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Isometries and Linearity”

Rajendra Bhatia

Let f be a transformation on the Euclidean space such that
f(0) = 0, and f preserves distances. Then f is linear, and
this makes it easier to analyze f. The Mazur-Ulam theorem
generalizes this to maps between real normed linear spaces.
We discuss this theorem and its proofs.

1. Introduction

Let (X, || - Ily) and (Y, || - ||,) be two real normed linear spaces; i.e.,
X and Y are vector spaces over R with norms || - ||, and || - ||,
respectively. A map f : X — Y is called an isometry if for all
X,y € X we have

) = fWIly = llx =yl (D

It is an immediate consequence of this definition that an isometry
is injective and continuous. A map f : X — Y is said to be linear
if

f(x+y) = fO+f0). xyeX,

and f(ax) af(x), xeX,aeR.

2
The property (1) defining an isometry does not carry any whiff of
linearity. However, it turns out that, subject to two small caveats,
every isometry is linear.

While a linear map is obliged to carry the null vector O to 0, an
isometry is not. Every translation 75(x) = x + b, where b is any
vector in X is an isometry on X and 75(0) = b. The remedy for
this is simple. If f is an isometry, then so is the map defined by
g(x) = f(x) — f(0), and g(0) = 0. So we may restrict ourselves
to isometries between real normed linear spaces that carry 0 to 0,
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Let X, Y be real normed

andlet f: X — Ybea
surjective isometry such

linear spaces

that £(0) = 0. Then f is

linear.

and ask whether such maps are linear. The answer turns out to
be yes for a large class of norms (to be made precise below) that
includes norms generated by inner products. The extra condition
that takes care of all normed linear spaces is surjectivity. This is
the assertion of the famous Mazur-Ulam theorem proved in 1932
by S. Mazur and S. Ulam, Polish mathematicians belonging to
the fabled school of S. Banach, one of the founders of Functional
Analysis.

The Mazur-Ulam Theorem: Let X, Y be real normed linear spaces
and let f : X — Y be a surjective isometry such that f(0) = 0.
Then f is linear.

Before proceeding further, we remark that the theorem is not valid
for complex linear spaces. The complex conjugation map f(z) =
Z is bijective, isometric and f(0) = 0. But f is not a linear map of
C onto itself.

In this article, we provide first a proof of the Mazur—Ulam theo-
rem in the special case of inner product spaces, and then another
proof that works for these spaces and many more. The assump-
tion that f is surjective is not required for these special cases. We
then give examples to show that the assumption is necessary in
the general case and provide a full proof of the theorem.

A word of notation: we will use the symbol || - || for any norm on
the space X or Y (dropping the subscripts as in || - ||, and || - [|,).
Subscripts will be used for special norms, like || - [[,,, that will be
defined as they occur in the discussion.

2. Inner Product Spaces

To prove the Mazur—Ulam theorem, we have to extract linearity
out of a statement about norms. For one kind of norm associated
with an inner product, linearity enters through this latter object.

Let X be a real vector space. An inner product on X associates to
each pair of vectors x,y in X a real number (x, y), called the inner
product of x and y, that obeys the following rules:
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@) (x,y) = (3, x),
(i) (x + y,2) = (x,2) + (y,2) and (ax,y) = alx,y) for all @ € R,
(iii) {x, x) > O for all x, and (x, x) = 0 if and only if x = 0.

Note that using (i), we see that the condition (ii) implies

X, y) +{x, 2),
and (x,ay) = alx,y).

(X, y+2)

Thus an inner product (x,y) is linear in each of the variables x
and y. An inner product gives rise to a norm on X defined by

llxl] = (x, )12,

The standard example of an inner product space is R” with the
usual Euclidean inner product

n

(3= Z XiYis

i=1
and the associated norm
" 12
2
|mg=(§:%] : (3)
i=1

In the rest of this section, the symbol || - || stands for a norm on X
or Y arising from an inner product (-, -).

