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ABSTRACT 

The present research intended to propose and evaluate regression models which estimate toughness property as a function 

of physical, chemical properties of thermally modified hardwood and thermal treatment temperature, using linear, quad-

ratic, cubic, exponential, logarithmic, geometric and multiple linear models. Commercial thermally modified woods were 

used on the study, being characterized for all referred properties, totalizing 450 experimental determinations. The ana-

lyzed models presented a low and moderate coefficient of determination, indicating the impossibility to use such models 

in the estimation of toughness as a function of physical and chemical factors 

Keywords: Thermal modified wood. Hardwoods. Chemical properties. Physical properties. Regression models 

1. INTRODUCTION 

An alternative to chemical preserved wood, using creosote, CCA or CCB, is to adopt thermally modified 

wood on civil construction, industry and furniture, being a cleaner option, increasing wood capacity to face 

biological attacks and severe weathering conditions [1-4]. 

The process of thermal modification consists on heat wood on vacuum, steam or oil on temperatures 

that vary from 150°C to 280°C, which lead to a change on wood constituents, such cellulose, hemicellulose, 

lignin and extractives, and wood anatomy for a controlled time, increasing wood dimensional stability, di-

minishing  hygroscopicity, shrinkage and permeability [1, 5-7]. Otherwise, proportionally with thermal 

treatment temperature increase, mechanical properties decrease due degradation of cellulose and hemicellu-

lose [8-10]. 

On commercial purposes, several methods are available for wood thermal treatment, like Le Bois Per-

dure
®
, Plato Wood

®
, Reti Wood

®
 and ThermoWood

®
 [6, 11-14]. The most utilized method on market, Ther-

moWood
®
, is divided in three phases: dry and heat the wood until 130°C, then the thermal modification, ele-

vating the temperature from 180°C until 200°C and cool and stabilize wood, controlling humidity content 

[14-17]. 

On the literature, several researches had already studied about Eucalyptus grandis, studying the influ-

ence of thermal treatment on physical, chemical, mechanical and anatomical properties [18-25]. For Indian 

Cedar (Acrocarpus fraxinifolius) and Australian Cedar (Toona ciliata var. australis), few researches are avail-

able, evaluating their use on particleboards, indicating the possibility on commercial purpose on civil con-

struction, industry an furniture [26-30]. 

One form to possibility and encourage to use thermally treated hardwoods is to use models to estimate 

physical, chemical and mechanical properties as a function of thermal treatment temperature. It is consolidat-

ed on the literature that thermal treatment temperature interferes on wood properties, being possible to corre-

late the increase of temperature with raise or reduction of wood properties [23, 31-35]. Such generalization of 
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models for hardwoods is possible due the similarity of wood anatomy and constituents on this wood class 

[36–38]. Also, for different temperatures which tests were not performed, is possible to estimate such proper-

ties with precision, respecting model limiting, such density and temperature range. 

The only research using regression models to estimate physical, chemical and mechanical properties 

as a function of thermal treatment temperature was performed by KACIKOVÁ et al. [31]. The authors sub-

mitted Norway spruce wood specimens to temperatures up to 270°C for 30 minutes. Several chemical, physi-

cal and mechanical properties were evaluated and exponential models were used to estimate such properties 

as a function of thermal treatment temperature, ranging from 20°C and 237°C. The models presented elevat-

ed precision, with coefficient of determination varying from 75% to 99%. 

In order to propose and analyze models to estimate toughness property as a function of thermal treat-

ment temperature, apparent density, extractives content, lignin content, holocellulose content on thermally 

treated hardwoods, the present research evaluated three wood species thermally treated (Eucalyptus grandis, 

Acrocarpus fraxinifolius and Toona ciliata var. australis) on industry considering four different temperatures 

(155°C, 165°C, 175°C and 185°C) and reference temperature (20°C). 

 

2. MATERIALS AND METHODS 

The logs of Eucalyptus grandis, Indian Cedar (Acrocarpus fraxinifolius) and Australian cedar (Toona ciliata 

M. Roem var. australis), used in the present research were provided by planted industry, located in Ribeirão 

Branco, São Paulo, Brazil, and the average age of logs was 9 years old. The logs were sawn in lumber with 

transversal dimension of 6 cm x 16 cm and 3 m length. The lumber were dried on open air until reach mois-

ture content of 12 % ± 2 %. 

