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BIJECTIVE PROOFS OF JENSEN’S AND

MOHANTY-HANDA’S IDENTITIES

Nicholas A. Loehr, R. Daniel Mauldin

This article provides bijective proofs of Jensen’s identity and a multivariate
generalization called Mohanty-Handa’s identity. Our proofs employ suitable
combinatorial operations on lattice paths.

1. INTRODUCTION

Jensen’s identity [6], also called Jensen’s convolution, is the formula

(1)

n∑

m=0

(
x+mz

m

)(
y −mz

n−m

)
=

n∑

k=0

(
x+ y − k

n− k

)
zk,

which holds for all n ∈ N and all formal indeterminates x, y, z. This formula has a
multivariate generalization called Mohanty-Handa’s identity [9], which is stated in
equation (3) below. The main purpose of this paper is to provide bijective proofs
of these identities based on lattice path models. Fairly simple (but non-bijective)
proofs of these formulas have been given in [4]. Bijective proofs of some related
identities are given by Guo in [5]. However, to the knowledge of the authors,
no bijective proof of Mohanty-Handa’s identity has previously appeared in the
literature.

Before continuing, we would like to provide some context indicating how
Jensen’s identity (and its relatives) appear in certain parts of probability. Specif-
ically, the identity is useful in the study of Dirichlet distributions, which arise in
Bayesian statistics and in Pólya urn schemes [1, 8]. We recall how these distri-
butions are defined. Let m ≥ 2 and α = (α1, α2, . . . , αm) be a real vector with
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each αi > 0. A random vector (X1, . . . , Xm−1) has a Dirichlet distribution with

parameter α provided it has a density function f
(
(x1, . . . , xm−1)|α

)
supported on

the simplex S =
{
(x1, . . . , xm−1) : xi ≥ 0 for all i, and

m−1∑

i=1

xi ≤ 1
}
given by

f
(
(x1, . . . , xm−1)|α

)
= c(α)

(m−1∏

i=1

xαi−1

i

)(
1−

m−1∑

i=1

xi

)αm−1

.

The normalizing factor is given by

c(α) =

Γ
( m∑

i=1

αi

)

m∏

i=1

Γ(αi)

.

In other words,

∫

S
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1
· · ·x
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dx1 · · · dxm−1 =
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Γ(αi)

Γ
( m∑

i=1

αi

) .

For a given positive integer n, if we multiply the integrand by 1 expressed as

1 =
∑

n1+···+nm=n

(
n

n1, . . . , nm

)
xn1

1
. . . x

nm−1

m−1

(
1−

m−1∑

j=1

xj

)nm

,

integrate term by term, and use the preceding formula, we obtain the identity

∑

n1+···+nm=n

(
n

n1, . . . , nm

)
m∏

i=1

Γ(αi + ni)

Γ
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i=1

(αi + ni)
) =
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i=1

Γ(αi)

Γ
( m∑

i=1

αi

) .

One can also prove this identity in the case m = 2 by an application of
Jensen’s identity and its relatives. The case m > 2 can be established with the
multivariate version of Jensen’s identity that we study here.

Turning to the proof of Jensen’s identity, it will suffice to prove (1) for posi-
tive integers x, y, z, since both sides of the identity are polynomials in these three
variables. In fact, it is enough to prove it for all x, y, z ∈ N

+ such that y ≥ nz. To
gain intuition, we first prove the special cases of the identity where z = 0, z = 1,
or z = 2.



Bijective proofs of Jensen’s and Mohanty-Handa’s identities 13

2. PROOF FOR z = 0

The z = 0 case of Jensen’s identity is the Chu-Vandermonde convolution [2,
10]:

n∑

m=0

(
x

m

)(
y

n−m

)
=

(
x+ y

n

)
.

