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1. Introduction
Otoliths are paired calcified structures in the skull of 
bony fishes that support hearing and balance. There are 
three pairs of otoliths called sagittae, lapilli, and asterisci 
(Quist et al., 2012). The shape and size of otoliths are 
primarily determined by genetic factors. However, there 
is also considerable variability caused by environmental 
conditions. Therefore, otoliths exhibit considerable intra 
and interspecific variations (Wright et al., 2002; Vignon 
and Morat, 2010). Due to the interspecific differences in 
otolith shape, these calcified structures have been used in 
fish taxonomy (Davoodi and Rahimian, 2016; Lin and Al-
Abdulkader, 2019), in distinguishing populations or stocks 
(Vasconcelos et al., 2018; Wiff et al., 2020), in trophic 
ecology studies to determine the diet of piscivorous 
animals (Carvalho et al., 2019; Byrd et al., 2020), 
ecomorphological studies (Jaramillo et al., 2014; Assis et 
al., 2020), paleontological and paleo-ecological studies 
(Reichenbacher et al., 2007; Reichenbacher and Kowalke, 
2009), age and growth analyses (Khan et al., 2019; Heral 
and Bayhan, 2020).

Although otoliths have a species-specific morphological 
structure, they may also exhibit intraspecific changes in 
shape and size due to the effects of internal (physiological) 
and external (environmental) factors (Mille et al., 2015). 
Otolith morphology can vary between populations (Morat 

et al., 2012; Ozpicak et al., 2018) or stocks (Paul et al., 
2013; Zhao et al., 2018) of the same species, and within a 
species depending on sex (Yılmaz et al., 2014; Başusta and 
Khan, 2021), diet (Gagliano and McCormick, 2004; Mille 
et al., 2016), and ontogeny (Campana, 2004). In addition, 
morphological differences (asymmetry) can be observed 
between the right and left otoliths of the same fish 
(Motamedi et al., 2021; Teimori et al., 2021). On the other 
hand, environmental factors such as water temperature 
(Hüssy, 2008; Mahé et al., 2019), depth (Tuset et al., 2003; 
Assis et al., 2020), substrate type (Volpedo and Fuchs, 
2010; Jaramillo et al., 2014) and salinity (Capoccioni et 
al., 2011; Avigliano et al., 2014), as well as extreme habitat 
conditions (Schulz-Mirbach et al., 2011; Deng et al., 2011) 
can cause morphological variation in otoliths. 	

Ontogenetic allometry is a critical component in 
defining otolith shape (Monteiro et al., 2005; Xiong et 
al., 2015). Therefore, it is important to understand and 
describe the variability of otolith shape during ontogeny 
(Vignon, 2012). The literature reports that otolith 
morphology varies to some degree depending on the 
ontogenetic stage, which is determined by age (Ye et al., 
2015; Villegas-Hernández et al., 2018), size (Gonzales 
Naya et al., 2012; Motamedi et al., 2021), year class (Bolles 
and Begg, 2000; Gonzales-Salas and Lenfant, 2007), sexual 
maturity status (Montanini et al., 2017; Cerna et al., 2019) 
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or early life stages (larva to juvenile) (Yan et al., 2017; 
Coelho et al., 2019). In addition, Vignon (2012) found 
that otolith shape changed in a coral reef fish (Lutjanus 
kasmira) as it evolved from juveniles in the estuary to adults 
occupying either the channel or the outer reef off the coast 
of French Polynesia. Therefore, the researcher emphasized 
that otolith morphology is synergistically influenced by 
both ontogeny and environmental conditions. Similarly, 
Curcio et al. (2014) attributed differences in otolith shape 
between juvenile and adult  Lepidonotothen larseni  to 
different habitat preferences (pelagic and epibenthic) and 
ontogenetic shifts in feeding habits. In addition, Morat et 
al. (2012) demonstrated that ontogenetic shifts in feeding 
habits of red mullet populations in the northwestern 
Mediterranean affect otolith morphology.