The thermal modification of wood was performed on industrial company, heating wood using auto-

clave with pressure and temperature control and saturated steam. The heating rate used by the company was 

1.66 °C.min-1. The process used on thermal treatment can be described in five stages: Initial heating, auto-

clave loading, heating, thermal treatment and cooling. Initially, the autoclave on room temperature (20 °C) 

was heated with saturated steam and without wood until 100 °C, lasting about one hour. Then, the autoclave 

door is open to load wood in its interior. This process reduced the temperature from 100 °C to nearly 40 °C. 

On the third stage, the wood on the autoclave is heated from 40 °C until the desired thermal treatment. On the 

present research, four temperatures were considered on thermal treatment: 155 °C, 165 °C, 175 °C and 

185 °C. On fourth stage, the thermal treatment is performed, with wood being modified for two hours, with 

maximum pressure of 735 kPa. On cooling stage, the pressure is relieved until the inner temperature on the 

autoclave reach room temperature (20 °C). 

After thermal modification, lumber was sawn to produce test specimens to characterize Eucalyptus 

grandis, Indian Cedar (Acrocarpus fraxinifolius) and Australian cedar (Toona ciliata M. Roem var. australis) 

considering physical, mechanical and chemical properties. For physical and mechanical properties, the spec-

imens were following the disposed on the Brazilian Standard ABNT NBR 7190 [38]. 

The following physical and mechanical properties were determined: apparent density (ρ) and tough-

ness (fbw). For each temperature of thermal modification (4) and for the reference temperature, 12 specimens 

of each property were extracted for each wood specie. 

For chemical analysis, the samples of wood were obtained according TAPPI Standard [39, 40]. The 

wood was crushed to reach small particles passing a 42 mesh (0,355 mm). The total extractive were evaluat-

ed by standard TAPPI 204 cm-97 [39], checking the volume of extractives on the samples. These samples 

were extracted in phases in a soxhlet with a mix toluene/ethanol for 6 hours (1:1 v/v); ethanol 95% pure for 5 

hours and boiling distilled water for 30 minutes. After extractives remove, the samples were washed with 

distilled water and dried in oven at 103 °C ± 2 °C for 24 hours. The extractive content was calculated by 

mass difference. The resulting extractive-free wood was used to determine Klason lignin content by modified 

Klason method [41], by the sum of insoluble and soluble lignin. The holocellulose content was determined by 

difference between lignin content and extractive-free wood mass [42]. 

Regression models (Eqs. 1-6) were used to estimate toughness properties as a function of the thermal 

treatment temperature, apparent density, extractive content, lignin content, holocellulose content, individually 

and considering all factors, with Y being the estimated property (variable dependent), X the independent var-

iable and b and the parameters adjusted by the least squares method: 

 [Lin - linear]              (1) 

 [Exp – exponential    (2) 

Y a b X  

b XY a e  



    OLIVEIRA, C.A.B., OLVEIRA, K.A.,  AQUINO, V.B.M., et al., revista Matéria, v.27, n.2, 2022 

 

 [Log - logarithmic]    (3) 

 [Geo - geometric]      (4) 

 
2

1 2Y a b X b X      [Quad – Quadratic]   (5) 

 
2

1 2Y a b X b X      [Cub – Cubic]           (6) 

 

The determination coefficient (R
2
) was used to assess the quality of the adjustments obtained, making 

it possible to choose the best precision for each evaluated relationship. It is important highlight that 12 spec-

imens were used to determine physical and mechanical properties for each temperature levels, including the 

reference temperature (in natura) for each wood specie and 6 samples for thermal treatment temperature for 

chemical properties, resulting in 630 determination at all. Determination coefficient R
2
 with values between 

0,10 and 0.30 are classified as low, between 0,4 to 0,6 as moderate and between 0,7 to 1,0 as high [43]. 

 

3. RESULTS AND DISCUSSION 

Table 1 lists the mean values and extreme values of coefficient of variation (CV) for all physical, chemical 

and mechanical property evaluated for all three wood species. 

 

Table 1: Results of physical, mechanical and chemical properties of Eucalyptus grandis, Acrocarpus fraxinifolius and 

Toona ciliata M. Roem var. australis wood for different thermal treatment temperatures. 