To introduce our method we prove this using the lattice path model for binomial
coefficients, as follows. Given integers a ≤ c and b ≤ d, a lattice path from (a, b) to
(c, d) is a succession of unit-length north steps and east steps that start at (a, b) and
end at (c, d). By representing each north step as a 1 and each east step as a 0, we
can conveniently encode a lattice path as a word of length (c+d)−(a+b) consisting
of c − a zeroes and d − b ones. Using this encoding, it is clear that the number

of lattice paths from (a, b) to (c, d) is
(
(c+ d)− (a+ b)

c− a

)
=

(
(c+ d)− (a+ b)

d− b

)
=

(
(c+ d)− (a+ b)

c− a, d− b

)
. It follows that the left side of the identity counts lattice paths

that first take x steps from (0, 0) to (x−m,m) (for some m between 0 and n) and
then take y steps from (x−m,m) to (x+y−n, n). But these are exactly the lattice
paths from (0, 0) to (x + y − n, n). We see that the left side is classifying these
lattice paths based on where they intersect the line X + Y = x (see Figure 1).

Figure 1. Proof of Jensen’s identity when z = 0

3. PROOF FOR z = 1

The z = 1 case of Jensen’s identity says

(2)

n∑

m=0

(
x+m

m

)(
y −m

n−m

)
=

n∑

k=0

(
x+ y − k

n− k

)
.

The left side counts all triples (m,P1, P2), where 0 ≤ m ≤ n, P1 is a lattice path
from (0, 0) to (x,m), and P2 is a lattice path from (x,m) to (x + y − n, n). By
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concatenating the paths P1 and P2, we can identify such a triple with a single
lattice path P from (0, 0) to (x + y − n, n) with one marked lattice point on the
vertical line X = x. The marker indicates where P1 ends and P2 begins. Let A
denote the set of all such paths.

The right side of (2) counts the
set B of all lattice paths Q from (0, 0)
to (x+ y− n, n− k), for some choice of
k between 0 and n. To prove (2), it suf-
fices to exhibit a bijection f : A → B.
Given a marked path P ∈ A, suppose
that P takes k unit-length vertical steps
on the line X = x before reaching the
marker. Erase these k steps to obtain
Q = f(P ) ∈ B. The inverse of f acts
on any Q ∈ B as follows. Since n is
fixed and known, we recover k by not-
ing the final y-coordinate n − k of the
path Q. To obtain P = f−1(Q) ∈ A,
follow the path Q until it first reaches
the line X = x. Splice in k new vertical
steps here, and mark the next vertex on
the path. See Figure 2.

Figure 2. Proof of Jensen’s identity when

z = 1

4. COMBINATORIAL INTERPRETATION FOR z ≥ 2

Now we study the case where z ≥ 2 is an integer. The first step is to give com-

binatorial interpretations of both sides of (1). The left side
n∑

m=0

(
x+mz

m

)(
y −mz
n−m

)

counts triples (m,P1, P2), where 0 ≤ m ≤ n, P1 is a lattice path from (0, 0) to
(x+mz −m,m), and P2 is a lattice path from (x+mz −m,m) to (x+ y − n, n).
As in the case z = 1, we can identify such a triple with a single marked lattice
path P from (0, 0) to (x + y − n, n), where the marked vertex is required to be a
lattice point (i.e., a point with integer coordinates) lying on the line ℓ with equa-

tion Y =
1

z − 1
(X − x). See Figure 3 for an illustration in the case z = 3. Let A

be the set of all such marked paths. Our previous restriction to parameter values
satisfying y ≥ nz ensures that all lattice paths from (0, 0) to (x + y − n, n) must
touch ℓ at one or more lattice points.

Now we describe a set of objects counted by the right side
n∑

k=0

(
x+ y − k
n− k

)
zk

of (1). Let B be the set of triples (k,Q, a1a2 · · ·ak), where 0 ≤ k ≤ n, Q is a
lattice path from (0, 0) to (x + y − n, n − k), and 0 ≤ ai < z for 1 ≤ i ≤ k. To
prove Jensen’s identity, we need to construct a bijection f : A → B. The basic
idea for how f works is the following. Given P ∈ A, suppose P ∩ ℓ contains k
lattice points that precede the marked lattice point on P. Then f(P ) will be some
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triple (k,Q, a1 · · ·ak) where Q is a lattice path with k fewer vertical steps than

Figure 3. Combinatorial interpretation of the left side of Jensen’s identity.

