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Radiomics features may predict outcome in diffuse large B-cell lym-
phoma (DLBCL). Currently, multiple segmentation methods are used
to calculate metabolic tumor volume (MTV). We assessed the influ-
ence of segmentation method on the discriminative power of radio-
mics features in DLBCL at the patient level and for the largest lesion.
Methods: Fifty baseline 18F-FDG PET/CT scans of DLBCL patients
with progression or relapse within 2 years after diagnosis were
matched on uptake time and reconstruction method with 50 baseline
PET/CT scans of DLBCL patients without progression. Scans were
analyzed using 6 semiautomatic segmentation methods (SUV thresh-
old of 4.0 [SUV4.0], SUV threshold of 2.5, 41% of SUVmax, 50% of
SUVpeak, a majority vote segmenting voxels detected by$2 methods,
and a majority vote segmenting voxels detected by $3 methods). On
the basis of these segmentations, 490 radiomics features were
extracted at the patient level, and 486 features were extracted for the
largest lesion. To quantify the agreement between features extracted
from different segmentation methods, the intraclass correlation (ICC)
agreement was calculated for each method compared with SUV4.0.
The feature space was reduced by deleting features that had high
Pearson correlations ($0.7) with the previously established predictors
MTV or SUVpeak. Model performance was assessed using stratified
repeated cross validation with 5 folds and 2,000 repeats, yielding
the mean receiver-operating-characteristics curve integral for all
segmentation methods using logistic regression with backward fea-
ture selection. Results: The percentage of features yielding an ICC
of at least 0.75, compared with the SUV4.0 segmentation, was low-
est for 50% of SUVpeak both at the patient level and for the largest
lesion, with 77.3% and 66.7% of the features yielding an ICC of at
least 0.75, respectively. Features did not correlate strongly with
MTV, with at least 435 features at the patient level and 409 features
for the largest lesion for all segmentation methods having a correla-
tion coefficient of less than 0.7. Features correlated strongly with
SUVpeak (at least 190 at patient level and 134 for the largest lesion
were uncorrelated to SUVpeak, respectively). Receiver-operating-
characteristics curve integrals ranged between 0.6960.11 and
0.8460.09 at the patient level and between 0.696 0.11 and
0.7360.10 at the lesion level. Conclusion: Even though there are
differences in the actual radiomics feature values derived and
selected features among segmentation methods, there is no

substantial difference in the discriminative power of radiomics fea-
tures among segmentation methods.
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Diffuse large B-cell lymphoma (DLBCL) is the most common
subtype of non-Hodgkin lymphoma. To improve the outcome of
patients with DLBCL, early identification of patients at risk of treat-
ment failure is of the utmost importance, as 25%–40% of patients
experience relapse or progression in the first years after diagnosis
(1). Recent data suggest that baseline radiomics features are promis-
ing biomarkers to predict treatment outcome in DLBCL (2–4), as
they can predict outcome beyond metabolic tumor volume (MTV)
and the international prognostic index (5).
Radiomics features can be calculated from the baseline 18F-FDG

PET/CT scans and capture detailed and quantitative information on,
for example, texture, intensity, and shape of lesions. Currently,
radiomics analyses in lymphoma are based on predefined tumor seg-
mentations. Segmentations are usually performed using absolute
SUV thresholds (6) or percentages of SUVmax or SUVpeak (2,7). For
the calculation of radiomics features, some studies use the hottest
lesion (4), whereas others use the largest lesion (3,8) or tumor seg-
mentations at the patient level (2,9). The largest lesion and MTV at
the patient level had the highest predictive value (9). Therefore, in
this study we concentrated on the largest lesion and radiomics fea-
tures extracted from tumor segmentations at the patient level.
One of the main problems with generating a multitude of fea-

tures is the high false-detection rate caused by multiple testing.
Moreover, several features may represent similar characteristics
that are often highly correlated and therefore redundant (10).
Redundant features may induce a correlation bias (11), and models
become difficult to interpret (12).
Therefore, reducing the feature space to a degree feasible for

clinical use without losing important information is essential. One
method to reduce feature space is hierarchical clustering, based on
correlation analysis or distance metrics (13).
Previous DLBCL studies showed that MTV measured with differ-

ent segmentation methods, albeit at different cutoffs, showed
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comparable discriminative power to predict survival (6,7). However,
it is unclear to what extent the discriminative power of other radio-
mics features is affected by the method used to segment the lesions.
Therefore, our main objective was to assess the effects of applying 6
frequently used segmentation methods on the discriminative power
for 2-year time to progression of baseline PET/CT radiomics features
in DLBCL both at the patient level and for the largest lesion.

