
Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance.
Frey, U. J. 2020. Putting machine learning to use in natural resource management—improving model performance. Ecology and
Society 25(4):45. https://doi.org/10.5751/ES-12124-250445

Research

Putting machine learning to use in natural resource management—
improving model performance
Ulrich J. Frey 1

ABSTRACT. Machine learning models have proven to be very successful in many fields of research. Yet, in natural resource management,
modeling with algorithms such as gradient boosting or artificial neural networks is virtually nonexistent. The current state of research
on existing applications of machine learning in the field of social-ecological systems is outlined in a systematic literature review. For
this purpose, a short introduction on fundamental concepts of neural network modeling is provided. The data set used, a prototypical
case study collection of social-ecological systems—the common–pool resources database from the Ostrom Workshop—is described. I
answer the question of whether neural networks are suitable for the kind of data and problems in this field, and whether they or other
machine learning algorithms perform better than standard statistical approaches such as regressions. The results indicate a large
performance gain. In addition, I identify obstacles for adapting machine learning and provide suggestions on how to overcome them.
By using a freely available data set and open source software, and by providing the full code, I hope to enable the community to add
machine learning to the existing tool box of statistical methods.
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INTRODUCTION
By now, machine learning algorithms have proven themselves as
powerful problem-solving tools in many domains. Examples
include complex strategy games like chess and Go (Silver et al.
2017), strategic decisions under uncertainty against human
players—e.g., poker (Brown and Sandholm 2019)—or complex
cooperative games (Mnih et al. 2015). Other areas include
autonomous driving, translations in many languages via a
universal interlingua (Johnson et al. 2017), and image recognition
(multiclass object detection) in the millisecond range, beating
human performance (Le et al. 2012, Girshick 2015).  

For many scientific domains, the question arises as to whether
and how these advances in machine learning can be applied to
their own research questions. It has become apparent that
application of machine learning algorithms varies greatly between
individual disciplines. In particular, in the fields of natural
resource management and social-ecological systems it seems that
machine learning methods are still used rather infrequently.
However, applying machine learning algorithms to natural
resource management problems may result in various benefits:
improving explanatory power for many models—thus, for
example, being better able to distinguish important from
irrelevant factors for successful management; generating more
robust results by using different algorithms with the same
workflow (see Discussion), and finally, providing an extension to
the toolbox of methods for analyzing case studies.  

Given that machine learning algorithms have demonstrated their
potential for modeling in many fields (LeCun et al. 2015), I aim
to estimate the potential of machine learning methods, especially
deep neural networks, for modeling natural resource systems. I
evaluate the general suitability or unsuitability in both theory
(through a literature review) and practice (a systematic search for
neural network architectures for a typical data set). By assessing

the potential of machine learning in natural resource research and
by summarizing the state of research and best practices as well as
directions, future research may profit. Such evaluations have also
been done for other research fields such as biology and medicine
(Ching et al. 2018).  

The next section of this article outlines the state of research on
existing applications of machine learning in the fields of social-
ecological systems, (community-based) natural resource
management, and common-pool resources in order to assess for
which problems other authors have applied machine learning
methods.  

The Data section describes the data set used, a prototypical case
study collection from social-ecological systems—the common-
pool resources database from the Ostrom Workshop (n = 122). In
the Results section, I discuss whether deep neural networks
perform better than other methods in terms of model quality
(goodness-of-fit). By comparing different architectures, it will
become clear which kinds of networks may serve as a base for
improved models in the future. After that, in the Discussion, I
review whether neural networks could indeed be a methodological
step forward in the area of natural resource management.  

The Methods section provides a short introduction on
fundamental concepts of neural network modeling in order to
facilitate future analyses. A prototypical data set is analyzed by
using many different variations (architectures) of neural networks
to establish the general suitability of this method for natural
resource management data.  

To make the agenda more concrete, I strive to answer three
research questions, in particular: " 

1. Can shallow or deep neural networks achieve a decisive
improvement in model quality compared to previously
employed statistical techniques such as linear regressions?" 
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2. Are there architectures that are particularly suited for the
analysis of social-ecological systems?" 

3. Are other machine learning methods suited to deal with
social-ecological case study collections?

State of research
One of my goals was to evaluate whether and how machine
learning methods have already been used in the fields of natural
resource management and social-ecological systems (e.g.,
Humphries et al. 2018). Hence, in order to gain an overview, a
systematic literature analysis was conducted on 19–21 November
2019 and 23 November 2020. A keyword search was conducted
in more general journals—Nature, Science, Proceedings of the
National Academy of Sciences of the United States of America,
Proceedings of the Royal Society, Nature Methods, Nature
Sustainability, Nature Climate Change, and PLoS ONE—and in
journals that are central to natural resource management (Ecology
& Society, Sustainability Science, International Journal of the
Commons, Ecological Modeling, Global Environmental Change,
Journal of Environmental Management, World Development,
Environmental Modeling and Software, and Journal of Cleaner
Production). The search was conducted using the internal search
engines of each journal.  

The keywords that were searched for were “machine learning”,
“neural network”, and “deep learning”. For the more general
journals, which, in contrast to the topic-specific journals, are not
restricted to natural resources, I added to each of the three search
terms the keywords “natural resource” or “social ecological”.
Using no quotation marks on both search terms resulted in
thousands of irrelevant hits (e.g., on learning); using them for
both search terms simultaneously was too restrictive and resulted
in 0 hits. Some journal search engines interpreted phrases in
quotation marks as logical “ORs”, which resulted in many
irrelevant hits (e.g., “machine learning” as machine OR learning).

The exact figures for each search combination are provided in
Table A1. Typically, searches produced 20–150 hits. These were
screened. If  a hit seemed to be about any topic in natural resource
management and used any kind of machine learning techniques,
it was included in the final data set (Table A2). Of course, many
other machine learning classifiers and algorithms exist (Elith et
al. 2006, Fernández-Delgado et al. 2014). However, I was
concerned with only the most widely used algorithms—neural
networks, gradient boosting, and generalized linear models—
since even they are rarely used for natural resource management
problems.  

All in all, very few hits were found. Although the first screening
resulted in n = 2.616 hits for topic-specific journals and 3.287 for
more general journals, only 32 papers were about applying
machine learning to natural resources in any way. This was rather
surprising given the spectacular advances in other fields. This
number proves that machine learning does not yet play a role in
natural resource management. I discuss possible reasons for this
in the Discussion section.  

Before discussing the few relevant papers, I note that in many
adjacent research fields such as renewable energies (IPCC 2018)
or biodiversity research, machine learning methods, in particular
neural networks, are used quite frequently. Typical fields of

application include, but are not limited to, wind energy potential
assessment, species biodiversity models, expansion models of
species, spatial habitat modeling, evaluation of remote sensing
data, and prediction of solar radiation.  

One of the first applications of neural networks for social-
ecological systems was provided by Frey and Rusch (2013, 2014).
For common-pool resources case studies, shallow neural
networks are used to identify success factors. These papers also
substantiate the claim often made that neural networks are able
to cope better with nonlinearities between features than are
regressions (Paruelo and Tomasel 1997). Very similar is the
attempt to identify success patterns in fisheries with random
forests (Gutiérrez et al. 2011).  