P. The information recorded in the word a1 · · · ak must allow us to reconstruct P
from k and Q. Intuitively, we will remove one vertical step from P between each
pair of consecutive visits to ℓ before the marker (although other changes will occur
as well), and we will also record a value ai to help us reverse the changes to this
portion of P. The precise details of this process are rather intricate, so we begin by
considering the somewhat simpler case z = 2.

5. PROOF FOR z = 2

Keep the notation of the previous section. For any lattice points (a, b) and
(c, d), we say that (a, b) lies weakly below (c, d), and (c, d) lies weakly above (a, b),
iff b ≤ d. Given P ∈ A, we describe how to compute f(P ) ∈ B assuming z = 2
and y ≥ 2n. Let the lattice points in P ∩ ℓ lying weakly below the marked point
be v0, v1, . . . , vk, ordered by increasing y-coordinate (note 0 ≤ k ≤ n). Dissect the
path P into the concatenation of paths P0, P1, . . . , Pk, R, where P0 goes from (0, 0)
to v0, Pi goes from vi−1 to vi for 1 ≤ i ≤ k, and R goes from the marked point vk
to (x+ y − n, n). As in §2, we identify lattice paths with sequences of ones (north
steps) and zeroes (east steps). Define modified paths P ′

1
, . . . , P ′

k as follows. If Pi

begins with a 1, erase this 1 to obtain P ′
i and set ai = 1. If Pi begins with a 0,

obtain P ′
i by replacing every step s in Pi by 1−s (i.e., interchange the roles of north

steps and east steps) and then erasing the initial 1; also set ai = 0. Then define
f(P ) = (k,Q, a1a2 · · · ak) where Q is the concatenation of P0, P

′
1
, P ′

2
, . . . , P ′

k, R.

For example, suppose x = 2, y = 20, z = 2, n = 9, and P is the path shown
in Figure 4. Then k = 4, P0 = 00, P1 = 110100, P2 = 01, P3 = 0011, P4 = 10, and
R = 110000. We calculate P ′

1 = 10100, P ′
2 = 0, P ′

3 = 100, P ′
4 = 0, and hence

f(P ) = (4, 00 10100 0 100 0 110000, 1001).

In the example, note that for 0 ≤ i ≤ k, the prefix P0P
′
1 · · ·P

′
i of Q ends at
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the first lattice point on Q that touches the line Y = X − x − i. It is routine to
check using the definition of f
that this property holds in general.
This provides the key to defining
a function g : B → A that will
be the two-sided inverse of f. Fix
(k,Q, a1 · · · ak) ∈ B. Factor Q
into the concatenation of paths
Q0, Q1, · · · , Qk, R, where Q0 starts
at (0, 0), and each Qi (for 0 ≤ i ≤ k)
ends at the first lattice point on
Q and on the line Y = X − x − i.
Our assumptions on x, y, z, n (na-
mely, z = 2, x, y, n ∈ N

+, and
y ≥ 2n) guarantee that such lattice
points do exist. For 1 ≤ i ≤ k, let

Figure 4. A marked path in A when z = 2.

Q′
i = aiQi if ai = 1. If ai = 0, form Q′

i by interchanging all 0’s and 1’s in Qi and
then adding a new zero to the beginning. Set

g(k,Q, a1 · · · ak) = Q0Q
′
1Q

′
2 · · ·Q

′
k
∗R,

where the asterisk indicates the position of the marker. It is not difficult to verify
that f ◦ g = idB and g ◦ f = idA, so that f and g are both bijections.

As an example of the map g, take x = 2, y = 20, z = 2, and n = 9 as before.
Suppose k = 4, Q = 100011000011000000, and a1 · · ·a4 = 0101. We calculate
Q0 = 1000, Q1 = 11000, Q2 = 0, Q3 = 11000, Q4 = 0, R = 00, and hence

g(k,Q, a1a2a3a4) = 1000 000111 10 000111 10∗00.