Wood Specie T (°C) 
ρ (g/cm³) 

(CV - %) 

Ex (%) 

(CV - %) 

L (%) 

(CV - %) 

H (%) 

(CV - %) 

fbw (MPa) 

(CV - %) 

Eucalyptus 

grandis 

20 
0,537 

(10,93%) 

6,06 

(3,47%) 

28,93 

(0,71%) 

65,01 

(0,51%) 

105,81 

(17,26%) 

155 
0,520 

(8,39%) 

21,49 

(2,68%) 

32,34 

(2,40%) 

46,17 

(1,48%) 

41,00 

(17,29%) 

165 
0,502 

(10,64%) 

23,49 

(1,77%) 

37,96 

(2,88%) 

38,55 

(2,66%) 

26,71 

(25,08%) 

175 
0,457 

(15,49%) 

25,61 

(25,61%) 

35,77 

(2,31%) 

38,62 

(1,88%) 

16,00 

(16,69%) 

185 
0,434 

(22,66%) 

28,75 

(3,25%) 

33,14 

(6,25%) 

38,12 

(4,49%) 

13,12 

(11,79%) 

Acrocarpus 

fraxinifolius 

20 
0,425 

(9,00%) 

2,13 

(11,00%) 

31,66 

(2,00%) 

66,20 

(1,00%) 

124,50 

(43,00%) 

155 
0,643 

(2,00%) 

20,23 

(2,00%) 

29,41 

(9,00%) 

50,35 

(8,00%) 

45,56 

(6,00%) 

165 
0,554 

(6,00%) 

23,45 

(0,00%) 

28,27 

(7,00%) 

48,28 

(6,00%) 

307,70 

(47,00%) 

175 
0,545 

(11,00%) 

27,18 

(0,00%) 

26,12 

(9,00%) 

46,70 

(6,00%) 

32,53 

(29,00%) 

185 
0,534 

(7,00%) 

30,86 

(2,00%) 

24,68 

(9,00%) 

44,46 

(6,00%) 

16,91 

(19,00%) 

Toona ciliata 

M. Roem var. 

australis 

20 
0,368 

(6,92%) 

6,69 

(1,08%) 

27,89 

(9,72%) 

65,42 

(4,07%) 

40,09 

(19,63%) 

155 
0,361 

(2,32%) 

9,76 

(6,37%) 

39,90 

(3,77%) 

50,34 

(3,56%) 

38,80 

(10,77%) 

( )Y a b Ln X  

bY a X 
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165 
0,314 

(4,41%) 

15,19 

(2,77%) 

41,28 

(3,85%) 

43,53 

(2,97%) 

23,28 

(10,00%) 

175 
0,304 

(3,67%) 

20,07 

(5,98%) 

37,72 

(10,84%) 

42,21 

(8,13%) 

16,70 

(23,71%) 

185 
0,283 

(10,49%) 

20,11 

(3,61%) 

37,73 

(14,83%) 

42,16 

(14,44%) 

16,00 

(13,46%) 

T: thermal treatment temperature; ρ: apparent density; Ex: extractive content; L: lignin content; H: holocellulose content; 

fbw: toughness property. 

 

Observing the behavior of physical, chemical and mechanical properties, the coefficient of variation 

(CV) increases with elevation of thermal treatment temperature. Such performance is corroborated by litera-

ture [6, 35, 44–47], which can be explained by a major degradation of wood constituents and wood hysteresis 

[31, 46, 48], increasing the inherent material variability after thermal modification. 

Comparing the results of apparent density, the values obtained are close to reached by BAL and 

BEKTAŞ [24] for Eucalyptus grandis thermally treated at 150°C and 180°C (from 0,545 g/cm³ to 0,554 

g/cm³ and CV varying between 11% and 14%), CALONEGO et al. [46] that studied Eucalyptus grandis 

treated at 20°C and 180°C (from 0,445 g/cm³ to 0,477 g/cm³ and CV ranging between 5,17% and 7,89%) and 

close to the reached by SÁ et al. [29] for in natura Australian cedar (0,320 g/cm³). 

Considering chemical properties, extractive content rise with progressive thermal temperature increase, 

which can be explained by wood degradation and the production of new products along thermal treatment. 

