

σ

)2]

.

Figure 1. Zn(m) and
1

√
2πσ

exp

[

− 1

2
·
(

m − M

σ

)

2
]

Figure 2.

Zn(m)
/

1
√
2πσ

exp

[

− 1

2
·
(

m − M

σ

)2
]

The fit seems quite good, but
to have more precise information,
we show in Figure 2 the quotient

Zn(m)
/

1√
2πσ

exp
[

−
(

m−M

σ

)2/

2
]

.

The relative error is between 0.05 and
0.10.

Figure 3 shows the quotient
Zn(m) /R1 (without error term). The
relative error is now between 0.004 and
0.01.

Figure 3. Zn(m) /R1 (without error term)

3. LARGE DEVIATION, m = n − nα, 1 > α > 1/2, nα INTEGER

We have m = n−nα, 1 > α > 1/2, nα integer. We consider m outside of the
central region, i.e.

n− nα ≫ n

L
i.e. α < 1 − 1

L2
.
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We set

ε := nα−1,
1

ε
= n1−α ≪ nα ≪ n.

The multiseries’ scale is here {n1−α, nα, n}.
Our result can be summarized in the following local limit theorem

Theorem 3.2. We have the asymptotic expression

{

n
m

}

= eT1R,

where the exponential term T1 is given by

T1 = nα(T11L + T10),

and the coefficient R is expressed as

R =
1√

2πnα/2

[

R0 +
R1

n
+

R2

n2
+ O(1/n3)

]

, R0 = R00 +
R01

nα
+ O(1/n2α),

R1 = R10 +
R11

nα
+ O(1/n2α), R2 = R20 +

R21

nα
+ O(1/n2α),

Ti,j, Ri,j are power series in ε given in the proof.

Proof. Using again the Lambert’s W function, we derive successively (again we
only provide a few terms here, we use 12 terms in our expansions, this is necessary
if we want a good precision at the end, as we start from a mixture of numerous
different terms)

m = n(1 − ε),
n

m
=

1

1 − ε
,

ρ = 2ε +
4

3
ε2 +

10

9
ε3 + O(ε4),(13)

ln(m) = L− ε− 1

2
ε2 + O(ε3),

ln(ρ) = −L(1 − α) + ln(2) +
2

3
ε +

1

3
ε2 + O(ε3).

For the first part of the Cauchy’s integral, we have, noting that nε = nα, and using
(9),

n!

m!ρn
f(ρ)m = exp(T )H2,

T = m(ρ + ln(ρ) − L) − (−m + ln(m)/2) + (−n + nL + L/2) − n ln(ρ) = T1 + T0,



Asymptotics of the Stirling numbers of the second kind 203

the dominant part T1 is given by

T1 = nα(T11L + T10),

where

T11 = 2 − α and T10 = 1 − ln(2) − 4

3
ε− 5

9
ε2 + O(ε3),

and the O(ε) part T0 is given by

T0 =
1

2
ε +

1

4
ε2 + O(ε3).

The exponential term exp(T0) can itself be expanded:

H1 = exp(T0) = 1 +
1

2
ε +

3

8
ε2 + O(ε3).

The quotient n!/m! leads to an extra term

H2 =
1 +

1

12n
+

1

288n2
+ O(1/n3)

1 +
1

12m
+

1

288m2
+ O(1/m3)

= 1 +
ε

12(ε− 1)n
+

ε2

288(ε − 1)2n2
+ O

(

ε3

n3

)

.

Note again that there are cancellations, in T1 of the terms m ln(m) and ln(2π)/2.

Now we turn to the integral part. We obtain, for instance, using (8),

κ2 = ε +
4

3
ε2 +

13

9
ε3 + O(ε4),

κ3 = O(ε),

θ =
1√
n

∞
∑

1

aiu
i,

a1 =
1√
ε

[

1 − 1

6
ε2 − 1

72
ε4 + O(ε6)

]

.