Let f : X — Y be an isometry such that f(0) = 0. Then || f(x)|| =
||x]| for all x. Using the identity

llox =y = [l + IIyl* = 2¢x, y),

we see that
0, fF) = {x,p);

i.e., f preserves inner products. Now let x,y,z be any three ele-
ments of X. Then

(fx+y), f(2)

(X +y,2)

X, 2) + (3, 2)

fx), f@) + fD), f(2))
= (f()+f), f@)
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The two conditions that

define linearity are

independent; i.e., there
exist functions f that
satisfy one but not the

other condition.

From this, it follows that

Jx+y) = f) = f), f(2) =0 “)

This is true for all z. Choose, successively, z = x + y,x and y in
(4), and then combine the three equations obtained to get

(f+y) = f) = fO), fx +y) = f(x) = f)) = 0;

i.e.,

If(x+y) = f(0) = fWIl = 0.

This shows that f(x+y) = f(x)+ f(y). A similar argument shows
that f(ax) = af(x) for all @ € R.

We have shown that every isometry f between inner product spaces,
with f(0) = 0, is linear.

3. Continuous Additive Functions are Linear

The two conditions that define linearity are independent; i.e., there
exist functions f that satisfy one but not the other condition. Func-
tions that satisfy the requirement (2a) are called additive. We now
show that a continuous additive function is linear. In other words,
a continuous function satisfying (2a) also satisfies (2b).

Putting x = y = 0 in (2a) we see that f(0) = 2f(0), and hence
f(©) = 0. Then choosing y = —x, we get f(-x) = —f(x) for
all x. From (2a) it also follows that f(mx) = mf(x) for all nat-
ural numbers m, and hence for all integers m. Next, observe
that f(x) = f(mZ) = mf(£). So f(2) = Lf(x) for every
nonzero integer m. From these observations we can conclude that
f(ax) = af(x) for every rational number @. Since f is continu-
ous, this is true for every real @ too. We have shown that every
continuous additive function is linear.

The next observation is crucial for the proof of the Mazur-Ulam
Theorem. Suppose f : X — Y is a map such that f(0) = 0 and

f(x;ry)z f(x);rf(y)’ 5)
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for all x,y € X. Choosing y = 0, this gives f(2x) = 2f(x) for all
x. Plugging this back into (5) we get f(x+y) = %[ fCx)+f(2y)] =
f(x) + f(y). Thus f is additive. Hence, if it is also continuous,
then it is linear.

4. Algebraic and Metric Midpoints

Let x, y be two points in a vector space X. The algebraic midpoint
of x,y is the vector XT” In the usual Euclidean space R” this is
also the unique point z which is at half the distance %le — ||, from
both x and y. More generally, given any norm on X, let us say z is
a metric midpoint of x and y, if

1
lle =l = llz =yl = Sllx =yl (6)

It is easy to see that an algebraic midpoint is a metric midpoint. If
f + X — Y is an isometry, then it would carry a metric midpoint
of x,y in X to a metric midpoint of f(x) and f(y) in Y.

In Section 3 we saw that an isometry f : X — Y with f(0) =0
would be linear if it satisfies (5), i.e., if it carries algebraic mid-
points in X to algebraic midpoints in Y. So, if every metric mid-
point in the space Y were an algebraic midpoint, we could con-
clude that f is linear. And here, there is a twist in the tale: there
are normed linear spaces where metric midpoints are not unique.

A very simple example is provided by the co-norm on R" defined
as
llxl, = max |x;|. (7
I<i<n

Let n = 2 and consider the vectors x = (—1,0), y = (1,0). Then
llx — y|l,, = 2. The algebraic midpoint of x and y is (0, 0). This is
at distance 1 from both x and y, but so is every vector z = (0, 1)
where || < 1. Thus every point in the line segment joining (0, —1)
and (0, 1) is a midpoint of x and y.

Another example comes from the 1-norm on R" defined as

n

bl = > bl (8)

i=1

Let x, y be two points in

a vector space X. The

algebraic midpoint of

X,y is the vector

Xy
7
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A norm on X is called

strictly convex if

whenever x and y are
distinct points in X with

llxll = llyll = 1 then
52| <1

Letn = 2 and choose x = (1,0) and y = (0, 1). Then ||x —yl|, = 2.
The algebraic midpoint of x and y is (% %) Every point in the
line segment joining (0, 0) and (1, 1) is a metric midpoint of x and
.