MATERIALS AND METHODS

Study Population
For this case-control study, 100 patients with newly diagnosed

DLBCL from the HOVON-84 study (Haemato Oncology Foundation
for Adults in the Netherlands; European Union Drug Regulating Author-
ities Clinical Trials Database identifier 2006-005174-42) with baseline
PET/CT scans available were included. Fifty patients with progressive
disease or relapse within 2 years after diagnosis were matched on scan
interval and reconstruction method (European Association of Nuclear
Medicine Research GmbH [EARL]/non-EARL) (14) with 50 patients
without progression. For this analysis, we combined R-CHOP14 (14-
d cycles of rituximab plus cyclophosphamide, doxorubicin, vincristine,
and prednisone) and RR-CHOP14 (rituximab-intensified R-CHOP-14),
because outcomes were similar between treatment arms (15). The
HOVON-84 study was approved by the institutional review board, and
all participants gave informed consent.

Quantitative Analysis
Quantitative PET/CT analysis was performed using the quantitative

oncology molecular analysis suite (ACCURATE) (16). To match qual-
ity criteria, PET and low-dose CT scans should be complete, and liver
SUVmean and plasma glucose should be within the ranges suggested by
the European Association of Nuclear Medicine guidelines (14). If liver
SUVmean was outside the suggested ranges but total image activity was
between 50% and 80% of the injected activity, the scans were still
included. All scans were reviewed by nuclear medicine physicians, and
delineations were performed under their supervision. The following
frequently used semiautomatic segmentation methods were applied to
delineate lesions: an SUV threshold of 2.5, an SUV threshold of 4.0
(SUV4.0). 50% of SUVpeak (17), 41% of SUVmax, a majority vote seg-
menting voxels detected by at least 2 methods, and a majority vote seg-
menting voxels detected by at least 3 methods (supplemental materials;
available at http://jnm.snmjournals.org).

Lesions were delineated with a fully automated preselection of
lesions with a volume threshold of at least 3 cm3. Lymphoma lesions
smaller than 3 cm3 were added by observer selection, and nontumor
regions were deleted with single mouse-clicks for all 6 segmentation
methods (18). Lesions for which automatic segmentation was successful
were added to the patient-level volume of interest. If lesion selection
resulted in flooding (i.e., selection of large parts of nontumor regions,
such as liver, spleen, or skeleton), the lesion was not added. Adjacent
nontumor 18F-FDG–avid regions (e.g., bladder or kidney) were manu-
ally removed. For the fixed SUV4.0 method, we also generated segmen-
tations with a volume threshold of at least 3 cm3. Two observers
selected the method with the highest visual agreement (best method) for
each patient, resolving initial discrepancies in consensus meetings.

Feature Extraction
Four hundred eighty radiomics features (texture [n5 408], morphol-

ogy [n5 22], intensity-based statistics [n5 18], intensity histogram
[n5 24], intensity–volume histogram [n5 6], and local intensity
[n5 2]) and 6 conventional PET uptake metrics before rebinning were
extracted for both the patient level and the largest lesion for each seg-
mentation method. The patient-level volume of interest included all
segmented lesions and was generated by assigning all voxels within the

individual lesions to one and all voxels outside any of the segmented
individual lesions to zero. At the patient level, 4 additional dissemina-
tion features were calculated. All image-processing and feature calcula-
tions were performed using RaCat software (19), which complies with
the imaging biomarker standardization initiative criteria (20). Details
on feature calculation are presented in the supplemental materials.

Statistical Analysis
All statistical analyses were performed for radiomics features at the

patient level and for the largest lesion using R (version 4.0.3). The
paired Student t test was used to compare the MTV and SUVpeak of all
segmentation methods with the best segmentation. On the basis of
recent studies, the SUV4.0 segmentation was chosen as a reference
(7,18). First, if the distribution of the radiomics feature values had
skewness greater than 0.5 for the SUV4.0 segmentation method, they
were log-transformed for all segmentations using the natural loga-
rithm. The agreement between radiomics features extracted from dif-
ferent segmentations was quantified by calculating the intraclass
correlation (ICC) compared with the SUV4.0 segmentation. ICCs
were categorized as having reliability that was poor (,0.5), moderate
(0.5–0.74), good (0.75–0.89), or excellent ($0.90) (21). Two texture
features at the patient level and 3 texture features at the lesion level
did not show any variation and were therefore excluded.