The European perch (Perca fluviatilis L., 1758) is a 
carnivorous perch that is widely distributed throughout 
Eurasia but has also been successfully introduced into 
South Africa, Australia and New Zealand (Craig, 2000). Its 
size varies greatly depending on the water body in which 
it grows (Ceccuzzi et al., 2011). The diet of the European 
perch consists of zooplankton, benthic invertebrates 
and fish, and this species undergoes ontogenetic dietary 
changes (Persson et al., 1991, Yazıcıoğlu et al., 2016). 
Juveniles feed on pelagic zooplankton, then transition to 

benthic resources with age, and finally prey on fish when 
they are large enough (Hjelm et al., 2000). Although it is 
known that otolith shape and morphometry can change 
with fish ontogeny (Campana, 2004), little information 
is available on changes in otolith morphology during 
ontogeny for P. fluviatilis (Souza et al., 2020). Moreover, 
there is no study on the detection of the otolith 
morphological and morphometric changes based on 
ontogenetic diet differences in this species. Therefore, the 
main objective of our work is to assess the effects of the 
size-related ontogenetic shifts in feeding habits on the 
sagittal otolith shape of the European perch from Lake 
Ladik, Turkey. This research is a valuable contribution 
to studies on the biology of the species and the trophic 
ecology of its potential predators.

2. Materials and methods
2.1. Study area and sample collection
Lake Ladik (35° 40ʹ−36° 05ʹ E and 40° 50ʹ−41° 00ʹ N) is 
located on the borders of Ladik district, south of Samsun 
province, northern Anatolia (Figure 1). It is 10 km away 
from Ladik district. This lake has a tectonic character in 
terms of formation, an area of 1000 ha and a maximum 
depth of 6 m (Yılmaz et al., 2015). It was classified as a 
eutrophic and shallow lake (Apaydın Yağcı et al., 2015). 

Figure 1. Map of the study area.
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Sampling was conducted during the period April-
November 2019. European perch samples were collected 
from commercial fishermen in Lake Ladik. A total of 
172 specimens (90 females and 82 males) were collected, 
stored in a cooler, and brought to the laboratory. 
2.2. Laboratory analysis 
The total length (TL in cm) and sex of each fish were 
recorded. The studied specimens were divided into 
three size classes (Table 1): small (< 14 cm TL, N = 60), 
medium (14−20.9 cm TL, N = 60), and large fish (> 21 
cm TL, N = 52). The boundaries of these size classes were 
established as a consequence of a diet analysis study that 
revealed the main shifts in feeding habits of the European 
perch individuals in Lake Ladik (Yazıcıoğlu et al., 2016). 
The sagittal otolith (sagitta) pairs were removed, washed, 
dried and stored in labeled plastic vials. All analyses were 
performed using only the right otoliths, as no significant 
morphometric difference between the left and right 
otoliths of the European perch was found in previous 
works (Yılmaz et al., 2014; Şimşek et al., 2019). Otoliths 
were viewed under a binocular microscope (Leica S8APO) 
at 10× magnification. Each otolith was systematically 
positioned with the sulcus acusticus facing upward and the 
rostrum facing left. Two-dimensional digital images of the 
otoliths were taken with a digital camera (Leica DFC295). 
Reflected light was used to obtain high-contrast digital 
images. Otoliths were photographed as white silhouettes 
on a black background. 

The following morphometric variables were measured 
using image analysis software (Leica Application Suit ver. 
3.8): otolith length (OL, mm), otolith height (OH, mm), 
otolith perimeter (OP, mm) and otolith area (OA, mm2) 
(Figure 2). Then, six shape indices (SIs) such as shape factor, 
aspect ratio, circularity, roundness, rectangularity, and 
ellipticity were calculated based on these measurements. 
The formulae and biological meanings of these indices are 
given in Table 2 (Tuset et al., 2021).

The shape of each otolith was evaluated with the elliptic 
Fourier analysis. This method represents the outline using 
several components known as harmonics. Each harmonic 
has four coefficients (a, b, c, d), which are the result of 
projecting each point of the contour onto the (x) and (y) 
axes. The precision of the outline description improves as 
the number of harmonics increases (Kuhl and Giardina, 
1982). Shape 1.3 software (Iwata and Ukai, 2002) was 
used to calculate the elliptic Fourier coefficients (EFCs). 
A total of 80 coefficients were obtained for the maximum 
of 20 harmonics. The EFCs were normalized according 
to the first harmonic in the shape program and were thus 
made invariant against the differences in the otolith size, 
its orientation and the starting point of the outline.  In 
addition, the number of harmonics required to adequately 
describe the otolith outline was determined using the 

Fourier power spectrum (Crampton, 1995). For the nth 
harmonic, the Fourier power (FPn) is given by expression:
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where an, bn, cn and dn are the Fourier coefficients of the nth 
harmonic. Then, the percentage Fourier power (FPn%) and 
the cumulative percentage of the Fourier power (CFPn%) 
were calculated by the following formulas:
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Table 1. Number of specimens (N) and fish size composition for 
each ontogenetic group of European perch from Lake Ladik.