Again, we choose θ0 such that mκ2θ
2
0

→ ∞,mκ3θ
3
0

→ 0, n → ∞. We choose
here θ0 = 1/n5α/12 and |u| < √

nεθ0 = nα/12. Integrating (the justification of the
integration procedure is given in Appendix 5.2), this gives

H3 =
1√

2πnα/2

[

H31 +
H32

nα
+ O(1/n2α)

]

,

H31 = 1 − 1

6
ε− 1

72
ε2 + O(ε3),

H32 = − 1

12
+

1

72
ε− 71

864
ε2 + O(ε3).
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Now we compute

(14)

{

n
m

}

= eT1H1H2H3 = eT1R,

with multiseries expansions. R is expanded in decreasing powers of n:

R =
1√

2πnα/2

[

R0 +
R1

n
+

R2

n2
+ O(1/n3)

]

.

The coefficients are then expanded in decreasing powers of nα:

R0 = R00 +
R01

nα
+ O(1/n2α),

R1 = R10 +
R11

nα
+ O(1/n2α),

R2 = R20 +
R21

nα
+ O(1/n2α),

and finally, we have expansions in ε:

R00 = 1 +
1

3
ε + O(ε2), R01 = − 1

12
− 1

36
ε + O(ε2),

R10 = − 1

12
ε− 1

9
ε2 + O(ε3), R11 =

1

144
ε +

1

108
ε2 + O(ε3),

R20 =
1

288
ε +

7

864
ε2 + O(ε3), R21 = − 1

3456
ε− 7

10368
ε2 + O(ε3).

Given some desired precision, how many terms must we use in our expansions? It
depends on α. For instance, in T1, n

αεk ≫ 1 if k < α/(1 − α). For instance, if
α = 3/4, we must use all powers εk in T10 such that k < 3. Also εk in R00 is less
than εℓ/n in R10/n if k − ℓ > 1/(1 − α). For instance, if α = 4/6, and if we use
k = 5 in R00, we must use ℓ < 5 − 3 = 2 in R10. Any number of terms can be
computed by almost automatic computer algebra. We use Maple in this paper. �

To check the quality of our asymp-
totic, we have chosen n = 100 and a
range α ∈ [1/2, 9/10], i.e. a range m ∈
[37, 90]. We use 5 or 6 terms in our final
expansions. Figure 4 shows the quotient
{

n
m

}/

(eT1R) (without error terms).

The precision is at least 0.0066. Note
that the range [M − 3σ,M + 3σ], where
the Gaussian approximation is useful, is
here m ∈ [21, 36]. Figure 4.

{n
m

}

eT1R
(without error terms)

We finally mention that our non-central range is not sacred: other types of
ranges can be analyzed with similar methods.
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4. A MORE EXPLICIT MOSER AND WYMAN’S ASYMPTOTIC
ESTIMATE RELATED TO EXPRESSION (3)

Let us recall Moser and Wyman’s two asymptotic approximations . The
first one is of the form (see (2), only first-term for simplicity)

(15)

{

n
n− t

}

∼
(

n

t

)(

n− t

2

)t

,

uniformly when 1 ≤ t = o(
√
n), and is simple and explicit. The second one (see

(3)) is

(16)

{

n
n− t

}

∼ eρ − 1
√

2πρ(n− t)eρ(eρ − 1 − ρ)

n!

(n− t)!
ρ−n(eρ − 1)n−t,

where ρ > 0 solves the Saddle-point equation

(17) 1 − 1 − e−ρ

ρ
=

t

n
=: β,

which can be written in the standard form

(18) ρ = βφ(ρ), where φ(ρ) :=
ρ2

e−ρ − 1 − ρ

Note that β plays here the role of ε in Sec. 3

We focus on the range β = o(1). In this case, we can use Moser and
Wyman’s second approximation (16) to extend the range of t to that considered in
Sec. 3 (t corresponds to nα there). Since β = t/n = o(1), we have, by Lagrange’s
inversion formula,

ρ =
∑

j≥1

cjβ
j , where cj =

1

j
[tj−1]φ(t)j (j ≥ 1),

and the first few terms are given by (see (13))

(19) ρ = 2β +
4

3
β2 +

10

9
β3 +

136

135
β4 +

386

405
β5 +

524

467
β6 + · · ·

With this ρ , we then deduce that
{

n
n− t

}

∼ 1√
2πt

n!