MTV and SUVpeak have been shown to be predictive in DLBCL (9).
To avoid overfitting and to remove redundancy, the feature space was
reduced by deleting features that correlated strongly with either MTV or
SUVpeak. The Pearson correlation coefficient between MTV and other
radiomics features, and between SUVpeak and other radiomics features,
was calculated for each segmentation method. A correlation was consid-
ered high if the Pearson correlation coefficient was at least 0.7 (22).

For each segmentation method, the mutual correlations between
features that did not correlate with MTV and SUVpeak were calculated
using Pearson correlation. For clusters of features with high mutual
correlations, as identified with hierarchical clustering using Euclidian
distance as a distance measure, the feature with the lowest correlation
to MTV or SUVpeak was preserved.

Discriminative power (progression vs. nonprogression) was assessed
using logistic regression with backward feature selection based on the
Akaike information criteria (23). We included all independent features,
MTV, and SUVpeak for all segmentations. Stratified repeated cross vali-
dation with 5 folds and 2,000 repeats was applied, yielding the mean
receiver-operating-characteristic curve integral (CV-AUC) and the SD
of AUCs between repeats. Comparing CV-AUCs is a known difficulty
because of the inherent dependency of train-test iterations and complex
relations between the trained models (24). Currently, there is no valid
statistical approach to compare CV-AUCs.

As a sensitivity evaluation, all analyses were repeated for fea-
tures that were reliable, repeatable, and reproducible in a multicen-
ter setting (25).

RESULTS

Patient characteristics are summarized in Table 1. Sixty-four
scans were semiautomatically analyzed and adapted with single
mouse-clicks only. Thirty-six scans required manual editing because
tumor and nontumor regions were adjacent. SUV4.0 was selected
most frequently as the best method for both the patient level and the
lesion level (49% and 64%, respectively).

MTV Analysis
The method using an SUV threshold of 2.5 resulted in MTV

flooding for 44 patients, leading to exclusion of this method for
further analysis. At the patient and lesion levels, MTV was highest
for the segmentation using a majority vote segmenting voxels
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detected by at least 2 methods and was lowest for the method
using 50% of SUVpeak (Table 2). Using the best visual segmenta-
tion as a reference, MTV was significantly higher for the segmen-
tation using a majority vote segmenting voxels detected by at least
2 methods and was significantly lower using all other segmenta-
tion methods (all P , 0.05; Table 2; Fig. 1). SUVpeak was compa-
rable among segmentation methods (all P . 0.05).

Patient Level
Radiomics features based on a SUV4.0 preselection with a 3-cm3

volume threshold resembled the features of the SUV4.0 segmenta-
tion most, with excellent reliability for 414 features (84.8%),
followed by the best segmentation. For the segmentation using 50%
of SUVpeak, similarity was lowest, with only 218 features (44.7%)
having excellent reliability (Fig. 2; Supplemental Table 1).
For all segmentation methods, at least 435 features (89.3%) did

not correlate strongly with MTV (Table 3), of which 433 (88.9%)
did not correlate strongly with MTV for any segmentation method.
At least 190 features (38.9%) did not correlate strongly with
SUVpeak, of which 175 (35.9%) did not correlate strongly with
SUVpeak for any segmentation. One hundred ninety-seven features
(40.5%) did not correlate with MTV and SUVpeak for at least 1
method, of which 125 (25.7%) correlated neither with MTV nor
with SUVpeak for any segmentation method. For each segmentation
method, at least 25 features (5.1%) did not show high mutual corre-
lations and did not correlate with MTV or SUVpeak. After backward
feature selection, the SUV4.0 segmentation method yielded a
CV-AUC of 0.746 0.10; 41% of SUVmax had the highest
CV-AUC (0.846 0.09), the visually best segmentation method had
the lowest CV-AUC (0.696 0.11). Selected features after backward
selection differed among segmentation methods and varied between
4 and 20 features (Table 3; Supplemental Table 2). For all segmen-
tation methods, the morphologic feature “center of mass shift” and
the texture feature “first measure of information correlation” were
retained in the linear regression model.

Largest Lesion
Radiomics features of the segmentation using a majority vote

segmenting voxels detected by at least 2 methods resembled those

TABLE 1
Characteristics of Included Patients

Characteristic Events Nonevents

Age

Median (y) 64 (IQR, 61–71) 68 (IQR, 63–74)

#60 y 11 11

.60 y 39 39

Sex

Male 28 26

Female 22 24

Ann Arbor stage

2 3 6

3 9 13

4 38 31

Lactate dehydrogenase

Normal 8 19

.normal 42 31

Extranodal localizations

#1 21 28

.1 29 22

Performance status

0 16 29

1 25 13

2 9 8

International prognostic
index

Low 3 5

Low-intermediate 2 14

High-intermediate 25 18

High 20 13

IQR 5 interquartile range.