Among other uses of machine learning, two prominent topics for
applying machine learning are modeling land use change (Cao et
al. 2019, Saputra and Lee 2019; for land use change in rivers, see
Álvarez-Romero et al. 2015, Magierowski et al. 2015; for
classifying habitats, see Václavik et al. 2013), as well as predicting
and classifying fishermen behavior (Jules Dreyfus-León 1999,
Cenek and Franklin 2017, Crespo et al. 2018, O’Farrell et al.
2019). For further details on these studies, see Table A2 and the
Literature Cited section.  

All in all, neural networks and random forests were the most
popular techniques, while content-wise, predictive tasks for
spatial patterns dominated. However, there were no commonly
adopted workflows or any other kind of standards across papers.

Given these few existing attempts to make machine learning
fruitful for natural resource topics, it is even more important to
explore in practice whether neural networks can improve model
quality. I therefore implemented many neural network
architectures to explore this potential in more detail.

Data
The common-pool resources database was chosen for the test of
neural networks and the method comparison described in the
State of research section. It is a typical data set consisting of case
studies of irrigation systems and fisheries (n = 122), and is
available online (https://seslibrary.asu.edu/cpr). The idea is that
it can stand for hundreds of other data sets that have a similar
structure concerning number of variables, tabular structure, and
concepts involved. Reference data sets are well-known from other
fields, one famous example being the MNIST data set (http://
yann.lecun.com/exdb/mnist/), which serves as a benchmark for
comparing performance of machine learning classifiers. In
contrast to other data sets outside natural resource management,
it is relatively small, but differences between cases are rather large,
which means that pattern recognition via supervised learning is
particularly suitable.  

The structure of the common-pool resources database was
developed at the Ostrom Workshop in Political Theory and Policy
Analysis at University Indiana Bloomington. The data have been
collected for several years and are the basis for perhaps the most
influential analysis on social-ecological systems, Governing the
Commons (Ostrom 1990). The database comprises about 500
variables that include demographic, geographical, social, cultural,
climatic, economic, and technical details of irrigation systems and
fisheries worldwide.  
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There were several reasons for selecting this data set. First,
analyses have shown that the data set is typical for social-
ecological case studies (Frey 2018). Second, it has a sufficient
number of heterogenous cases.  

The 593 variables were aggregated; i.e., assigned to 24 abstract
concepts, such as social capital, resource size, or participation
opportunities. The details of assigning the variables to these
concepts can be found in Frey (2018). One benefit of aggregating
is that missing variables are no longer problematic, since existing
variables within a concept can stand in for variables that are
missing.  

The dependent variable was ecological success. The variables it is
composed of can be found in Table A4. All variables were
normalized with zero mean and unit variance. This is a common
step in data preparation for neural networks to avoid the problems
of exploding and vanishing gradients.

METHODS
Given that neural networks usually work with thousands or even
millions of data records, one important question to be answered
first is whether neural networks are at all suited to the much
smaller data sets that are typical of natural resource management.
It is yet unclear if  the kind of data that are characteristic of
collections of case studies (only a few hundred cases with a few
hundred variables that can be aggregated to a few dozen concepts)
require neural networks at all. This was one goal of this
investigation.  

Another important question is whether deep neural networks
(with multiple hidden layers between input and output) are a
suitable method to use for natural resource management. Perhaps
nonmachine learning methods or very simple neural network
architectures prove to be sufficient. Hence, I first introduce deep
neural network architecture and shallow neural networks (only
one hidden layer) before shortly characterizing other methods in
order to compare their model fits on this data set, which is typical
for case studies with many variables.  

By now, a large variety of different architectures for neural
networks exist (LeCun et al. 2015). Each type of neural network
architecture is adapted to a certain kind of problem. For example,
the best results on most image recognition tasks have been
achieved using deep convolutional neural networks, whereas
Long Short-Term Memory networks have proven to be superior
to other architectures on time series analysis tasks (Hochreiter
and Schmidhuber 1997). However, in principle, finding the right
architecture is a matter of trial and error, especially parameter
fine-tuning.  

For tabular data, like those used in this article, shallow or simple
deep neural networks with only a few layers have achieved good
fits (Frey and Rusch 2013). Since other architectures are for other
kinds of tasks, mostly highly specific, I have not further tested
such architectures and have constrained my tests to feed-forward
and deep feed-forward nets.  

Fine-tuning such networks involves mainly adapting their
hyperparameters. These are the “nuts and bolts” of a network. It
is well-known that parameters like number of layers, number of
hidden neurons, learning rate, or number of training epochs make
a considerable difference for the final goodness-of-fit of a model

(LeCun et al. 2015). In fact, besides feature construction or
extraction (providing meaningful input data; e.g., by aggregating
variables), hyperparameter tuning is one of the core steps of a
typical machine learning pipeline.  

Again, finding the best combination of parameters is a matter of
trial and error. Traditionally, researchers manually tried out the
most promising combinations. However, with increasing
computing power and ever more complex models, this task has
been outsourced to computers. This is called grid search.  

There are three types of grid search: first, Cartesian grid search,
where a discrete number of parameter choices (e.g., 10, 20, and
30 number of neurons, and 50, 100, and 150 epochs, which results
in nine combinations) is calculated. The second type is random
grid search, where values of parameters are drawn randomly from
a range (e.g., number of neurons between 10 and 30; epochs
between 50 and 150). Hence, the number of combinations is not
fixed. Typically, the maximum number of models to be calculated
is provided as a variable by the user. Third, Bayesian search, where
resulting fits of parameter combinations are themselves
optimized toward a decreasing error rate. This is not standard
and has not yet implemented in most leading software packages
(e.g., in Scikit-learn or SciPy in Python [Virtanen et al. 2019] or
h2o [LeDell et al. 2020]).  

It has been shown that random grid search usually yields better
results than Cartesian search, which in turn performs better than
manual tuning of parameters (Bergstra and Bengio 2012). Hence,
I implemented a random grid search for a large parameter sweep.
Since both methods are implemented very similarly in most
software packages, changing it often means just changing one
parameter. In h2o, for example, the parameter “strategy” of a grid
search must simply be switched from “Cartesian” to
“RandomDiscrete”.  

This systematic variation of more than 20,000 models tested (5000
runs x four methods) is necessary for three reasons: " 

1. to be sure about the best kind of architecture, in general, for
such data sets" 

2. to provide very sound starting values for further parameter
tuning by other researchers when modeling similar data sets

" 

3. to make the state-of-the-art goodness-of-fit for such kinds
of models known; this makes it possible to use as a
benchmark and a comparison to traditional models 

For all models, Table A3 presents an overview of the
hyperparameters varied and the actual values of the best model.
While more parameters have been tuned, those presented in Table
A3 are the most important ones. Thus, for most modelers, it might
be sufficient to tune only those—the rest most probably result in
only very minor improvements of model quality (< 1–2%).  