(n− t)!
ρ−n(eρ − 1)n−t,

with an error of the form O(1/t). Consider now

{

n
n− t

}

(

n
t

)(

n− t

2

)t ∼ t!2t√
2πt(n− t)t

ρ−n(eρ − 1)n−t ∼ enF (β),
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where (by Stirling’s formula, (17) and (18))

F (β) = β log β − β + β log 2 − β log(1 − β) − log ρ + (1 − β) log(eρ − 1)

= −(1 − log 2)β + (1 − 2β) log(1 − β) − β logφ(ρ) + (1 − β)ρ.

Now (with c0 := 0)

−β + (1 − 2β) log(1 − β) = −2β +
∑

j≥2

j + 1

j(j − 1)
βj ,

(1 − β)ρ =
∑

j≥1

(cj − cj−1)βj ,

(log 2)β − β logφ(ρ) = −
∑

j≥2

dj−1β
j ,

where, by another application of Lagrange’s inversion formula,

dj :=
1

j
[tj ]φ(t)j (j ≥ 2).

We thus conclude that

F (β) =
∑

j≥2

ajβ
j , where aj =

j + 1

j(j − 1)
+ cj − cj−1 − dj−1 (j ≥ 2).

So we obtain
{

n
n− t

}

(

n
t

)(

n− t

2

)t ∼ exp

(

∑

j≥2

aj
tj

nj−1

)

= exp

(

t2

6n
+

t3

9n2
+

131t4

1620n3
+

5t5

81n4
+ · · ·

)

and we are in the typical situation of moderate deviations. This approximation
holds uniformly when t → ∞ and t = o(n) because we start with (16). But the
restriction that t → ∞ can be dropped due to (15). Also one can use Stirling’s
formula to derive alternative approximations. For example, if t = o(n1/2), then
nF (β) = o(1) and thus

{

n
n− t

}

∼
(

n

t

)(

n− t

2

)t

;

if t = o(n2/3), then

{

n
n− t

}

∼
(

n

t

)(

n− t

2

)t

exp

(

t2

6n

)

;

if t = o(n3/4), then

{

n
n− t

}

∼
(

n

t

)(

n− t

2

)t

exp

(

t2

6n
+

t3

9n2

)

;
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and so on. In general, t = o(nℓ/(ℓ+1)), where ℓ ≥ 1, then

{

n
n− t

}

∼
(

n

t

)(

n− t

2

)t

exp

(

∑

2≤j≤ℓ

aj
tj

nj−1
+ o(1)

)

.

All error terms can be further refined if needed.

If we compare these results with Theorem 3.2, we have the following differ-

ences: here we have a combinatorial term
(

n
t

)

and a power
(

n− t

2

)t

. We think

that Theorem 3.2 is more detailed: it depends explicitly on nα, ε = n1−α and α.

5. APPENDIX. JUSTIFICATION OF THE INTEGRATION
PROCEDURE

5.1. The central region.

Recall that m ∼ n/L, ρ ∼ L, κ2 ∼ L. Set

G(θ) =
n

L
ln
[

eρe
iθ − 1

]

− n ln(ρeiθ).

We must analyze

Re
(

ln[eρe
iθ − 1]

)

− ln [eρ − 1]

=
1

2
ln
[

[

eρ cos(θ) cos(ρ sin(θ)) − 1
]2

+
[

eρ cos(θ) sin(ρ sin(θ))
]2
]

− ln [eρ − 1] =
1

2
ln[h(θ)],

h(θ) =
e2ρ cos(θ) − 2eρ cos(θ) cos(ρ sin(θ)) + 1

e2ρ − 2eρ + 1
.