Ontogenetic 
groups Sex N

Total length (cm)

Mean ± SD Range

I
F 30 11.03 ± 1.90   7.5−13.9
M 30 10.32 ± 1.63   8.0−13.9

II
F 30 17.38 ± 1.57 14.2−20.8
M 30 17.15 ± 1.76 14.3−20.8

III
F 30 23.54 ± 1.76 21.3−27.5
M 22 23.38 ± 1.63 21.1−26.5

F, female; M, male; SD, standard deviation.

Figure 2. Proximal photograph and measurements of the right 
sagittal otolith of European perch from Lake Ladik. OL: otolith 
length, OH: otolith height, OP: otolith perimeter (red line), OA: 
otolith area, scale bar = 2 mm.
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As 99.99% of the cumulative power was described by 
the first nine harmonics, the otolith shape of the European 
perch was summarized by 36 Fourier coefficients. However, 
the first three coefficients (a1, b1, c1) derived from the 1st 
harmonic were not included because they degenerated 
during the normalization process. Therefore, the total 
number of EFCs for each otolith was determined as 33 
(4×9−3). Each of the EFCs was treated as an independent 
variable.
2.3. Data analysis
Before each analysis, the data were subjected to a normality 
and homogeneity tests, i.e. the Kolmogorov–Smirnov test 
(or Shapiro–Wilk test) and Levene’s test, respectively. 
The independent two-sample t-test or Mann–Whitney 
U test was used to compare the fish size of females and 
males in each ontogenetic group. The Kruskal–Wallis test 
was used to examine the distribution of fish size between 
ontogenetic groups.

The sex effect (female-male) on the otolith variables 
(SIs and EFCs) in each of the ontogenetic groups was 
controlled with the analysis of covariance (ANCOVA), 
using sex as the main factor and fish size as a covariate 
(Song et al., 2019). If the interaction “sex×TL” was found to 
be significant in the ANCOVA, the corresponding variable 
was not included in subsequent analyzes because it could 
not be accurately standardized.

The effects of fish size on otolith parameters (SIs and 
EFCs) need to be examined to allow valid comparisons 
between ontogenetic groups. To this end, the ANCOVA 
test was performed by using group as the main factor and 
fish size as a covariate (Song et al., 2019). If the interaction 
“group×TL” was significant in the ANCOVA, the 
parameter in question was excluded from further analyses 
because it could not be precisely adjusted. If it was not, 
this variable was standardized according to the allometric 
growth model (Lleonart et al., 2000):
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where Ms is the standardized variable; Mo is the original 
variable; x̄ is the mean fish size (16.85 cm) for all specimens 
from three ontogenetic groups; x is the fish size; b is a 
parameter calculated for each variable as the slope of the 
regression between log Mo  and log x for each variable. 
However, the EFCs were not subjected to the fitting process 
because they were already generated in a standardized way 
in the Shape software (Agüera and Brophy, 2011). The 
standardized values of the different otolith variables (SIs 
and EFCs) were compared between ontogenetic groups 
using one-way ANOVA or the Kruskal–Wallis test by 
choosing an appropriate pairwise comparison test. 

Since multicollinearity problem was detected among 
the otolith variables, a principal component analysis 
(PCA) based on the variance-covariance matrix was 
performed to reduce the dimensionality of the data. Thus, 
a new set of orthogonal variables, principal component 
scores (PCs), for the subsequent canonical discrimination 
analysis (CDA) was obtained to separate ontogenetic 
groups from each other (Song et al., 2019). The PCA was 
performed three times with SIs, EFCs and a combination 
of both variables.