6. BIJECTIVE PROOF FOR z ≥ 2

In the definition of the map f for z = 2, the passage from Pi to P ′
i when Pi

starts with an east step amounts to reflecting the path Pi through the line ℓ and then
deleting the first step. When we try to generalize the map to z > 2, reflection no
longer has the correct effect on the path dimensions. However, rotational symmetry
is still present, and this will lead to a map with the required properties. A similar
idea was used in [3] and [7], which discuss a generalization of “André’s reflection
principle.”

We are now ready to define the map f : A → B for z ≥ 2. (When z = 2, this
will be a different map from the one discussed in the previous section.) As before,
given P ∈ A, let v0, v1, . . . , vk be the lattice points in P ∩ ℓ lying weakly below the
marked point, ordered by increasing y-coordinate. We write P as the concatenation
of paths P0, P1, . . . , Pk, R, where P0 goes from (0, 0) to v0, Pi goes from vi−1 to vi
for 1 ≤ i ≤ k, and R goes from the marked point vk to (x+ y − n, n).

Define the level of any lattice point (a, b) to be lv(a, b) = (z−1)b−a+x. Note
that points on ℓ have level zero; taking one north step increases the level by z−1; and
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Figure 5. A marked path in A when z = 3.

taking one east step decreases the level by 1. For 1 ≤ i ≤ k, we transform Pi into a
new path P ′

i as follows. Look for a lattice point (a, b) 6= vi on Pi such that lv(a, b)
is ≤ 0 and the level of the next point on Pi is some value j ≥ 0. Such a lattice point
must exist, since Pi is a lattice path of positive length that begins and ends at level
zero. Since levels decrease by at most one at every step, the lattice point (a, b) is
unique (as vi is the only point following (a, b) on Pi that can have a non-positive
label). Note that the next point after (a, b) must be (a, b+ 1) in this situation. To
obtain P ′

i from Pi, take the reversal of the steps leading from vi−1 to (a, b), followed
by the steps leading from (a, b + 1) to vi. Set ai = j (noting 0 ≤ j < z), and let Q
be the concatenation of P0, P

′
1, . . . , P

′
k, R. Finally, let f(P ) = (k,Q, a1 · · · ak).

For example, suppose x = 6, y = 34, n = 10, z = 3, and the path P is

100000010000011000000010111000101000∗0000,

as shown in Figure 5. Here k = 3, P0 = 100000010000, P1 = 011000, P2 =
000010111000, P3 = 101000, and R = 0000. Between every two consecutive visits
to ℓ before the marker, we look for the first north step that goes from a point
weakly below ℓ to a point weakly above ℓ. (A point (a, b) is weakly below a line
y = cx + d iff b ≤ ca + d; similarly, (a, b) is weakly above this line iff b ≥ ca + d.)
See the thick north steps in the figure, where the label of the point at the end of
each such step is also shown. We compute P ′

1
= 01000, a1 = 1, P ′

2
= 10100001000,

a2 = 1, P ′
3 = 01000, a3 = 2, and finally

f(P ) = (3, P0P
′
1P

′
2P

′
3R, 112).

Before describing the inverse map g : B → A, let us discuss how we may
recover Pi from P ′

i and ai. Recall that Pi goes from level zero through strictly
negative levels to the point (a, b) at level ai − (z − 1) ∈ {0,−1, . . . ,−(z − 1)}, then
takes a “critical north step” to level ai, and then returns to level zero through
strictly positive levels. Suppose momentarily that P ′

i (as defined above) starts at
level zero. Write u = |ai − (z − 1)| for convenience. Let the levels visited by Pi

before the critical north step be l0 = 0, l1, l2, . . . , ls = −u. One readily verifies that
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the levels first visited by P ′
i are −u− ls = 0,−u− ls−1, . . . ,−u− l1,−u− l0 = −u. In

particular, we can recover the location of the deleted north step by finding the first
point visited by P ′

i with label −u. In Q = f(P ), P ′
1 does start at level zero. But

because a north step was deleted in the passage from P1 to P ′
1
, P ′

2
starts at level

−(z − 1). Similarly, P ′
i starts at level −(i− 1)(z − 1) in Q. So the prescription for

finding the location of the deleted north step in P ′
i must be modified accordingly.