While my main goal was to explore the untapped possibilities of
neural networks for natural resource case study data, it could be
that other machine learning algorithms might perform even
better. For this reason, I provide a short comparison with another
algorithm—gradient boosting, a high-performing variant of
decision trees (Breiman 2001a), which are perhaps the most widely
used machine learning algorithms, since they have a good
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performance across a wide range of problems and are very robust
against noise (Alpaydin 2010). In fact, in the natural resource
management literature, as presented in the literature review in the
State of research section, variants of decision trees are the most
frequently used algorithm. Furthermore, their results are easily
interpretable and feature importance is readily accessible.  

In addition, since most case studies use regressions, I also
compared the results with generalized linear models so as to be
better estimate the performance boost that could be gained if
neural networks are employed in natural resource research. By
using a Gaussian distribution, the generalized linear models are
identical to multivariate linear regressions, hence, are comparable
to existing research. A description of parameters varied during
grid search for model optimization are provided in Table A3.  

All data were partitioned into two parts—a training (80%) and a
test set (20%). This is standard practice in machine learning and
is done to avoid overfitting. Overfitting means that a model may
perform very well on the training data but is very weak on the
new data (the test set) since it does not generalize very well; i.e.,
it captured too many details present in only the training set but
not in the test set.  

In addition, a five-fold cross-validation was performed. This
means that a different 20% was held out for each of the five models
while the training was done on 100% of the data, which was
important for such a limited number of cases. Thus, metrics like
goodness-of-fit are available for the training, the cross-validation,
and the test sets.  

I report the metrics of the test sets, which are standard, since they
best explain how well the model performed on data it has not
encountered before. Fig. 1 explains the workflow used.

Fig. 1. Workflow and relationship between training, validation,
and test set.

Since one of my goals was to make machine learning more
widespread in the community of natural resource management
and social-ecological systems, the choice of software was
deliberate. I chose h2o, which is open source software (LeDell et
al. 2020) and available for several programming languages; i.e.,
R, Python, and Scala with very similar structure and functions.
Hence, adapting the R code in Appendix 1 for any of the major
programming languages should be very easy—in fact, a matter of
hours at most. It is a standard workflow familiar to any data
scientist or machine learning researcher, so further developments
should be very easy.

RESULTS
For each method, a random grid search was run for 5000 (500
batches at a time) iterations. Parameters were deliberately of a
wide range so as to avoid missing good model parameter
combinations (“casting a wide net”). Thus, each run represented
a unique combination of parameters. The best 100 models/results
for each method were selected (Fig. 2). Each combination of
hyperparameters was considered one model.

Fig. 2. Model quality of the best 100 models for four methods
(CPR: common-pool resources; DNN: deep neural network;
GBM: gradient boosting machine; GLM: generalized linear
model; SNN: shallow neural network).

A first result is that model quality, in general, was very high. No
median of machine learning models was less than 0.58, and the
multivariate regressions were at a median of 0.27 (explanation of
variance). The best generalized linear model has a goodness-of-
fit of 0.52. As is known from other fields of research, machine
learning algorithms are usually very close together in terms of
explanatory value. This is true for the top-performing models of
my data set with deep neural networks (0.89), gradient boosting
machines (0.87), and shallow neural networks (0.84). However,
there was a larger gap between the model quality of the regressions
and the machine learning algorithms of about 0.32 (Table 1).  

A second result is that deep neural networks were a bit better than
shallow ones. The more complicated architecture with more
hidden layers seems to have been responsible for finding even more
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Table 1. Performance comparison of machine learning algorithms on the common-pool resources data set
 
Performance/machine
learning algorithm

Deep neural network Shallow neural
network

Gradient boosting
machine

Linear regression
(generalized linear

model)

Min. test R2 0.33 0.30 0.43 0.04
Max. test R2 0.89 0.84 0.87 0.52
Median test R2 0.68 0.58 0.69 0.27
Mean test MSE 0.015 0.020 0.015 0.035
Min. train R2 0.92 0.85 0.98 0.28
Max. train R2 0.99 0.99 0.99 0.66
Median train R2 0.99 0.96 0.99 0.49
Mean train MSE 0.0005 0.0020 0.0005 0.0250

general patterns in the data. As can be expected with such a small
data set, there was some overfitting. However, the algorithms still
generalized well on the test sets.  

A third result concerns the optimal architecture (Table A3). The
best deep neural network had four layers with 492, 13, 85, and
111 neurons, trains for approximately 400 epochs, and has a very
high learning rate of 0.12. The number of layers and neurons
determines the complexity of the problem the network is able to
learn—the more layers and neurons, the more complex. However,
there is a trade-off  between more layers and neurons and better
performance, since training time and computer resources also
increase. More problematic than this, however, is that with
increasing computing power of the network, overfitting occurs
and generalizing abilities decrease. Finally, the learning rate
defines the step size with respect to the change of weights. A higher
rate means faster progress but may result in nonoptimal weights;
a slower rate may result in a long training process and may get
stuck in local optima.  

Sometimes, combining the best, say for example five models,
results in an even better predicting model. This technique of
combining is called stacked ensemble. For each kind of machine
learning algorithm, I calculated a stacked ensemble, altogether
40 models. However, their predictive power was not higher than
the best-performing model. Thus, I do not report these results in
further detail.  

Hence, the results are clear-cut: " 

1. All machine learning algorithms improved model quality in
comparison to linear regressions." 

2. The boost in model performance ranged from 35 to 40%." 

3. Deep neural networks (2–4 layers) increased model quality
in comparison to shallow neural networks (one hidden layer
only). The adjusted R2 for this particular data set increased
the goodness-of-fit by about 5%." 

4. Gradient boosting machines are similar in performance to
deep neural networks." 

5. Stacked ensembles that combine multiple models did not
perform better than the best model for these kinds of tabular
data." 

6. Model performance varied widely. A large parameter sweep
(grid search) was necessary to identify good parameter
combinations.

DISCUSSION
This comparative analysis has shown that machine learning
methods, in general, and deep neural networks, in particular, may
offer significant advantages for the analysis of larger collections
of natural resource case studies. However, one limitation of this
study is that it is unclear how well one can generalize from this
particular data set to other data sets. A limitation of neural
networks has been their black box character; yet, with modern
algorithms, the influence of independent variables is no longer
unknown. They are well capable of estimating each factor
independently.  

Machine learning methods offer not only substantial model
improvements but also decision-making support—e.g., by
visualizing the importance of variables in gradient boosting, and
thus may help improve ecological sustainability. Their high
performance is not surprising given their ability to deal with noisy
data and nonlinearities. With various software solutions being
available (e.g., Keras in Python or h2o [LeDell et al. 2020]), which
no longer require deeper mathematical knowledge about the
functioning of neural networks, implementing machine learning
algorithms should pose no issues. Nevertheless, a good
understanding of the problem and the respective methods that
can be applied is necessary; otherwise, the interpretation of results
leads to errors. This also applies to the choice of the architecture
and the method itself, even if  advanced commercial software
packages like keras-automl or h2o-automl offer automated
workflows.  

However, despite these clear advantages, machine learning
methods are very rarely applied in natural resource research. I
identify three main reasons why:  

First, machine learning methods require large amounts of data.
Therefore, individual case studies cannot be analyzed; instead, a
data collection such as that available in a database is needed. In
addition, these data must be fairly complete, since neural networks
require complete data as input. Imputation usually leads to poor
results. However, most studies deal in detail with one or fewer
case studies. The lower limit for neural networks, however, is
approximately 100 cases, as the demonstrated in the State of
research section. Since deep neural networks can play out their
advantages mostly for large data sets (e.g., images, text corpora),
this may be one reason for the slow use of these techniques.  