The CDA was performed with the adopted PCs to 
compare otolith shape variations among the ontogenetic 
groups. Three CDA were carried out: one using only the 
selected PCs from SIs, another using only the selected PCs 
from EFCs and the last one combining both. The quadratic 
discriminant function analysis was employed because 
the assumption of the homogeneity of group covariance 
matrices was not met (Box’s M test, p < 0.01). The 
performance of the discriminant analysis was evaluated 
with the Wilks’ lambda (λ) values. The classification 
accuracy was estimated by using leave-one-out cross-

Table 2. Otolith shape indices calculated from morphometric measurements.

Shape indices Equation Explanation

Form factor (4π × OA) / OP2 It estimates the irregularity of the otolith surface area, and takes a value of 1.0 for a 
perfect circle.

Aspect ratio OL / OH It refers to the degree of otolith elongation.
Circularity OP2 / OA It compares the otolith shape to a perfect circle.
Roundness (4 × OA) / (π × OL2) It compares the otolith shape to a perfect circle.

Rectangularity OA / (OL × OH) It describes the variations in length and height with respect to the otolith area, and 1.0 
corresponds to the perfect square.

Ellipticity (OL – OH) / (OL + OH) It gives information about whether the change in axes is proportional or not.

OL, otolith length; OH, otolith height; OP, otolith perimeter; OA, otolith area.
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validation by means of the jackknife method. Comparisons 
among the ontogenetic groups were conducted using a 
permutational multivariate analysis of variance (one-
way PERMANOVA; Anderson, 2001). The one-way 
PERMANOVA was based on the Euclidean distance and 
9999 permutations.

All statistical analyzes were performed using SPSS 
21.0, Minitab 17.0, PAST 3.0 (Hammer et al., 2001) and 
the Microsoft Excel package.

3. Results
3.1. Fish morphometry
There was no significant difference in fish size between 
the sexes in each group (t-test, p > 0.05 for group I and II; 
Mann–Whitney U test, p > 0.05 for group III). Fish size 
differed considerably among ontogenetic stages (Kruskal–
Wallis test, p < 0.001).
3.2. Otolith morphometric analysis
The effect of sex difference on the SIs was not significant 
(ANCOVA, p > 0.05 in all cases). For this reason, the 
SI values from both sexes were combined for the next 
analysis. The form factor and circularity indices were 
omitted from further analyses because of the interaction 
between group and fish size observed for these parameters 
(ANCOVA, p < 0.05). The remaining four SIs (aspect 
ratio, roundness, rectangularity and ellipticity) were 
allometrically standardized with the fish size. All shape 
indices, except roundness, were significantly different 
among ontogenetic groups (one-way ANOVA, Table 3). 
The highest values of the SIs were observed in group II. 
In the PCA using only SIs, the first two PCs accounted 
for 100% of the total variance (99.43% for PC1, 0.57% for 
PC2). PC1 differentiated the groups based on the aspect 
ratio (correlation coefficient, R = 0.78) and roundness (R = 
0.58).  Roundness (R = −0.76), aspect ratio (R = 0.48) and 
rectangularity (R = 0.44) were responsible for the variation 
in the PC2. The results of the CDA performed using the SIs 
are presented in Table 4 and shown in Figure 3. The first two 
canonical discriminant functions were used in the CDA (λ 
= 0.887 for function 1–2, p = 0.000; λ = 1.000 for function 