TABLE 2
SUVpeak and MTV per Segmentation Method

Parameter SUVpeak MTV patient level MTV largest lesion

SUV4.0 17.1 (12.8–22.0) 552.7 (310.3–1,117.2) 353.5 (145.3–854.4)

SUV4.0 ($3 cm3) 17.2 (12.8–22.3) 534.8 (295.4–1,116.4) 353.5 (145.3–854.4)

A50P 16.8 (12.5–22.0) 463.5 (210.2–1,164.0) 264.6 (75.9–658.1)

41%max 16.8 (12.5–22.0) 492.0 (230.3–1,203.5) 295.3 (112.6–741.8)

MV2 16.8 (12.8–22.0) 726.2 (374.5–1,299.9) 445.1 (188.0–1041.6)

MV3 16.8 (12.5–22.3) 502.5 (235.5–1,155.0) 280.2 (98.9–693.9)

Best 16.6 (12.4–21.9) 653.2 (350.5–1,283.8) 445.1 (172.6–935.5)

A50P 5 50% of SUVpeak; 41%max 5 41% of SUVmax; MV2 5 majority vote segmenting voxels detected by $2 methods; MV3 5

majority vote segmenting voxels detected by $3 methods.
Data are median followed by interquartile range.
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of the SUV4.0 method most, with excellent reliability for 389 fea-
tures (80.5%). For the segmentation using 50% of SUVpeak, simi-
larity was lowest, at only 83 features (17.2%) with excellent
reliability (Fig. 3; Supplemental Table 3).
For all segmentations, at least 409 features (84.9%) did not cor-

relate strongly with MTV (Table 4), of which 404 (83.8%) did not
correlate strongly with MTV for any segmentation method. At
least 134 features (27.8%) did not correlate strongly with SUVpeak,
of which 130 features (27.0%) did not correlate strongly with
SUVpeak for any segmentation. One hundred forty-nine (31.0%)
features did not correlate with MTV or SUVpeak for at least 1
method, of which 61 features (12.7%) correlated neither with
MTV nor with SUVpeak for any segmentation method. For each
segmentation method, at least 19 features (4.0%) did not show
high mutual correlations and did not correlate with MTV or SUV-

peak. After backward feature selection, SUV4.0 had the highest
CV-AUC (0.736 0.10), whereas a majority vote segmenting vox-
els detected by at least 3 methods and the best segmentation
method had the lowest CV-AUC (0.696 0.11). Selected features
after backward selection differed among segmentation methods
and varied between 5 and 11 features (Table 4; Supplemental
Table 4). For all segmentation methods, the texture feature “first
measure of information correlation” was retained in the linear
regression model, and the intensity histogram feature “minimum

histogram gradient” was retained in all
models except for the SUV4.0 segmenta-
tion method.
When starting from a selection with

reliable, repeatable, and reproducible fea-
tures, similar results were found both at
the patient level and for the largest lesion
(Table 3; Table 4).

DISCUSSION

This study showed that the discrimina-
tive power is largely independent of seg-
mentation method. However, there are
large differences in radiomics feature

values derived using different segmentation methods, as shown by
ICC agreement values.
Both MTV and SUVpeak have been shown to be predictive in

DLBCL (9). Our study showed that most radiomics features are

independent of MTV for both the patient level and the largest

lesion. Hatt et al. (26) showed that textural features, which com-

prise more than 80% of our radiomics features, already provide

clinical complementary information in addition to MTV in lesions

larger than 10 cm3, with an increasing complementary prognostic

value for larger MTVs, disputing the threshold for texture features

of 45 cm3 (27). With only 4 patients with MTVs smaller than

10 cm3 for the largest lesion, and 1 patient with an MTV smaller

than 10 cm3 at the patient level, it is to be expected that most fea-

tures are independent of MTV. However, many features correlated

with SUVpeak, in which case they are redundant.
Currently, there is no consensus on the best segmentation

method for delineating lesions in DLBCL 18F-FDG PET/CT stud-
ies. Therefore, it is essential to study the sensitivity of radiomics
features in relation to segmentation method. In several solid can-
cers, radiomics features, especially morphologic and texture fea-
tures, are influenced by the delineation method (28–31). The
number of extracted features in these studies varied widely,
between 9 and 480. We extend these findings by showing that for