Second, data—case studies—need to be in a standardized format
to be comparable (Frey 2017). Comparable, consistently
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operationalized data sets with unambiguous definitions,
concepts, and variables are rare. There is a clear lack of such large,
high-quality data sets in natural resource management research
(Poteete et al. 2010). Open access data are still rare.  

Third, unfamiliarity with machine learning methods and the
approach in general (Breiman 2001b) might lead to hesitation
among researchers. Until recently, it was not evident to
researchers in natural resource management that machine
learning could be of help in modeling. With improved and
streamlined software packages available and the success stories
from other fields getting more attention, this may change.  

If  these obstacles are overcome, an increasing spread in methods
of machine learning in the field of natural resource management
may also lead to a shift in research interest from individual case
studies to larger data sets. This development has already been
called for (Poteete et al. 2010). This in turn may lead to a different
type of data collection and may change the field if  data are
uniformly collected, structured on the basis of a framework,
mainly longitudinal, and extend across several aspects (e.g., social,
economic, technical). An example of this is the International
Forestry Resources and Institutions database, which has enabled
many scientific findings to be achieved (e.g., Andersson and
Agrawal 2011, Salk et al. 2014).  

Support could also come from increasing performance of
computers, which could speed up computations of complex
models considerably. Just to name a few possibilities: computing
on graphics processing units, using parallel computing software
like MPI (message passing interface) on local laptops, or using
server clusters in the researcher’s scientific institution. If  even
more computational power is required, high-performance or
cloud computing are readily available.

CONCLUSION
The successes of machine learning in many fields of research
suggest that their modeling qualities can also be used for analyses
in the field of natural resource management. However, this has
hardly happened so far—a literature review resulted in only 32
reviewed papers in both more general and topic-specific journals
at the interface of machine learning and natural resource
management.  

I have identified a number of potential reasons why machine
learning is rarely applied in natural resource research and have
suggested how obstacles in applying machine learning could be
overcome. It is not due to the unavailability of suitable data sets,
as collections of case studies in meta-analyses (Gutiérrez et al.
2011, Brooks et al. 2012) and research using databases (Tang 1992,
Lam 1998, Salk et al. 2014) have proven. I also established that
machine learning algorithms are probably well suited to deal with
the kind of data that exist in natural resource management.  

All algorithms tested (deep and shallow neural networks, and
gradient boosting) had a superior explanatory power over
traditional linear regressions. However, no algorithm emerged as
clearly superior to the others—results were also dependent on the
data set and its features. It is important to stress again that models
vary widely depending on parameter tuning. In order to identify
robust patterns, it is necessary to both run many models and use
multiple machine learning algorithms. Only if  a pattern is stable
across many models and at least two algorithms is there an
indication for its existence.  

Future research could be based on well-tested architectures. Since
all analyses were performed on open access data with open source
tools, one such workflow is presented in this article, with the full
code provided in Appendix 1. Therefore, adapting such models
to one’s own data set may consist only of fine-tuning some
parameters. For example, this is common practice in image
recognition. Furthermore, standard data formats, common
definitions of central concepts, and reference data sets and
benchmarks for comparing different methods are future central
building blocks for advancing natural resource management
research.  

This brings us to the conclusion that the many different methods
of machine learning, not only neural networks, could enrich the
methodological toolbox of social-ecological systems analysis.
Machine learning methods have proven their worth in many fields,
they are both theoretically and practically mature, and there are
many easy-to-use software solutions and corresponding
introductions and instructions (e.g., the h2o [http://docs.h2o.ai/]
or Keras documentation [https://keras.io/]). It is therefore time to
apply these methods to questions of natural resource
management.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12124

Data Availability:

The data are publicly available on the internet (https://seslibrary.
asu.edu/cpr).
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Appendix 1. Supporting online material 

Results of literature search 

Table A1. Hits found in the systematic literature search 

Journal name Number of 

hits for 

search 

term: 

machine 

learning 

(ML) 

Number of 

hits for 

search term:  

deep learning 

Number of 

hits for 

search term: 

neural 

network 

Sum of hits 

for all search 

terms 

Actual hits 

after 

screening;  

i.e., using 

ML for 

natural 

resource 

management 

Ecology & 

Society 

0 12 1 13 1  

International 

Journal of the 

Commons 

8 16 18 42 0 

Sustainability 80 28 137 245 8 

Ecological 

Modeling 

219 3 541 763 2 

Global 

Environmental 

Change 

13 4 14 31 1 

World 

Development 

10 3 7 20 1 

Journal of 

Environmental 

Management 

103 2 219 324 0 

Journal of 

Cleaner 

Production 

199 75 580 854 0 

Environmental 

Modeling and 

Software 

311 35 500 846 4 



      

PLoS ONE 38+201 66 + 9 653+144 757 + 354 6 

Proceedings of 

the National 

Academy of 

Science 

(PNAS) 

137+438 51 +209 188 + 205 376 + 852  0 

Proceedings of 

the Royal 

Society B 

59 + 71 11+ 25 52 +117 122 + 213 2 

Nature 13 + 57 3+21 6 + 58 22 + 136 3 

Science 38 + 88 1 + 22 18+34 57 + 144 1 

Nature 

Methods 

2+26 0+24 2+27 4+77 0 

      

Nature 

Climate 

Change 

4+17 25+44 1+5 30+66 0 

Nature 

Sustainability 

5+13 20+32 0+4 25+49 1 

Note: The first number in a cell indicates the hits for “social ecological”; the second number 

indicates “natural resource”. 



Overview of all articles using machine learning methods 

Table A2. Overview of all articles using machine learning (ML) methods on a topic in natural 

resource management 

NN = artificial neural network; RF = random forest; SVM = support vector machine; RFL = 

reinforcement learning; ABM = agent-based modeling; BRT = boosted regression trees; MRT 

= multivariate regression trees 

Authors Year DOI Topic Type of 

ML 

used 

Journal 

Adisa et 

al. 

2019 https://doi.org/10.3390/su11041145  Predict 

Maize 

Production 

in South 

Africa 

NN Sustaina-

bility 

Alvarez-

Romero et 

al. 

2015 https://doi.org/10.1371/journal.pone.

0145574  

Estimate 

Probability 

of land use 

change and 

river 

plumes 

NN PLoS ONE 

Arima 2016 https://doi.org/10.1371/journal.pone.

0152058 

Simulate 

impact of 

road 

constructio

n on 

deforestatio

n and 

quantify 

carbon 

emissions 

Bayesian 

probit 

land 

change 

model  

PLoS ONE 

Cao et al. 2019 https://doi.org/10.3390/su11195376 Short-Term 

Forecast of 

Land Use 

Change 

NN 

(Recurre

nt) 

Sustaina-

bility 

Cenek et 

al. 

2017 https://doi.org/10.1016/j.ecolmodel.2

017.06.024 

Machine 

learning 

evolved 

agent 

behaviors 

for 

ABM Ecological 

modelling 



fishermen 

Crespo et 

al. 