2, p = 0.859). The first function (F1) explained 99.9% of 
the total variance (eigenvalue, E = 0.127) and was closely 
correlated with PC1 (R = 0.96). The F1 distinguished group 
II from the other groups well. The second function (F2) 
explained 0.1% of the total variance (E = 0.00) and was 
closely correlated with PC2 (R = 1.00). The F2 was unable 
to separate between ontogenetic groups. The percentages 
of well-classified individuals obtained with the CDA were 
very low for group I (38.3%) and group III (30.8%). A 
moderate classification percentage was obtained for group 
II (68.3%) using the SIs. The CDA generated a 46.5% 
overall classification success rate. The nonparametric 
multivariate analysis verified the CDA results. The one-
way PERMANOVA did not show significant differences 
among ontogenetic groups (F = 1.82, p = 0.139).
3.3. Fourier shape analysis
In the analysis of the sex effect on the EFCs, the ANCOVA 
test showed that seven EFCs (a2, b3, b5, b7, b8, a9, b9) 
differed between females and males (p < 0.05). Therefore, 
these coefficients were removed from the subsequent 
analysis. Regarding the effects of the fish size on the EFCs, 
it was determined that four EFCs (c2, d3, c4, a7) differed 
among ontogenetic groups (ANCOVA, p < 0.05). Thus, 
they were not included in the further analysis. According 
to statistical tests, four of the remaining 22 EFCs were 
significantly different among groups (One-way ANOVA, 
c3, F = 3.36, p = 0.03; d8, F = 3.54, p = 0.03; Kruskal–Wallis 
test, d1, H = 105.17, p = 0.00; a3, H = 9.42, p = 0.01). In the 
PCA using only EFCs, the first two PCs described 100% of 
the total variance (98.999% for PC1, 1.001% for PC2). PC1 
differentiated the groups based on the coefficient d1 (R = 
0.99).  The coefficients b2 (R = 0.58) and c3 (R = −0.54) 
were responsible for the variation in the PC2. The first two 
canonical discriminant functions were used in the CDA (λ 
= 0.409 for function 1-2, p = 0.000; λ = 0.955 for function 
2, p = 0.005). The F1 explained 96.6% of the total variance 
(E = 1.333) and was closely correlated with PC1 (R = 
0.99). The F1 distinguished group I from the other two 
groups well. The F2 explained 3.4% of the total variance 
(E = 0.047) and was closely correlated with PC2 (R = 1.00). 

Table 3. Standardized values (mean ± SD) of the shape indices for the three size classes of 
European perch, and their statistical comparisons among the ontogenetic groups.

Shape indices Group I Group II Group III F p

Aspect ratio 1.95 ± 0.07b 1.98 ± 0.08a 1.94 ± 0.12ab 3.68 0.03
Roundness 2.67 ± 0.15 2.70 ± 0.12 2.66 ± 0.14 0.91 0.40
Rectangularity 0.69 ± 0.02b 0.70 ± 0.02a 0.69 ± 0.02b 3.58 0.03
Ellipticity 0.32 ± 0.02b 0.33 ± 0.02a 0.32 ± 0.02b 4.28 0.02

Means with different lowercase letters are significantly different. F, ANOVA test statistic; p, 
significance.
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The F2 separated group II from group III (Figure 4). The 
CDA generated an overall classification success rate of 
69.9% (Table 4). The highest rate was obtained for group 
I (88.3%), followed by group III (63.5%) and group II 
(56.7%). The nonparametric multivariate analysis verified 
the CDA results. The one-way PERMANOVA yielded 

significant differences among the three ontogenetic groups 
(F = 37.79, p = 0.0001). Pairwise comparison detected 
considerable differences between groups I and II (p < 
0.0002), groups I and III (p < 0.0002), and groups II and 
III (p < 0.0002). The reconstruction of the otolith shape 
outline from the average EFCs for each ontogenetic group 

Figure 3. Quadratic discriminant function analysis plot indicating 
separation of the three ontogenetic groups (I, II, III) of European perch 
using the SIs.

Table 4. Leave-one-out cross-validation matrix of the quadratic discriminant function analysis 
for the three ontogenetic groups of European perch, based on different variables of the otolith.