Here is an algorithm for computing P = g(k,Q, a1 · · · ak). Follow the path Q
from (0, 0) until it first touches ℓ at a lattice point v0. If k = 0, mark this vertex
and continue along Q to complete the path P. If k > 0, scan ahead from v0 to the
first lattice point at level a1 − (z − 1); reverse the part of Q from v0 to this point;
splice in a new north step; and continue following Q until the next visit to a lattice
point v1 on ℓ. (Note that v1 does not lie on ℓ until after the new north step is
inserted.) Continue scanning in this way until a1, . . . , ak have all been used; then
mark the current point on ℓ and copy the rest of Q to complete the path P. Using
the comments in the previous paragraph, it is not difficult to verify that g reverses
the action of f. So f and g are both bijections, completing the proof of Jensen’s
identity.

For example, take (x, y, z, n) = (6, 34, 3, 10), k = 3,

Q = 1000000100000100010100001000010000000,

and a1a2a3 = 201. We find that g(k,Q, 201) is

P = 100000010000101000000100001011011000∗0000,

where the new north steps have been underlined.

7. PROOF OF MOHANTY-HANDA’S IDENTITY

This section generalizes the preceding proof of Jensen’s identity to a bi-
jective proof of a multivariable generalization of this identity due to Mohanty
and Handa [9]. To state the identity, we need some notation. Fix d ∈ N

+

and n = (n1, . . . , nd) ∈ N
d. Let x, y, z1, . . . , zd be formal indeterminates, and let

z = (z1, . . . , zd). Boldface summation variables m and k will range over values in
N

d. For k = (k1, . . . , kd), write |k| = k1 + · · · + kd. For any formal polynomial u,
we use the notation

(
u

m

)
=

u(u− 1)(u − 2) · · · (u− |m|+ 1)

m1!m2! · · ·md!
,

which reduces to a multinomial coefficient when u is a sufficiently large positive

integer. Write zk = zk1

1
· · · zkd

d . A summation symbol
n∑

m=0

means we should sum

over all m ∈ N
d with 0 ≤ mi ≤ ni for 1 ≤ i ≤ d. Finally, we use the usual notation

for vector addition, vector subtraction, and the dot product of two vectors. The
Mohanty-Handa identity states that for all x, y, d, z,n as above,

(3)

n∑

m=0

(
x+m • z

m

)(
y −m • z

n−m

)
=

n∑

k=0

(
x+ y − |k|

n− k

)(
|k|

k

)
zk.
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This reduces to Jensen’s identity (1) when d = 1. It suffices to prove the result
assuming x, y, and every zi is a positive integer; we can even assume that all zi ≥ 2
and that y is “large.”

Our proof follows the same steps used to prove (1). The left side of (3)
counts a certain set of marked lattice paths in (d+1)-dimensional Euclidean space,
as follows. Let the coordinates for this space be denoted by X0, X1, . . . , Xd (in the
d = 1 case, we took X0 = X and X1 = Y ). A lattice path from (0, 0, . . . , 0) to
(x + y − |n|, n1, n2, . . . , nd) can be encoded by a word w consisting of x + y − |n|
zeroes, n1 ones, etc., where the letter i encodes a unit-length step parallel to the Xi-

axis. For a fixed m, the multinomial coefficient
(
x+m • z

m

)
counts paths from the

origin to (x0,m1,m2, . . . ,md), where x0 must satisfy x0+m1+ · · ·+md = x+m•z;

i.e., x0 − x = m1(z1 − 1) + · · · +md(zd − 1). Then
(
y −m • z
n−m

)
counts paths from

this point to (x + y − |n|, n1, . . . , nd). Let H denote the hyperplane in R
d+1 with

equation

X0 − x = X1(z1 − 1) +X2(z2 − 1) + · · ·+Xd(zd − 1).