But h(θ) has a peak at θ = 0. This is proved as follows. Recall that ρ = Ω(1). We
have

h′(θ) = −2ρeρ cos(θ)
[

sin(θ)eρ cos(θ) − sin(θ + ρ sin(θ))
]

.

We divide the interval [0, π] into 4 subintervals:

[0, ε1], [ε1, π/2 − ε2], [π/2 − ε2, π/2 + ε2], [π/2 + ε2, π].

� Choose ε1 small enough such that ρε1 = o(1). For θ ≤ ε1, we have

h′(θ) ∼ −2ρeρ (eρ − 1 − ρ) θ < 0,

and

h′(ε1) ∼ −2ρe2ρε1, |h′(ε1)| = Ω(1).
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� Choose ε2 small enough such that ρε2 = Ω(1). At θ = π/2 − ε2, we have

h′(π/2 − ε2) ∼ −2ρeρε2 [eρε2 + O(1)] ≫ h′(ε1).

For θ ∈ [ε1, π/2− ε2], we can approximate h′(θ) by −2ρ sin(θ)e2ρ cos(θ) which

possesses a minimum at θ∗
1
∼ 1√

2ρ
and

h′(θ∗1) ∼ −
√

2ρe2ρ ≪ h′(ε1).

Finally we have

∫ π/2−ε2

ε1

h′(θ)dθ ≤ −[π/2 − ε2]2ρe2ρε2 =: A say.

� At θ = π/2 + ε2, we have

h′(π/2 + ε2) ∼ −2ρe−ρε2
[

e−ρε2 + O(1)
]

which of course can be positive. Note that

h′(π/2) ∼ −2ρ[1 − sin(π/2 + ρ)] ≤ 0.

For θ ∈ [π/2 − ε2, π/2 + ε2], h′(θ) possesses a positive maximum at π/2 + θ∗
2

that can be computed as follows. We must maximize

−2ρe−ρε
[

e−ρε − 1
]

.

This gives θ∗
2

=
ln(2)

ρ
≪ θ2 and h′(θ∗

2
) ∼ ρ/2. Therefore

∫ π/2+ε2

π/2−ε2

h′(θ)dθ ≤ ρε2 ≪ |A|.

� For θ ∈ [π/2 + ε2, π], we have

h′(θ) ≤ 2ρe−ρε2

and
∫ π

π/2+ε2

h′(θ)dθ ≤ 2ρe−ρε2π/2 ≪ |A|.

So finally h(θ) has a peak at θ = 0.

Note that
1

2
ln[h(θ)] ∼ −1

2
Lθ2 which conforms to (7) with κ2 ∼ L.

So

|Kn| = O
(

exp[−Cnθ20]
)

= O
(

exp[−CL2]
)
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for some C > 0. The tail integral is exponentially small. The tails completion is
immediate.

5.2. The non-central region

Recall that ε = nα−1, m = n(1 − ε), ρ ∼ 2ε. Set

G(θ) = n(1 − ε) ln
[

eρe
iθ − 1

]

− n ln(ρeiθ)

= n(1 − ε) ln
[

ρeiθ + ρ2e2iθ/2 + . . .
]

− n ln(ρeiθ)

= n(1 − ε)
[

ln
[

ρeiθ
]

+ ln
[

1 + ρeiθ/2 + . . .
]]

− n ln(ρeiθ)

= −εn[ln(ρ) + iθ] + n(1 − ε)ρeiθ/2 + O(nρ2e2iθ).

So
Re[G(θ) −G(0)] ∼ nρ[cos(θ) − 1]/2

which is unimodal with peak at 0. Note that nρ[cos(θ) − 1]/2 ∼ −nαθ2/2 which
conformes to (7) with κ2 ∼ ε.