5. Strictly Convex Norms

These are norms for which there are no metric midpoints other
than the algebraic midpoint. More precisely, a norm on X is called
strictly convex if whenever x and y are distinct points in X with
[lxl]] = |yl = 1 then ||%|| <1l. A norm arising from an inner
product obeys the parallelogram law

lloc + y1I% + llx = ylI* = 2(1xl* + [Iyl1P),

and is, therefore, strictly convex.

Let || - || be a strictly convex norm on X and x, y, z any three points
in X satisfying the relations in (6). Then

z-0+0-2)

1
: = Sly =l = llz = xll = 2=y

The strict convexity now implies that z—x = y—z. In other words,
z= % Thus a metric midpoint is also an algebraic midpoint.

For 1 < p < oo, the p-norm on R” is defined as

n 1/p
Ixll, = (Z |x,-|f’] .

i=1

The special cases p = 1,2, have been seen in (3) and (8). The
norm || - ||, in (7) is the limiting case

I+l = Tim |lx]],.
p—)OO

It can be seen that all norms in this family except the ones corre-
sponding to p = 1, oo, are strictly convex. (For 1 < p < oo, there
is equality in the Minkowski inequality [|x + yl|, < [Ixl, + [Iyll, if
and only if x = ty for some positive number ¢.)
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N

e

A discussion of strict convexity will take us away from our main

theme, but a little digression might be in order here. Let n = 2
and draw the unit balls for the || - ||, norms for some different
values of p. The ones for p = 1,2,4 and co are shown here. All
are convex sets. The boundaries of the balls for p = 1 and oo
contain line segments, and for other values of p, they don’t. A
compact convex set in R” is called strictly convex if every point
on its boundary is an extreme point. It can be seen that a norm on
R" is strictly convex if and only if its unit ball is a strictly convex
set.

Returning to isometries, we have shown that if f : X — Y is an
isometry with f(0) = 0, and the norm on Y is strictly convex, then
f is linear. It is not necessary to assume here that f is surjective.

The example we present now illustrates that without the assump-
tion of surjectivity on f or of strict convexity on Y, an isometry f
may fail to be linear.

Let X = R and Y = R? with the co-norm. Let f : X — Y be

the map f(¢) = (¢ |¢). Then f is isometric, f(0) = 0, but f is not
linear. With the same X and Y the map f(¢#) = (¢, sin¢) provides

Figure 1. Unit balls corre-

sponding to p-norms for p =

1,2,4 and oo.
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another example.

6. The General Case

We now give a proof of the Mazur—Ulam theorem in the general
case. If we show that f preserves algebraic midpoints (i.e., (5)
is valid), then it would follow that f is linear. The original proof
of Mazur and Ulam [6] proceeded by obtaining a metric char-
acterization of the algebraic midpoint from which (5) followed.
Subsequent expositions (see, e.g., the classic [3], or the more re-
cent text [5]) followed essentially the same idea. In 2012 B. Nica
[7], expanding on an earlier idea of J. Viiséld [10], published a
beautifully simplified proof. That is the proof we present.

We will need the notion of a reflection through a point. Let z be
a given point of X. The reflection through z is the map p, defined
on X by p.(x) = 2z—x. (Note that x and p,(x) are equidistant from
z but located on “opposite sides” of it; hence the name reflection.)
It is clear that p, is a surjective isometry on X.

We wish to show that f satisfies (5) for all x and y. Suppose there
are points x, y for which (5) is not true. Let

x+y__ﬂ@+f@w‘
2 2

At = [

This is the measure of f’s “defect from linearity”. We have

s = ) o] ) o)
Rl S
ISR
= Sl

Thus Ar(x, y) is bounded above by %le —y|| for every isometry f.

Given f, x, and y as above, we will create another surjective isom-

etry g on X for which A,(x,y) = 2Af(x,y). For this let z =

w and let p = p,, the reflection through the point z in the
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space Y. Thus p(u) = f(x) + f(y) —uforeveryuin Y. If fis a
surjective isometry, then it is invertible. Define g as the compos-
ite map g = fﬁ1 pf. Being a composition of surjective isometries,
g is a surjective isometry. Note that

g = f p(f@) = f (Fx) + fO) = fo) = £ (fON =y

Similarly g(y) = x. So, we have

Agry) = Hg(x;ry)_g(x);rg(y)

I e (E52)-232]

Since f is an isometry, this gives

Ag(x,y) Hf(x)+f()’)—f(x;y)—f(x—;y)u

ZHf(X);rf(y) _f(X+y)H

2
= 2Ar(x,y).