Variable Group

Predicted group membership

Total OverallI II III

SIs
I 38.3 40.0 21.7 100.0

46.5II 20.0 68.3 11.7 100.0
III 32.7 36.5 30.8 100.0

EFCs
I 88.3 10.0 1.7 100.0

69.9II 18.3 56.7 25.0 100.0
III 3.8 32.7 63.5 100.0

SIs + EFCs
I 88.3 8.3 3.4 100.0

73.3II 16.7 66.6 16.7 100.0
III 5.8 30.7 63.5 100.0

Correct classifications are in bold.
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is shown in Figure 5. The main shape differences appeared 
on the dorsal margin, and also the posterior-dorsal and 
posterior-ventral regions of the otolith.
3.4. Combination of the two methods
In PCA with a combination of SIs and EFCs, the first two 
PCs accounted for 100% of the total variance (72.05% 
for PC1, 27.95% for PC2). The coefficient d1 (R = 0.98) 
was responsible for the major variation in the PC1. The 
second component (PC2) was defined by aspect ratio (R 
= 0.77) and roundness (R = 0.56). The first two canonical 
discriminant functions were used in the CDA (λ = 0.385 
for function 1-2, p = 0.000; λ = 0.892 for function 2, p = 
0.000). The F1 (E = 1.317) was strongly related to PC1 
(R = 0.96) and explained 91.6% of the total variance, 
distinguishing group I well from the other two groups. 
The F2 (E = 0.121) was strongly correlated with PC2 (R = 
0.99) and explained 8.4% of the total variance, separating 
groups II and III (Figure 6). The CDA achieved an overall 
classification success rate of 73.3% (Table 4). The highest 
rate was obtained for group I (88.3%), followed by group 
II (66.6%) and group III (63.5%). These results were also 
confirmed by the one-way PERMANOVA which showed 
a significant difference among groups (F = 5.67, p < 0.001).

4. Discussion
The results of this study indicated the presence of 
ontogenetic variations in the sagittal otolith shape of 

European perch captured from Lake Ladik. In many 
studies carried out with different fish species, it has been 
reported that otolith morphology varies according to 
ontogenetic stages represented by size groups (Xiong et al., 
2015; Montanini et al., 2017; Cerna et al., 2019; Motamedi 
et al., 2021; Teimori et al., 2021). Traditional morphometry 
analysis based on different shape indices showed that 
the sagittal otolith of the species is elongated and oval-
shaped. The same observation was also reported by some 
researchers who have studied the otolith morphometry of 
European perch (Yilmaz et al, 2014; Sapota and Dabrowska, 
2019). However, Sapota and Dabrowska (2019) reported 
that there was no change in European perch otolith shape 
during fish growth. Contrary to Sapota and Dabrowska 
(2019), we detected some differences in aspect ratio, 
rectangularity, and ellipticity indices according to fish 
size classes. While the highest values of shape indices 
were obtained for the fish in the medium-sized group, the 
lowest values were calculated for the individuals in the 
large-sized group. This finding indicates that the otoliths 
of medium-sized specimens are more elongated and have 
a more oval shape. Similar to our results, Biolé et al. (2019) 
reported that medium-sized individuals of Odontenthes 
argentinensis have a higher aspect ratio and rectangularity 
values than small- and large-sized ones. Callicó Fortunato 
et al. (2017) found that the smaller individuals of Mugil liza 
have a lower aspect ratio and therefore a more rectangular 

Figure 4. Quadratic discriminant function analysis plot indicating 
separation of the three ontogenetic groups (I, II, III) of European perch 
using the EFCs.



ÇÖL and YILMAZ / Turk J Zool

392

otolith shape, while larger specimens tend to have a more 
circular otolith. Bostanci et al. (2015) determined that the 
ellipticity index increased with total length in Alburnus 
mossulensis, while it decreased in Alburnus tarichi. Tuset 
et al. (2003) observed that the otoliths turned into a more 
oval shape with the increased length in Serranus scriba.

Our work showed that the aspect ratio, roundness, and 
rectangularity indices are more effective in discriminating 
the ontogenetic stages. However, we were able to achieve 
a low overall classification success of 46.5% for the 
ontogenetic group discrimination of European perch, 
with otolith shape indices mentioned above. The failure 
of shape indices in the differentiation of ontogenetic 
groups may be associated with the lack of sufficient 
and independent morphometric variables. Recently, 
the insufficiency of classical indices in identifying fish 
species has been documented, and their routine usage is 
no longer recommended (Tuset et al., 2021). Although 
the biological interpretation of elliptic Fourier analysis is 
more complex than linear morphometry (Stransky and 
MacLellan, 2005), it is considered the most objective 
and powerful shape analysis technique to capture all 
shape variations and small-scale individual differences in 
otolith outlines (Campana and Casselman, 1993). In the 
present study, three ontogenetic groups of European perch 
were classified with an accuracy of 69.9% using elliptical 
Fourier coefficients. Similarly, Biolé et al. (2019) achieved 
a high overall classification success of 98.4% in separating 
the three ontogenetic developmental stages of Odontesthes 
argentinensis using elliptical Fourier descriptors. Our study 

also disclosed that using elliptical Fourier coefficients 
alone or combining them with morphometric variables 
in describing ontogenetic changes in sagittal otoliths of 
European perch provides higher classification success 
than using shape indices alone. Similar findings have been 
obtained in other species, such as Sebastes spp. (Zhuang et 
al., 2015), Astyanax spp. (Avigliano et al., 2018), and Nibea 
albiflora (Song et al., 2019).