the largest lesion in DLBCL, up to 31%
of the texture features, and 68% of the
morphologic features, were highly sensitive
to the segmentation method, as shown by
the reliability of features compared with
SUV4.0 segmentation. DLBCL lesions usu-
ally are large, heterogeneous, and bulky.
Larger lesions are known to exhibit higher
hypoxia, necrosis, or anatomic and physio-
logic complexity—characteristics that logi-
cally translate to higher complexity in the
spatial 18F-FDG distribution and hence sen-
sitivity to segmentation method, leading to
lower reliability of features among applied
methods. Furthermore, as variations in seg-
mentation methods have a strong effect on
the outer contour of the segmentation, thus
influencing the shape of the segmentation, a
high sensitivity to segmentation methods
for morphologic features could be expected.
Because of the higher MTV, the radiomics
features at the patient level were less

FIGURE 1. Maximum-intensity PET projections of patient with lesion segmentations indicated in
red for all applied methods using SUV scale of 0–10. 41%max 5 41% of SUVmax; A50P 5 50% of
SUVpeak; MV2 5 majority vote segmenting voxels detected by $2 methods; MV3 5 majority vote
segmenting voxels detected by$3 methods; SUV2.55 SUV threshold of 2.5.

FIGURE 2. Percentage of radiomics features yielding excellent, good, moderate, or poor ICC agree-
ment between SUV4.0 segmentation and the other methods at the patient level. 41%max 5 41% of
SUVmax; A50P5 50% of SUVpeak; MV25 majority vote segmenting voxels detected by $2 methods;
MV35 majority vote segmenting voxels detected by$3 methods.
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influenced by segmentation method, with up to 20% of the texture
features, and 32% of the morphology features, being sensitive to seg-
mentation method. Because of the low similarity of some of the fea-
tures between segmentations, it is not advisable to use regression
coefficients from other studies that applied other segmentation
methods.

However, even though values are not interchangeable, in our
study the discriminative power at the lesion and patient levels was
comparable among segmentations. Contrary to what we expected,
choosing the segmentation method that visually best selected the
tumors did not result in a higher CV-AUC. These results are in line
with previous studies exploring the predictive value of radiomics

features using different segmentations for
other cancer types. None of these studies
found significant differences in predicting
outcome (28,32), metastasis, or lymph
node invasion (30) using different segmen-
tation methods. However, ICC agreement
values, correlations with MTV, correlations
with SUVpeak, and mutual correlations dif-
fered among segmentation methods, result-
ing in different preselections of features for
the logistic regression model. Even though
discriminative power is comparable, differ-
ent features are predictive of outcome
when applying different segmentation
methods.
When using only previously defined reli-

able, repeatable, and reproducible features,
discriminative power was slightly lower
for all segmentation methods. However,
the CIs of CV-AUCs using only repro-
ducible features overlapped with the CIs
of CV-AUCs using all features. There-
fore, using only reproducible features
does not affect discriminative power. In
clinical practice and multicenter studies,

TABLE 3
Number of Independent Features per Segmentation Method, Number of Included Features, and Predictive Value at Patient

Level for All Extracted Features (n 5 488) and All Reliable, Repeatable, and Reproducible Features (n 5 103)

No of features Parameter
Independent

of MTV
Independent
of SUVpeak

Independent
of MTV and
SUVpeak

Independent
of MTV and
SUVpeak and
uncorrelated

No. of features
in linear

regression CV-AUC (6SD)

488 SUV4.0 445 211 172 25 12 0.74 6 0.10

SUV4.0 ($3 cm3) 443 212 170 25 4 0.74 6 0.10

41%max 435 198 145 27 11 0.84 6 0.09

A50P 441 204 157 32 20 0.78 6 0.10

MV2 444 199 155 26 5 0.79 6 0.09

MV3 441 203 156 29 18 0.80 6 0.09

Best 445 190 147 25 12 0.69 6 0.11

103 SUV4.0 64 63 35 13 3 0.70 6 0.11

SUV4.0 ($3 cm3) 61 63 32 12 6 0.70 6 0.11

41%max 54 63 24 10 4 0.75 6 0.10

A50P 58 65 30 10 3 0.63 6 0.11

MV2 61 66 34 11 8 0.74 6 0.10

MV3 58 65 30 9 4 0.73 6 0.10

Best 62 67 36 11 7 0.69 6 0.11

41%max 5 41% of SUVmax; A50P 5 50% of SUVpeak; MV2 5 majority vote segmenting voxels detected by $2 methods; MV3 5

majority vote segmenting voxels detected by $3 methods.