The preceding remarks show that the left side of (3) counts lattice paths P in R
d+1

from the origin to (x+ y− |n|, n1, . . . , nd) that touch H at a lattice point and have
one lattice point in H ∩ P marked. Let A be the set of such marked paths. We
assume that y is so large that every path P ending at the indicated point must
touch the hyperplane H.

The right side of (3) counts objects of the form (k, Q, w0, w1, . . . , wd), where:
k ∈ N

d and 0 ≤ ki ≤ ni for 1 ≤ i ≤ d; Q is a lattice path from 0 to (x+y−|n|, n1−
k1, . . . , nd − kd); w0 is a word consisting of k1 ones, k2 twos, . . . , kd d’s; and for
1 ≤ i ≤ d, wi is a word of length ki using letters in {0, 1, . . . , zi − 1}. Let B be the
set of such objects; our task is to define mutually inverse functions f : A → B and
g : B → A.

To define f, fix a marked path P ∈ A. Let v0, v1, . . . , vk be the lattice points
in P ∩ H up to and including the marked point, indexed in the order in which
they are encountered along P. Dissect P into subpaths P0, P1, . . . , Pk, R, where P0

goes from the origin to v0, Pi goes from vi−1 to vi for 1 ≤ i ≤ k, and R goes
from the marked point vk to (x+ y− |n|, n1, . . . , nd). We describe how to compute
f(P ) = (k, Q, w0, w1, . . . , wd). Initialize k to 0 and all words wj to be the empty
word. The path Q will be the concatenation of certain paths P0, P

′
1, . . . , P

′
k, R.

Define the level of (x0, x1, . . . , xd) to be (z1− 1)x1 + · · ·+(zd− 1)xd−x0+x. Note
that lattice points on H have level zero; taking a step in the positive Xi-direction
(for i > 0) increases the level by zi−1; and taking a step in the positiveX0-direction
decreases the level by 1. Consider a subpath Pj , which is a positive-length lattice
path that starts and ends at level 0 with no other visits to level 0. As in the d = 1
case, we see that there exists a unique step s in Pj that goes from some level ≤ 0
to some level ≥ 0. We view the step s as an integer in {1, 2, . . . , d} as explained
earlier. Process Pi as follows: increment ks by 1; form P ′

i by taking the part of
Pi preceding s in reverse, then taking the part of Pi following s in the forward
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direction; append the letter s to the word w0; and append the level of the vertex
at the end of step s (which lies in {0, 1, . . . , zs − 1}) to the word ws. It is routine
to check that this algorithm will produce an object f(P ) ∈ B.

Intuitively, the word w0 remembers which type of step was deleted between
each pair of visits to H, and the words w1, . . . , wd enable us to recover Pj from P ′

j

as in the d = 1 case. Here is a formal description of the inverse map g : B → A.
Start with (k, Q, w0, w1, . . . , wd) ∈ B, and build the path P as follows. Follow Q
until it hits H. Repeatedly do the following until k becomes zero and all letters in
the words wj are consumed. Let v ∈ H be the current position on Q. Let s be
the next unused letter in w0, and let ℓ be the next unused letter in ws. Decrement
ks by 1. Scan ahead from v to the first lattice point at level ℓ − (zs − 1); reverse
the part of Q from v to this point; splice in a new step in the Xs-direction; and
continue following the newly modified path Q until hitting the next lattice point on
H. When k reaches zero and all words have been used up, mark the current vertex
and copy the rest of Q to complete the path P. One may check that this algorithm
produces a marked path in A, and that f ◦ g = idB, g ◦ f = idA . This completes
the proof.

Pseudocode implementing the algorithms defining f and g appears in the
appendix following Section 8.