Iterating this process, we can successively create bijective isome-

tries on X whose defects from linearity are 2A¢(x, y), 4Ar(x, y), .. .,
2"A¢(x,y). But we have also seen that for each isometry, this

defect has to be bounded by %le —y||. This is possible only if

Ap(x,y) = 0.

We have shown that f satisfies (5) and hence is linear.

7. Some Extras

The Mazur—Ulam theorem says that a surjective isometry f :
X — Y between real normed linear spaces has the form f(x) =
Ax+ b, where A : X — Y is a linear operator, and b is an element
of Y. Particularly interesting is the case X = Y = R”" with the
usual Euclidean norm. Then A must be an orthogonal matrix; i.e.
ATA = I. In the special situation n = 2, A must be one of the two
kinds

cosf —sind cosf sinf
A= ) , OrTA = ) .
sind cosé sind —cosé

The Mazur—Ulam
theorem says that a
surjective isometry

f : X — Y between real

normed linear spaces
the form f(x) = Ax +
where A: X —» Yisa
linear operator, and b
an element of Y.

has
b’

is
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Different distances in the
same space are used in

different contexts.

The first one represents the rotation by an angle 6 in the anticlock-
wise direction. The second one is a reflection through the line at
angle 6/2 with the x-axis.

We saw that an additive function f on R must be of the form
f(x) = ax for some a € R provided f is continuous. The same
conclusion can be obtained with conditions weaker than continu-
ity. For example, it is enough to assume that f is measurable.

In [4] Hyers and Ulam introduced the notion of an approximate
isometry or an g-isometry. This is amap f : X — Y such that

11/ = fFOIl = [lx = ylll < & for all x, y.

The motivation for this is that often distances are known only
approximately. The question Hyers and Ulam raised was whether
such a map is close to being an isometry. More precisely, if f is
a surjective g-isometry between real normed linear spaces such
that f(0) = 0, then does there exist a surjective linear isometry
g : X — Y such that

Ilf(x) — g(x)|| < ke for all x € X,

where k is a constant independent of f? An expository article
describing this problem is [2].

The Mazur-Ulam theorem is a simple illustration of the interplay
between metric and algebraic properties of objects. This is a re-
curring theme in analysis. See, for example, [2] and [8].

The notion of a metric midpoint is useful in several situations.
Different distances in the same space are used in different con-
texts. Thus on the simplest space R, = (0, o) consisting of pos-
itive real numbers, instead of the usual distance |x — y| between x
and y, one may consider another distance d(x,y) = |log x —log y|.
The Richter scale in seismology, the decibel scale in acoustics,
and the pH values in chemistry all use this distance. Given two
points x,y € R, their metric midpoint now would be a point z
such that

1
d(Z7 X) = d(Z,y) = Ed(x’y)
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A small calculation shows that there is a unique point z satisfy-
ing this requirement, and it is z = +4/xy, otherwise known as the
geometric mean. The reader may calculate the metric midpoints
corresponding to a few more distances, such as

_ 11
dy) = |E-1),
dxy) = |-,
and d(x,y) = |[vVx- )l
The Polish school led by Stefan Banach played a central role The Polish school led by
in the development of functional analysis in the years between Stefan Banach played a

central role in the
development of
functional analysis in the
Analysis learns about the Banach—Mazur theorem and the Gelfand— years between the two

the two world wars. Stanislaw Mazur and Stanislaw Ulam were
prominent members of this school. Every student of Functional

Mazur theorem. Ulam was one of the most versatile mathemati- world wars.
cians who made major contributions to set theory, topology, anal-

ysis, group theory, number theory, combinatorics, probability,

computations, and to the design of thermonuclear weapons. He

has also written a very interesting autobiography titled The Ad-

ventures of a Mathematician.
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