2018 https://doi.org/10.1126/sciadv.aat368

1 

Classify 

fishing 

effort  

BRT Science 

De Souza 2018 https://doi.org/10.1016/j.ecolmodel.2

018.08.015 

Model 

spatial 

distribution 

of 

deforestatio

n  

Maximu

m 

Entropy 

Ecological 

modelling 

Dreyfus-

Leon et al. 

1999 https://doi.org/10.1016/S0304-

3800(99)00109-X 

Model 

fishermen 

search 

behaviour  

NN + 

RFL 

Ecological 

modelling 

Ekasingh 

et al. 

2009 https://doi.org/10.1016/j.envsoft.200

9.02.015 

Predict crop 

choice 

Decision 

trees 

Environ-

mental 

Modeling 

and Soft-

ware 

Fan et al. 2018 https://doi.org/10.1371/journal.pone.

0198171  

Predict the 

effectivenes

s of 

farmland 

consolidati

on 

SVM PLoS ONE 

Farrell et 

al. 

2019 https://doi.org/10.1038/s41467-019-

11106-y 

Simulate 

Exploratory 

strategies in 

fishers 

RF  Nature 

Frey et al. 2014 https://doi.org/10.1016/j.worlddev.20

14.01.034 

Predict 

legal 

security, 

institutional 

fairness and 

other 

factors in 

irrigation 

systems and 

fisheries 

NN World 

Develop-

ment 

Frey et al. 2013 https://doi.org/10.5751/ES-05202-

180240 

Model 

success 

factors in 

NN Ecology & 

Society 



social-

ecological 

systems 

Gasche et 

al. 

2013 https://doi.org/10.1371/journal.pone.

0077566  

Predict 

populations 

of sole and 

plaice to 

control fish 

harvesting 

RF PLoS ONE 

Gutierrez 

et al. 

2011 https://doi.org/10.1038/nature09689 Predict 

success 

factors for 

fisheries 

RF Nature 

Jouffray 2019 https://doi.org/10.1098/rspb.2018.25

44  

Estimate 

relative 

influence of 

human and 

environmen

tal variables 

in shaping 

reef 

ecosystems  

BRT Procee-

dings of the 

Royal 

Society B 

Keane et 

al. 

 https://doi.org/10.1038/s41893-019-

0458-0 

Impact of 

wildlife 

manage-

ment areas 

on 

community

wealth 

Bayesian 

Network 

Nature 

Sustaina-

bility 

Li et al.  http://dx.doi.org/10.1016/j.envsoft.2

017.07.016 

Predict 

sponge 

species 

richness 

RF, 

GLM 

Environ-

mental 

Modeling 

and Soft-

ware 

Lindkvist 2017 https://doi.org/10.1098/rspb.2016.27

62 

Estimate 

performanc

e of 

different 

managemen

t strategies 

RFL Procee-

dings of the 

Royal 

Society B 

Little et 

al. 

2007 https://doi.org/10.1016/j.ecolmodel.2

007.01.013 

Simulate 

agents 

harvesting a 

renewable 

ABM + 

Bayesian 

Network 

Ecological 

modelling 



resource 

Magierow

ski et al. 

2015 https://doi.org/10.1371/journal.pone.

0120901 

Identify 

land-use 

drivers of 

changes in 

river 

condition 

NN PLoS ONE 

Maldonad

o et al. 

2018 https://doi.org/10.3390/su10114312 Compariso

n of ML-

methods to 

select 

socioecono

mic 

indicators 

in cultural 

landscapes 

Various 

(NN, RF, 

Bayesian 

networks

) 

Sustaina-

bility 

Mayfield 

et al. 

2017 http://dx.doi.org/10.1016/j.envsoft.2

016.10.006 

Predict 

deforesta-

tion 

Various 

(GLM, 

Bayesian 

Network, 

NN, …) 

Environ-

mental 

Modeling 

and Soft-

ware 

Nguyen et 

al. 

2019 https://doi.org/10.3390/su11133615 Predict soil 

erosion 

RF Sustaina-

bility 

Ouyang et 

al. 

2019 https://doi.org/10.3390/su11226416 Identify 

ecological 

security 

patterns 

Bayesian 

Network 

Machine 

Learning 

Sustaina-

bility 

Robinson 

et al. 

2020 https://doi.org/10.1016/j.envsoft.202

0.104781 

Early 

warning 

detection of 

water 

supply 

vulnera-

bility 

Various Environ-

mental 

Modeling 

and Soft-

ware 

Romulo et 

al. 

2018 https://doi.org/10.1038/s41467-018-

06538-x 

Predict 

investments 

in 

watershed 

services 

(IWS) 

programs 

RF Nature 

Saputra et 2019 https://doi.org/10.3390/su11113024 Predict land 

use and 

NN Sustaina-



al. land cover 

changes 

bility 

Vaclavik 

et al. 

2013 https://doi.org/10.1016/j.gloenvcha.2

013.09.004 

Classify 

land system 

archetypes 

NN 

(Self-

organizi

ng map) 

Global 

Environ-

mental 

Change 

Woo et al. 2019 https://doi.org/10.3390/su11123397 Measure 

ecosystem 

health 

RF Sustaina-

bility 

Yates et 

al. 

2016 https://doi.org/10.1371/journal.pone.

0155634  

Model fish 

species 

richness 

and 

abundance 

of fish 

functional 

groups 

BRT and 

MRT 

PLoS ONE 

Zhang et 

al. 

2018 https://doi.org/10.3390/su10124600 Predict 

long-term 

water 

system 

adaptation 

planning 

NN Sustaina-

bility 

 



Description of parameters 

Table A3. Description of parameters varied during grid-search for model-optimization for 

three machine learning algorithms 

 

Method Parameter Description Range varied Optimum 

Generalized 

linear model 

Lambda 

 

Alpha 

controls amount of 

regularization  

controls distribution 

between l1 and l2 

penalties 

0-1 

 

0-1 

0.4 

 

0 

Gradient 

boosting 

Number of trees  50-2.500 1900 

 Sample rate % data sampled (for 

generalization) 

0.4-1.0 0.85 

 Max. depth deepness of tree 5-15 6 

 Column sample 

rate 

Column sample 

rate per tree 

 

Number of columns 

sampled for each split 

column sampling rates 

per tree 

0.2-0.5 

 

0.2-0.7 

0.32 

 

0.44 

Shallow neural 

networks 

Epochs Number of cycles on 

the training set 

30-500 305 

 Learning rate Step size in gradient 

descent optimization 

0.001-0.3 0.15 

 Number of 

hidden neurons 

number of neurons in 

calculating layer 

10-500 391  

 

Deep neural 

networks 

Epochs as above 30-500 403 

 Learning rate as above 0.001-0.3 0.12 

 Number of 

hidden layers 

number of calculating 

layers 

2-4 4 

 Number of 

hidden neurons 

as above 10-500 492-13-85-111 

 



Variables in Ecological Success 

Table A4. Common-pool resouces – Description of variables ecological success consists of 

 

Variable name Type of 
data 

Short description 

loc_ENDDATE Number Begin and End date (end) 

opl_BEGDATE Number Begin and End date (beginning) 