8. PROOF FOR NEGATIVE z

This section provides another bijective proof of Jensen’s identity

n∑

m=0

(
x+mz

m

)(
y −mz

n−m

)
=

n∑

k=0

(
x+ y − k

n− k

)
zk

in which we verify the identity for all negative integers z. It suffices to prove the
result under the additional assumptions that x, y, n are positive integers satisfying
x ≥ n|z|. This second proof is in some ways simpler than the bijection given earlier,
but we must now use signed objects.

Let ℓ be the line X − x = Y (z − 1) with slope 1/(z − 1). As before, the left
side of the identity counts the set A of all lattice paths from (0, 0) to (x+ y−n, n)
that have one lattice point on the line ℓ marked. Since the slope of the line is now
negative, every lattice path from (0, 0) to (x+ y− n, n) must intersect ℓ in exactly
one point (this uses the assumption x ≥ n|z|). However, this intersection point may
not be a lattice point with integer coordinates. See Figure 6 for examples in the
case z = −2. Since the intersection point is unique, we can forget the marker and
say that A is the set of all lattice paths from (0, 0) to (x+ y − n, n) that intersect
the line ℓ at a lattice point.

The right side of Jensen’s identity now counts signed objects (k, P, a1 · · · ak)
where 0 ≤ k ≤ n, P is a lattice path from (0, 0) to (x + y − n, n − k), each
ai ∈ {1, 2, . . . , |z|}, and the sign of the indicated object is (−1)k. Let B be the
set of such signed objects. To complete the proof, we will define a sign-reversing
involution I : B → B whose fixed points are in bijective correspondence with the
paths in A.
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Figure 6. Sample paths for z = −2 (only the top path is in A).

As before, we need to label the lattice points on the lattice paths under
consideration. We define the labeling so that lattice points on ℓ have label zero;
taking one unit-length east step decreases the label by 1; and taking one unit-length
north step causes the label to change by z− 1 ≤ −2. It follows that (0, 0) has label
x ≥ n|z|, and labels strictly decrease as we traverse the path starting at (0, 0).
Since paths ending at (x + y − n, n) take x + y total steps, we see that each such
path does cross the line ℓ.

First we describe the fixed points of the map I. By definition, these are objects
(k, P, a1 · · · ak) in B such that k = 0 and P has a vertex labeled zero. Here a1 · · · ak
is the empty word, and the vertex labeled zero is a lattice point that lies on both
P and ℓ. It follows that these fixed points can be identified with the lattice paths
in A.

Now consider a general object u = (k, P, a1 · · ·ak) ∈ B. The path P either
does or does not have a vertex with label a1 + · · ·+ ak.

Case 1: The label a1+ · · ·+ak does not appear in P. Note that 0 ≤ a1+ · · ·+
ak ≤ k|z| ≤ n|z|, the path starts at a point labeled n|z|, and the path ends at a non-
positive label. Keeping in mind the definition of the labeling, we see that the only
way case 1 occurs is if P takes a north step that “jumps over” the label a1+ · · ·+ak
(cf. Figure 6). More precisely, there must exist a unique ak+1 ∈ {1, 2, . . . , |z|} such
that the label a1 + · · · + ak + ak+1 does appear in P and is followed immediately
by a north step that causes the level to drop by |z − 1|. Let Q be obtained from P
by deleting this north step. Define I(u) = (k + 1, Q, a1 · · · ak+1). One checks that
I(u) ∈ B and has the opposite sign as u. In particular, if k = n, then Case 1 cannot
occur since P cannot have any north steps.

Case 2: The label a1 + · · · + ak does appear in P and k > 0. Create a
path Q by splicing a north step into P just after this label, and define I(u) =
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(k−1, Q, a1 · · · ak−1). Since the new north step ends at label a1+ · · ·+ak−|z−1| <
a1+ · · ·+ak−1, we see that the label a1+ · · ·+ak−1 does not appear in Q. It is now
routine to verify that I(u) ∈ B in this case, and that I(I(u)) = u in both cases.
Note that if k = 0 and 0 does appear in P, case 2 does not apply because u is a
fixed point of I.