FIGURE 3. Percentage of radiomics features yielding excellent, good, moderate, or poor ICC
agreement between SUV4.0 segmentation and the other methods for the largest lesion. 41%max 5

41% of SUVmax; A50P 5 50% of SUVpeak; MV2 5 majority vote segmenting voxels detected by $2
methods; MV35 majority vote segmenting voxels detected by$3 methods.
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variable image qualities are encountered. Therefore, some features
that have high predictive values may in reality be difficult to mea-
sure reliably. It is thus advisable to only use reproducible features,
especially in multicenter settings.
To our knowledge, this was the first study that assessed the

influence of segmentation methods on PET radiomics features and
their predictive power, other than MTV, in DLBCL. By applying
multiple frequently used methods on the same patients, we could
directly compare the effect of segmentation methods on quantita-
tive PET radiomics features. We chose to calculate linear relations
among radiomics features using Pearson correlation because we
used logistic regression as a classifier, and the logistic regression
model calculates linear relations with included features. This prob-
ably led to fewer included features in the logistic regression model
compared with the application of Spearman correlation as data
reduction method. One of the limitations of this study was that not
all scans were scanned according to the EARL protocol; this
inconsistency might affect the discriminative power and repeat-
ability of features (25). Because we matched events and non-
events on reconstruction method there were no difference in
EARL compliance between groups. However, this matching does
not preclude an effect of the reconstruction method on the discrim-
inative power. Use of harmonization methods such as ComBat to
retrospectively increase uniformity in large datasets has definitely
been shown to be worthwhile (33,34). Therefore, ComBat-based
data alignment would be a successful approach toward harmoniz-
ing these differences. Unfortunately, in our study the number of
patients per center was too small to allow application of ComBat.
Moreover, in view of the equivalent discriminative power seen in
our data among various segmentation methods, ComBat-based
data alignment would be a successful approach toward harmoniz-
ing databases of radiomics features analyzed using different seg-
mentation methods. In our cohort, patients presented with high

MTVs; therefore, these results need to be validated for other
cohorts with smaller lesion sizes.

CONCLUSION

This study found no substantial difference in the discriminative
performance of radiomics features extracted using different seg-
mentation methods. However, there are differences in the actual
radiomics feature values derived and in the selected features
among segmentation methods. Until consensus on a segmentation
method for DLBCL is reached, it is advisable to use only predic-
tion models that are built using data with the same segmentation
methods.
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KEY POINTS

QUESTION: What is the influence of segmentation methods on
the discriminative power of baseline radiomics features in DLBCL?

PERTINENT FINDINGS: There is no difference in the discrimina-
tive power of radiomics features among segmentation methods.
However, different features are selected when applying different
segmentation methods.

IMPLICATIONS FOR PATIENT CARE: It is advisable to only use
prediction models that are build using data with the same seg-
mentation methods.

TABLE 4
Number of Independent Features per Segmentation Method, Number of Included Features, and Predictive Value for
Largest Lesion for All Extracted Features (n 5 483) and All Reliable, Repeatable, and Reproducible Features (n 5 99)

No. of
features Parameter

Independent
of MTV

Independent
of SUVpeak

Independent
of MTV and
SUVpeak

Independent of MTV
and SUVpeak and

uncorrelated

No. of features
in linear

regression CV-AUC (6SD)

483 SUV4.0 427 134 85 24 11 0.73 6 0.10

41%max 409 158 84 19 10 0.71 6 0.11

A50P 424 176 117 21 8 0.71 6 0.11

MV2 435 141 93 21 3 0.71 6 0.10

MV3 424 173 114 21 5 0.69 6 0.11

Best 437 168 122 25 10 0.69 6 0.11

99 SUV4.0 57 46 13 10 5 0.73 6 0.10

41%max 50 57 14 6 1 0.65 6 0.11

A50P 54 59 20 9 4 0.63 6 0.11

MV2 59 52 18 8 3 0.70 6 0.11

MV3 54 52 18 7 3 0.67 6 0.11

Best 59 55 21 10 3 0.69 6 0.11

41%max 5 41% of SUVmax; A50P 5 50% of SUVpeak; MV2 5 majority vote segmenting voxels detected by $2 methods; MV3 5

majority vote segmenting voxels detected by $3 methods.
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