Otolith morphology is regulated by a complex 
combination of physiological (sexual maturity, growth, 
etc.) and environmental (temperature, salinity, depth, 
diet, etc.) factors (Vignon and Morat, 2010; Mille et al., 
2015). The effects of these factors on the otolith shape may 
be more or less depending on the fish species and otolith 
type (Bounket et al., 2019). Hüssy (2008) suggested that 
the general shape of the otolith is an ontogenetic process 
and that finer details can be changed by environmental 
conditions, particularly feeding level (Gagliano and 
McCormick, 2004) and nutrient availability (Cardinale et 
al., 2004). On the other hand, it has been reported that diet 
composition may be a source of otolith shape variation 
through direct and/or indirect (otolith growth) processes 
(Mille et al., 2016). Moreover, ontogenetic changes in diet 
composition may contribute to the differentiation of otolith 
morphology (Morat et al., 2012; Biolé et al., 2019). The diet 
of European perch inhabiting Lake Ladik displays marked 
changes according to size classes. The small-sized fish (<14 
cm TL) fed only on macroinvertebrates, while large-sized 
individuals (>21 cm TL) only consume prey fish. The diet of 
medium-sized specimens (14-20.9 cm TL) is composed of 
more prey fish and fewer macroinvertebrates (Yazıcıoğlu et 
al., 2016). These ontogenetic shifts in diet were reflected in 
the otolith shape, and the three size groups were correctly 
classified with a ratio of 73.3%. However, the most marked 
differences were observed in otoliths of the small-sized fish, 
with a classification accuracy of 88.3%. The classification 
accuracies were 66.6% and 63.5%, respectively, for 
medium- and large-sized fish. This case indicates that the 
otolith shape does not change much after the European 
perch reaches 14 cm in length. According to some authors, 
the most visible change in otolith shape occurs in a size 
corresponding to the onset of sexual maturity (Tuset et al., 
2003; Gonzalez Naya et al., 2012; Xiong et al., 2015). This 
is the size in which metabolism is markedly altered, sexual 
maturation affects fish growth and thus has an impact on 
otolith shape (Morat et al., 2012). Therefore, in addition 
to the morphological differences between juvenile and 
adult fish, it is also possible to identify variations in otolith 
growth rates before and after first reproduction (Carvalho 
et al., 2015). The size of the first sexual maturity of the 
European perch specimens in Lake Ladik is unknown. 
However, Kottelat and Freyhof (2007) reported that sexual 
maturity of this species was reached in the size range 

Figure 5. Average shapes of the otoliths of European perch in the 
three ontogenetic groups, based on the mean EFCs. Arrows show 
the main shape differences.
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corresponding to 1–2 years of age in males and 2–4 years 
of age in females. When these age ranges are accepted 
for the European perch specimens in the study area, the 
first maturity corresponds to 11.9 cm TL (8.7–14 cm) in 
males and 15.7 cm TL (11–21.5 cm) in females (Saygin et 
al., 2016). In this case, group I, which contains 80% of the 
immature fish, represents the juvenile stage of the species, 
while group II and III, which contains 97% of the mature 
individuals, corresponds to the adult stage. Discrimination 
analyses revealed the morphological differences in the 
otoliths of fish belonging to the two stages. 

In conclusion, this study showed that there is clear 
ontogenetic variation in the otolith shape, which could be 
valuable to characterize different life stages of European 
perch. In distinguishing the ontogenetic stages represented 
by size groups, otolith shape analysis was more effective 
than morphometric analysis. Simultaneous use of both 
methods strengthened the analysis. The observed changes 
in sagittal otolith shape throughout the ontogeny of 
European perch living in Lake Ladik were associated with 

both dietary shifts and sexual maturity. The outcomes 
of the present work can be used in future studies on the 
trophic ecology of European perch predators and in 
population studies based on the contour of otoliths of this 
species.
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