The involution I pairs off all negative objects in B with some of the positive
objects, leaving a set of fixed points in bijection with A. Thus, the second proof of
Jensen’s identity is complete.

APPENDIX. PSEUDOCODE FOR THE MAPS f AND g.

The following pseudocode (which uses the syntax of the C programming lan-
guage) implements the bijections f : A → B and g : B → A described in §7.

#define MAXd 10

#define MAX 100

int d,x,y,z[MAX],n[MAX]; // global; code assumes z[0]=0 and z[i]>1 for i>0.

typedef struct{ int P[MAX],marker; } Aobj; /* object in the set A */

/* Variable "marker" tells us how many steps on P precede the marker. */

typedef struct{ int k[MAXd],Q[MAX],w[MAXd][MAX]; } Bobj; /* object in B */

Bobj f(Aobj in)

{

int Qlen,wlen[MAXd],lv[MAX],i,j,r,s;

Bobj out;

for (i=1; i<=d; i++) out.k[i]=wlen[i]=0;

Qlen=wlen[0]=0;

lv[0]=x; for (i=1; i<=x+y; i++) lv[i]=lv[i-1]+z[in.P[i]]-1;

/* lv[j] is the level of the lattice point on P after j steps of P. */

i=0;

while (lv[i]!=0)

{ i++; Qlen++; out.Q[Qlen]=in.P[i]; } // Copy P0 to Q.

while (i<in.marker) // lv[i]==0 as each loop iteration starts.

{ j=i; while (lv[j+1]<0) j++;

// next critical step is step j+1 of P.

s=in.P[j+1]; out.k[s]++; wlen[0]++; out.w[0][wlen[0]]=s;

wlen[s]++; out.w[s][wlen[s]]=lv[j+1];

for (r=j; r>i; r--) { Qlen++; out.Q[Qlen]=in.P[r]; } // reversed part

i=j+1; // skip critical step

while (lv[i]!=0)

{ i++; Qlen++; out.Q[Qlen]=in.P[i]; } // copy rest of P_i to Q.

}

while (i<x+y) // we’ve hit marker, so copy R to Q.

{ i++; Qlen++; out.Q[Qlen]=in.P[i]; }

return out;
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}

Aobj g(Bobj in)

{

int Qlen,wlen[MAXd],wpos[MAXd],lv[MAX],i,j,r,s,ell,ksum;

Aobj out;

for (i=0; i<=d; i++) wpos[i]=0; // current positions in w0,w1,...,wd

ksum=0; for (i=1; i<=d; i++) ksum+=in.k[i];

lv[0]=x; for (i=1; i<=x+y-ksum; i++) lv[i]=lv[i-1]+z[in.Q[i]]-1;

/* compute initial levels of lattice points on Q. */

i=0;

while (lv[i]!=0) /* copy Q to P until first hitting H */

{ i++; out.P[i]=in.Q[i]; }

while (ksum>0)

{ wpos[0]++; s=in.w[0][wpos[0]]; /* s is next unused letter in w0 */

wpos[s]++; ell=in.w[s][wpos[s]]; /* ell is next unused letter in ws */

ksum--;

j=i; while (lv[j]!=(ell-(z[s]-1))) j++;

for (r=j; r>i; r--) { out.P[i+1+j-r]=in.Q[r]; } // reversal

for (r=x+y-ksum; r>j; r--)

{ in.Q[r]=in.Q[r-1]; lv[r]=lv[r-1]+z[s]-1; }

in.Q[j+1]=out.P[j+1]=s; // splice in new step to P and to Q

i=j+1;

while (lv[i]!=0) /* find next visit to H */

{ i++; out.P[i]=in.Q[i]; }

}

out.marker=i; // mark current visit to H

while (i<x+y) // copy rest of Q to P to finish

{ i++; out.P[i]=in.Q[i]; }

return out;

}
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