Opl_BMARKETS Likert scale How are the appropriated units disposed of (beginning)? 

opl_CONDITON Likert scale Physical condition of the system 

opl_EAVERAGE Number Average age of the units withdrawn from this resource at 
the end 

opl_EAVERSIZ Number Average size of the units withdrawn from this resource at 
the end 

opl_ECONEFF Likert scale Short-run Economic Technical Efficiency 

opl_effindc Text Indicators and means of increasing efficiency 

Opl_EMARKETS Likert scale How are the appropriated units disposed of (end)? 

opl_ENDBLNC Likert scale Balance between quantity of units withdrawn and number 
available (end) 

opl_ENDCONDA Likert scale How well-maintained is the appropriation resource 
(end)? 

opl_ENDCONDD Likert scale How well-maintained is the distribution resource (end)? 

opl_ENDCONDP Likert scale How well-maintained is the production resource (end)? 

opl_ENDDATE Number Beginning and ending of the operational level 

opl_ENDNTFER Likert scale Interference between technology and processes for other 
resources (end) 

opl_ENDPOLL Likert scale Problems of pollution (end) 

opl_ENDQUAL Likert scale Quality of units being withdrawn (end) 

opl_ENDRATE1 Number Volume of withdrawal for fisheries (end) 

opl_ENDRATE3 Number Volume of withdrawal for irrigation (end) 



opl_ENDTECHX Likert scale Extent of technical externalities (end) 

opl_ESEXDEVL Likert scale Are the units sexually mature at this size or age (end)? 

opl_Evaluate Text Brief synopsis of how this system is evaluated 
(performance) 

opl_MTONHA Number Metric tons of agricultural product per year per hectare 

opl_NEWTECH Likert scale Is new technology introduced? 

opl_NEWVALUE Likert scale External change in exchange value of units appropriated? 

opl_ONEMARKT Likert scale Do appropriators sell this unit in more than one market? 

opl_TAILEND Likert scale Adequacy and predictability of water to tailenders 

opl_TECHEFF Likert scale Technical Effectiveness of water availability 

opl_TYPRESUL Text Evaluation of results 

res_MULTAPPR Likert scale Relationship among multiple appropration processes 

res_WHENBILT Number Date of construction of system 

sbg_LGTHUSE Likert scale Length of time this subgroup has regularly appropriated 

scr_paragrph Text Abstract of document being screened 

 

 Variable – to – Concept Mapping for the common-pool resources 
data 

Variable Name Mapped to concept Variable Name Mapped to concept 

loc_LOCDSCPT Resource size ors_Membappr Participation of users 

loc_LOCSIZE Resource size ors_Orgparag Participation of users 

opl_endrate2 Resource size res_DISTHEAD Participation of users 

res_APPRESRC Resource size res_DISTOPER Participation of users 

res_BRANCHES Resource size res_DISTSAME Participation of users 

res_LENGTH Resource size res_HEADOPER Participation of users 

res_LNTHBRCH Resource size res_HEADSAME Participation of users 

res_LNTHMAIN Resource size res_SECTOR2 Participation of users 



res_METHEAD1 Resource size res_SELEDIST Participation of users 

res_METHEAD2 Resource size res_SELPROD Participation of users 

res_STOREVOL Resource size sbg_MANAGE Participation of users 

res_SURFAREA Resource size sbg_PROnurul Participation of users 

res_SYSTAREA Resource size scr_TYPE Participation of users 

scr_Slocsize Resource size sbg_WITHDRAW Legal certainty and legitimacy 

loc_LOCBOUND Resource boundaries loc_ENDDATE Legal certainty and legitimacy 

loc_LOCDSCPT Resource boundaries loc_FREQCOMM Legal certainty and legitimacy 

opl_RECORDav Resource boundaries loc_jurinam1 Legal certainty and legitimacy 

opl_RECORDwi Resource boundaries loc_jurinam2 Legal certainty and legitimacy 

opl_USERseen Resource boundaries loc_locjuris Legal certainty and legitimacy 

res_BOUNDAR2 Resource boundaries loc_ONECOUNT Legal certainty and legitimacy 

res_BOUNDAR3 Resource boundaries Opl_BFORMOWN Legal certainty and legitimacy 

res_BOUNDAR4 Resource boundaries opl_BRIBERY Legal certainty and legitimacy 

res_DESCRIPT Resource boundaries opl_duration Legal certainty and legitimacy 

res_DISTAPPR Resource boundaries opl_Enddate Legal certainty and legitimacy 

res_OFFNUM Resource boundaries opr_DEFpay Legal certainty and legitimacy 

res_PRODAPPR Resource boundaries opr_natcolch Legal certainty and legitimacy 

res_PRODDIST Resource boundaries opr_regcolch Legal certainty and legitimacy 

res_PRODLOCA Resource boundaries opr2_LEGITIM Legal certainty and legitimacy 

loc_LOCDSCPT Accessibility ors_Begdate Legal certainty and legitimacy 

opr2_seasonln Accessibility ors_Conelect Legal certainty and legitimacy 

res_AVGACCES Accessibility ors_Enddate Legal certainty and legitimacy 

res_STEEP Accessibility ors_Expother Legal certainty and legitimacy 

sbg_RESIDENT Accessibility ors_Expown Legal certainty and legitimacy 

loc_BEGDATE Ecological success at the beginning  ors_Extremov Legal certainty and legitimacy 

opl_BAVERSIZ Ecological success at the beginning  ors_Extrep Legal certainty and legitimacy 



opl_BEGBLNC Ecological success at the beginning  res_DISPUTE Legal certainty and legitimacy 

opl_BEGCONDA Ecological success at the beginning  res_DONATION Legal certainty and legitimacy 

opl_BEGCONDD Ecological success at the beginning  res_DONOR Legal certainty and legitimacy 

opl_BEGCONDP Ecological success at the beginning  sbg_EQIPshar Legal certainty and legitimacy 

opl_BEGNTFER Ecological success at the beginning  sbg_TRANflow Legal certainty and legitimacy 

opl_BEGPOLL Ecological success at the beginning  sbg_TRANshar Legal certainty and legitimacy 