Similar results were found by POCKRANDT et al. [6] evaluating Sterculia appendiculata K. Schum and 

Azadirachta indica A. Juss wood species, by KACÍKOVÁ el al. [31] analyzing Norway spruce wood, by 

ČABALOVÁ et al. [49] evaluating thermal modified Querus robur L. wood specie, by ZANUNCIO et al. 

[50], with extractive content varying from 6,05% (20°C) to 6,84% (200°C) for Eucalyptus grandis thermally 

treated. BATISTA et al. [51] found an increase of 613% on thermally modified Eucalyptus grandis, varying 

from 2,22% (untreated) to 15,85% (180°C). 

For lignin content, the values disposed demonstrate an increase on content until 165°C and then, a 

stabilization on lignin content. Different behavior is found on the literature for On Corymbia citriodora Hook 

[52], Norway spruce wood [31], Quercus robur L. [49] and Pinus sylvestris L. [44]. For Eucalyptus grandis 

themally modified, Zanuncio et al. [50] reached a progressive increase considereing temperature rise, from 

28,76% (untreated) to 30,36% (200°C). MOURA et al. [22] encountered an increase of 10%, from 31,92% 

(untreated) to 35,18% (180°C). Such behavior can be explained by the thermal degradation of carbohydrates, 

hemicellulose decomposition and condensation reaction [2, 31, 49]. 

For holocellulose, all species displayed the same behavior after thermal modification, with an average 

decrease of 40%, higher than obtained by ZANUNCIO et al. [50] (reduction of 2%), MOURA et al. [22] 

(reduction of 9%), all considering thermally modified Eucalyptus grandis. Such behavior of holocellulose 

content may be major explained by hemicellulose degradation, due to low amount of cellulose that can be 

degraded at temperatures below 200°C [42]. 

Table 2 lists the regression models with best adjustment of physical and chemical properties estimat-

ing the toughness properties. 

 

Table 2: Results of regression models. 

Model R
2
 (%) 

0,0076105,07 T

bwf e    28,98 

1,48121,62bwf     17,30 
0,61190,29 (Ex)bwf    25,69 

2 39872,66 922,39 28 0,28bwf L L L          30,37 

 
3,16

0,0002bwf H   
44,24 

 

 

The regression models obtained to estimate toughness (fbw) property as a function of thermal modifi-

cation temperature (T), apparent density (ρ), extractive content (Ex), lignin content (L) and holocellulose 

content (H) presented coefficient of adjustment below 70% [53], indicating  low to moderate precision for the 
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models, i. e., the factors were not able to estimate uniquely the toughness property on thermally treated 

hardwoods. It is important highlight that on the literature there is only one research using regression models 

is the research of KACIKOVÁ et al. [31], which used exponential models to estimate physical, mechanical 

and chemical properties as a function of thermal treatment temperature for one wood specie thermally treated 

Norway spruce oak. The models presented elevated precision, above 75%, being possible to be used as wood 

properties estimators. 

To evaluate all factors in one regression model, taking into account the contribution of each factor for 

estimate toughness property, on Table 3 a multiple linear regression model is presented and its coefficient of 

determination (R²). 

 

Table 3: Result of multiple regression model. 

Model R
2
 (%) 

302390 0,92 298 3016 Ex 3019 L 3026 Hbwf T               27,01 

 

Moreover, including all factors, the model precision is low, below 70%, indicating the impossibility to 

use thermal modification temperature, physical and chemical factors to estimate toughness property. Such 

behavior on the literature is unique and impossible to be compared with other wood species. This impossibil-

ity can be explained due fragile nature of toughness property and along thermal modification process, the 

elevated degradation of hemicellulose and the production and storage of extractives on wood makes impre-

cise the correlation of any of these factors to the behavior of toughness property on hardwoods thermally 

treated, demanding a major number of species in order to obtain a more precise model in further researches 

[23, 31, 49, 53, 54]. 

 

4. CONCLUSION 

Considering the results of the present research, it is possible to conclude: 

- The physical and chemical results of thermally treated wood species presented in this research (Eu-

calyptus grandis, Acrocarpus fraxinifolius and Toona ciliata M. Roem var. australis) are compatible to other 

thermally modified hardwood on similar treatment temperatures; 

- Observing the coefficient of determination R
2
 reached on the regression models considering physical 

and chemical factors to estimate toughness property, the models were considered imprecise, being not possi-

ble to perform such estimate. 
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