Now
|Kn| = O

(

exp[−Cnαθ2
0
]
)

= O
(

exp[−Cnα/6]
)

for some C > 0. The tail integral is exponentially small. The tails completion is
immediate.

Acknowledgments. The insightful comments of three referees are gratefully
acknowledged.

REFERENCES

1. E.A. Bender: Central and local limit theorems applied to asymptotic enumeration.

J. Combin. Theory Ser. A, 15 (1973), 91–111.

2. W. E. Bleick, P. C. C. Wang: Asymptotics of Stirling numbers of the second kind.

Proc. Amer. Math. Soc., 42 (2) (1974), 575–580.

3. R. Canfield: Central and local limit theorems for the coefficients of polynomials of

binomial type. J. Combin. Theory Ser. A, 23 (3) (1977), 275–290.

4. R. Chelluri, L. B. Richmond, N. M. Temme: Asymptotic estimates for generalized

Stirling numbers. Analysis (Munich), 1 (2000), 1–13.

5. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth:
On the Lambert W function. Adv. Comput. Math., 5(1996), 329–359.

6. P. Flajolet, R. Sedgewick: Analytic Combinatorics. Cambridge University Press,
2009.

7. I. J. Good: Saddle-point methods for the multinomial distribution. Ann. Math.
Statist., 28 (4) (1957), 861–881.

8. I. J. Good: An asymptotic formula for the differences of the powers at zero. Ann.
Math. Statist., 32 (1) (1961), 249–256.

9. L.H. Harper: Stirling behaviour is asymptotically normal. Ann. Math. Statist., 38
(1967), 410–414.



210 G. Louchard

10. L.C. Hsu: Note on an asymptotic expansion of the nth difference of zero. Ann. Math.
Statist., 19 (1948), 273–277.

11. Leetsch. C. Hsu, P. J. S. Shiue: A unified approach to generalized Stirling numbers.

Adv. Appl. Math., 20 (1998), 366–384.

12. H. K. Hwang: On convergence rates in the central limit theorems for combinatorial

structures. European J. Combin., 19 (1998), 329–343.

13. G. Louchard: Asymptotics of the Stirling numbers of the first kind revisited: A

saddle point approach. Discrete Math. Theor. Comput. Sci., 18 (2) (2010), 167–184.

14. L. Moser, M. Wyman: Stirling numbers of the second kind. Duke Math. J., 25
(1958), 29–48.

15. R. Pemantle, M. C. Wilson: Asymptotics of multivariate sequences, part I:
Smooths points of the singular variety. J. Combin. Theory, Ser. A, 97 (1) (2002),
129–161.

16. R. Pemantle, M. C. Wilson: Twenty combinatorial examples of asymptotics de-

rived from multivariate generating functions. SIAM Rev., 50 (2) (2008), 199–272.

17. A. Raichev, M. C. Wilson: A new approach to asymptotics of Maclaurin coefficients

of algebraic functions. Technical Report 322, Centre for Discrete Mathematics and
Theoretical Computer Science, 2008.

18. V. N. Sachkov: Probabilistic Methods in Combinatorial Analysis. Cambridge Uni-
versity Press, 1997. Translated and adapted from the Russian original edition,
Nauka,1978.

19. B. Salvy, J. Shackell: Symbolic asymptotics: Multiseries of inverse functions. J.
Symbolic Comput., 20 (6) (1999), 543–563.

20. N. M. Temme: Asymptotic estimates of Stirling numbers. Stud. Appl. Math., 89
(1993), 233–243.

21. E. G. Tsylova: Probabilistic methods for obtaining asymptotic formulas for gener-

alized Stirling numbers. J. Math. Sci., 75 (2) (1995), 1607–1614.
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Département d’Informatique, (Revised June 11, 2013)
CP 212, Boulevard du Triomphe, B-1050 Bruxelles
Belgium

E-mail: louchard@ulb.ac.be