opl_BEGQUAL Ecological success at the beginning  loc_FREQCOMM Administration 

opl_BEGRATE1 Ecological success at the beginning  ors_Execappr Administration 

opl_BEGRATE2 Ecological success at the beginning  ors_Execinc Administration 

opl_BEGRATE3 Ecological success at the beginning  ors_EXECOTHR Administration 

opl_BEGTECHX Ecological success at the beginning  ors_Execown Administration 

opl_BSEXDEVL Ecological success at the beginning  ors_Execpaid Administration 

opl_PRIORapp Ecological success at the beginning  ors_Execper Administration 

opl_reason Ecological success at the beginning  ors_Offnear Administration 

res_LINED Ecological success at the beginning  opl_GENinfo Information 

res_ANALUNIT Manageability opl_MAPAVAIL Information 

res_CONTROL Manageability opl_MAPPROD Information 

res_MICROZON Manageability opl_RADIOCOM Information 

res_PREDVAR1 Manageability opl_RECORDav Information 

res_PREDVAR2 Manageability opl_RECORDco Information 

res_PREDVAR3 Manageability opl_RECORDke Information 

res_QUALBETR Manageability opl_RECORDla Information 

res_RSRCUNIT Manageability opl_RECORDma Information 

res_SECTOR1 Manageability opl_RECORDmo Information 

res_STOREVOL Manageability opl_RECORDph Information 

res_SURFAREA Manageability opl_RECORDwi Information 

res_TYPERES Manageability opl_UNDERres Information 



res_VAROTIME Manageability opr_QUALUNIT Information 

res_VARSPACE Manageability opr2_appmonit Information 

res_VARYEAR Manageability opr2_appright Information 

res_WATERORI Manageability opr2_appwork Information 

sbg_ABSOQUAN Regeneration of RU opr2_condres Information 

opl_BAVERAGE Regeneration of RU opr2_DEFinf Information 

opl_EXTINCAP Regeneration of RU opr2_IOther Information 

res_POTNTIAL Regeneration of RU opr2_numunit Information 

sbg_OLSON Regeneration of RU opr2_physfact Information 

sbg_SHARCHNG Regeneration of RU opr2_qassets Information 

sbg_TECHEXTR Regeneration of RU opr2_unitflow Information 

sbg_USERATE1 Regeneration of RU opr2_WRITTEN Information 

sbg_USErate2 Regeneration of RU sbg_LITERACY Information 

loc_NUMHOU Number of actors opl_aindictc Characteristics of rules 

loc_NUMPOP Number of actors opr_CLEAR Characteristics of rules 

opl_BNUMAPP1 Number of actors opr_DEFAGGR Characteristics of rules 

opl_BNUMAPP2 Number of actors opr_EQSHARED Characteristics of rules 

opl_BNUMTEM1 Number of actors opr_FIXNUM Characteristics of rules 

opl_BNUMTEM2 Number of actors opr_MINSIZE Characteristics of rules 

opl_Enumapp1 Number of actors opr_NARRANGE Characteristics of rules 

opl_enumapp2 Number of actors opr_RTRANS2 Characteristics of rules 

opl_ENUMTEM1 Number of actors opr_rulsetsb Characteristics of rules 

opl_ENUMTEM2 Number of actors opr_RULSETSP Characteristics of rules 

sbg_BNUMUSR1 Number of actors opr2_A1Other Characteristics of rules 

sbg_BNUMUSR2 Number of actors opr2_A2Other Characteristics of rules 

sbg_Enumusr1 Number of actors opr2_aggrrule Characteristics of rules 

sbg_ENUMusr2 Number of actors opr2_apprtax Characteristics of rules 



sbg_SNUMTEM1 Number of actors opr2_capinv Characteristics of rules 

sbg_SNUMTEM2 Number of actors opr2_DEFauth Characteristics of rules 

sbg_TEAMSIZE Number of actors opr2_easyund Characteristics of rules 

scr_SNUMapp2 Number of actors opr2_ELABsubs Characteristics of rules 

opl_CLANID Group composition opr2_emerglab Characteristics of rules 

opl_Families Group composition opr2_fixorder Characteristics of rules 

opl_RACEID Group composition opr2_fixperc Characteristics of rules 

opl_SG1TOSG2 Group composition opr2_fixtime Characteristics of rules 

opl_SG2TOSG3 Group composition opr2_FLEXIBLE Characteristics of rules 

opl_SG3TOSG4 Group composition opr2_freewith Characteristics of rules 

sbg_Sbgpdes Group composition opr2_maintlab Characteristics of rules 

sbg_Scaste1 Group composition opr2_ncycles Characteristics of rules 

sbg_SCLANID1 Group composition opr2_RULEdur Characteristics of rules 

sbg_Scultvwr Group composition opr2_rulsetsa Characteristics of rules 

sbg_Sethid1 Group composition opr2_sploc Characteristics of rules 

sbg_Sgender1 Group composition opr2_spseason Characteristics of rules 

sbg_Sgender2 Group composition ors_Admlevel Characteristics of rules 

sbg_Slang1 Group composition ors_Ruleclas Characteristics of rules 

sbg_Sothcomm Group composition sbg_EQIPshar Characteristics of rules 

sbg_SRACEID1 Group composition sbg_TRANflow Characteristics of rules 

sbg_Srelid1 Group composition sbg_TRANshar Characteristics of rules 

opl_BEGTRUST Social capital opl_Basis Fairness 

opl_ENDtrust Social capital opl_REALoser Fairness 

opl_GENRELtn Social capital opl_Realyes Fairness 

opr2_howtran Social capital opl_RELequty Fairness 

opr2_LABorg Social capital opl_SG1TOSG3 Fairness 

ors_Addserv Social capital opl_SG1TOSG4 Fairness 



ors_Services Social capital opl_SG2TOSG4 Fairness 

res_WHOBUILT Social capital opl_WORSToff Fairness 

sbg_ENTACT Social capital opr_UNEQprib Fairness 

sbg_LISTPROB Social capital opr_UNEQPUN Fairness 

sbg_OFFSPRNG Social capital opr_UNEQrew Fairness 

sbg_Sbgpdes Social capital opr2_FAIR Fairness 

sbg_TEAMBASE Social capital opr2_UNEQduta Fairness 

sbg_TECHUSED Social capital opr2_UNEQpria Fairness 

opl_BRENTDIS Dependency on resource  ors_Expown Fairness 

opl_ERENTDIS Dependency on resource  sbg_MAINCONT Fairness 

loc_PERMPOP Dependency on resource  sbg_SUBvar Fairness 

opl_INSURANC Dependency on resource  opl_guard Control 

opl_insurdes Dependency on resource  opl_monpaid Control 

opl_Labor Dependency on resource  opl_OFFpgrd Control 

opl_labrdays Dependency on resource  opl_OffpNum Control 

opl_MAINTres Dependency on resource  opl_PEAKgrd Control 

opl_Penalty Dependency on resource  opl_PeakNum Control 

opr_PRICESUP Dependency on resource  opl_RLEVEL Control 

opr_SUMFEES1 Dependency on resource  opl_SELFmon Control 

opr_SUMFEES2 Dependency on resource  opl_USERseen Control 

opr_WAGEUSE Dependency on resource  opr_ADJOINFD Control 

ors_Fisource Dependency on resource  ors_Expown Control 

ors_Orgparag Dependency on resource  res_CONTROL Control 

res_IMPROVED Dependency on resource  opl_aindictc Compliance 

sbg_ALTSUPLY Dependency on resource  opl_BRIBERY Compliance 

sbg_ASSETS Dependency on resource  opl_MONsanct Compliance 

sbg_AVERinc Dependency on resource  opl_Penalty Compliance 



sbg_AVOIDhrm Dependency on resource  opl_PHYsanct Compliance 

sbg_ENHANCE Dependency on resource  opl_SOCsanct Compliance 

sbg_FAMINCDE Dependency on resource  opl_VARsanct Compliance 

sbg_KPRESURE Dependency on resource  opr_DEFpay Compliance 

sbg_LONGvar Dependency on resource  opr_FINES Compliance 

sbg_OWNlabor Dependency on resource  opr_INCARCER Compliance 

sbg_SUBalt1 Dependency on resource  opr_LOSEentr Compliance 

sbg_SUBALT2 Dependency on resource  opr_SHUNNING Compliance 

sbg_SUBnot Dependency on resource  opr2_LEGITIM Compliance 

sbg_SUBSIM Dependency on resource  ors_Enfrule Compliance 

sbg_TEAMCAP Dependency on resource  ors_Expown Compliance 

opl_OTHRcoop Dependency on group sbg_RULEbrak Compliance 

opr_shareorg Dependency on group sbg_RULEfoll Compliance 

ors_Fisource Dependency on group sbg_RULquanc Compliance 

ors_Orgparag Dependency on group sbg_RULtechc Compliance 

sbg_ENTACT Dependency on group sbg_RULtimec Compliance 

sbg_OFFSPRNG Dependency on group ors_Expown Conflict management 

opl_NONapp Group boundaries res_CONFLICT Conflict management 

opl_Numnon1 Group boundaries sbg_Sbgpdes Conflict management 

opl_NUMnon2 Group boundaries sbg_VIOLENC1 Conflict management 

opl_WELLdefn Group boundaries sbg_VIOLENC2 Conflict management 

opr_AGE Group boundaries opr_LOSEentr Exclusion 

opr_auction Group boundaries res_SHARED Exclusion 

opr_BOther Group boundaries sbg_EXCLUDED Exclusion 

opr_caste Group boundaries opl_BOWNCLOS Exclusion 

opr_CITCOUNT Group boundaries opl_EOWNCLOS Exclusion 

opr_citlocal Group boundaries opl_BAPCLOSE Exclusion 



opr_CITSUBDI Group boundaries opl_EAPCLOSE Exclusion 

opr_CLAN Group boundaries sbg_ACCESS Exclusion 

opr_CLASS Group boundaries sbg_EXCLUDIN Exclusion 

opr_conusage Group boundaries opl_NEWGROUP Exclusion 

opr_DEFbound Group boundaries opl_EXTPOLL Relations 

opr_DEMSKILL Group boundaries loc_RESCONF Relations 

opr_ELIGIBLE Group boundaries opl_Bapclose Relations 

opr_ENTRYFEE Group boundaries opl_Bownclos Relations 

opr_ethnic Group boundaries opl_commlang Relations 

opr_GENDER Group boundaries opl_Cultvwr Relations 

opr_LEVEDUC Group boundaries opl_Eapclose Relations 

opr_LICENSE Group boundaries opl_Eownclos Relations 

opr_LICLIMIT Group boundaries opl_ethncid Relations 

opr_lottery Group boundaries opl_Newgroup Relations 

opr_organiza Group boundaries opl_NUMsubgp Relations 

opr_OWNAPPRO Group boundaries opl_Othrcomm Relations 

opr_ownland Group boundaries opl_relanims Relations 

opr_ownright Group boundaries opl_sex  Relations 

opr_RACE Group boundaries opl_socstrat Relations 

opr_RTRANS1 Group boundaries ors_Expother Relations 

opr_RTRANS2 Group boundaries ors_Fisource Relations 

opr_seasfee Group boundaries res_DESCRIPT Relations 

opr_shareorg Group boundaries res_DISPUTE Relations 

opr_shareres Group boundaries res_DONATION Relations 

opr_unitsuse Group boundaries res_DONOR Relations 

opr_USETECH Group boundaries res_IMPROVED Relations 

sbg_Sbgpdes Group boundaries res_OFFNUM Relations 



sbg_WELdefin Group boundaries res_PARENT Relations 

opl_aindictc Participation of users res_PARNAME Relations 

opl_ARENAS Participation of users res_WHOBUILT Relations 

opl_ARENfreq Participation of users sbg_ACCESS Relations 

opl_NEWOPRUL Participation of users sbg_Excludin Relations 

opr_loccolch Participation of users sbg_OLSON Relations 

opr2_regcolch Participation of users sbg_SUBwhere Relations 

opr_RTRANS2 Participation of users loc_ECONOLOC Capabilities to adapt to change 

ori_Lev1Act Participation of users opl_INSURANC Capabilities to adapt to change 

ori_Lev2Act Participation of users opl_insurdes Capabilities to adapt to change 

ori_Lev3Act Participation of users opl_reason Capabilities to adapt to change 

ori_OrgType Participation of users opr_EXTAID1 Capabilities to adapt to change 

ors_Execappr Participation of users opr_EXTAID2 Capabilities to adapt to change 

ors_Expown Participation of users opr_EXTAID3 Capabilities to adapt to change 

     sbg_LONGvar Capabilities to adapt to change 

     sbg_SUBvar Capabilities to adapt to change 
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Code 

The following code section shows the full code in R to produce 500 models for deep neural 

networks with the h2o software package. Data preparation, loading and saving models and 

results are part of the workflow, but are not specified in detail here, since these are user 

specific and not part of the core machine learning code.  

 

# Load libraries 

library(data.table) 

library(h2o) 

# Load data = user+environment specific => empty 

 

# Initialise H2O 

localH2O = h2o.init(nthreads=-1, min_mem_size = "8196M", max_mem_size = "20490M") 

# Convert to h2o 

h2o_input <- as.h2o(input) 

# Split 80:20 

splits <- h2o.splitFrame(h2o_input, c(0.80,0)) 

train <- h2o.assign(splits[[1]], "train") 

test <- h2o.assign(splits[[3]], "test")  

##################### 

# Set Hyperparameter # 

##################### 

 



# Produces architectures  

number_architectures <- 20 

min_neurons <- 10 

max_neurons <- 500  

max_nr_layers <- 4 

hidden_opts = lapply(1:number_architectures,  

function(x) min_neurons + sample(max_neurons, sample(max_nr_layers),  

replace=TRUE))  

# Select range of learn rates 

min_learnrate <- 0.01 

max_learnrate <- 0.30 

learnrate_stepsize <- 0.005 

learn_rate_opts <- seq(min_learnrate,max_learnrate, learnrate_stepsize) 

# Select range of epochs 

min_epochs <- 50 

max_epochs <- 400 

epoch_stepsize <- 5 

epochs_opts <- seq(min_epochs, max_epochs, epoch_stepsize) 

# Cross-validation number of folds 

nfolds <- 5 

hyper_params = list( 

hidden = hidden_opts, 



rate = learn_rate_opts, 

epochs = epochs_opts  

) 

#################### 

# Set Search Criteria # 

#################### 

 

maxmodels <- 500 

 

search_criteria = list( 

strategy = "RandomDiscrete", # "RandomDiscrete" vs "Cartesian" 

max_models = maxmodels  

) 

############### 

# Grid Search # 

############### 

# Run model grid 

dl_grid <- h2o.grid( 

algorithm = "deeplearning",  

grid_id = "dlgrid", 

x = predictors,  

y = response,  



training_frame = train,  

nfolds = nfolds, 

keep_cross_validation_predictions = TRUE, 

model_id = "dl_grid", 

hyper_params = hyper_params, 

search_criteria = search_criteria 

) 

# Extracting and saving models and model results (user specific => not shown here) 

# Shut down the H2O cluster: 

h2o.shutdown(prompt = FALSE) 
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