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The Animal Science Modelling Group meets approximately yearly
for one-day meetings. The 2021 meeting was sponsored by Trouw
Nutrition (Guelph, ON, Canada), Lallemand Specialties, Inc.
(Milwaukee, WI, USA), and Adisseo (Alpharetta, GA, USA). It was
held on July 9 as a virtual meeting prior to the virtual ADSA
Annual Meeting. Summaries of the papers presented follow. Each
summary has been peer reviewed and edited for clarity. The lead
author of the summary is the person who presented the paper.

Multivariate time series classification for prediction of
clinical mastitis

X. Fan,1 R. Watters,2 D.V. Nydam,2 P.D. Virkler,2 M.J. Wieland,2 and
K.F. Reed1

1Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
2Department of Population Medicine and Diagnostic Sciences, Cornell University College of
Veterinary Medicine, Ithaca, NY 14853, USA.

The aim of this study was to investigate the application of time
series classification techniques to detect clinical mastitis (CM;
binary variable) one-step ahead of time for dairy cattle. Quarter
level milking time data from 249 cows were collected daily from
automatic milking system (AMS) using DelPro software (DeLaval,
Tumba, Sweden) over 12 wk in the summer of 2020. We tested
multiple classification algorithms including Decision Tree,
Random Forest, Logistic Regression, Naïve Bayes, Gradient
Boosting. We tested 16 features (variables) recorded by the AMS unit
at each milking event for initial model development: teats not
found (binary), blood in milk (binary), kick-offs (binary), occurrence
of incompletely milked quarter (binary), previous mastitis history
(previous mastitis incident before the milking event; binary),
surface plasmon resonance (SPR; 4 levels), milking interval between
two successive milking events (hour), milk yield (kg), lactation
number, days in milk (day), milk duration (second), electrical
conductivity (mS/cm), mean milk flow rate (kg/min), peak milk flow
rate (kg/min), milking frequency, and milking order per day. We
selected features for inclusion with two methods: backward step-
wise logistic regression (Wang et al. 2007) and mutual information
(MI) (Vergara and Estévez 2014). We used the Augmented Dickey
Fuller (ADF) test (Mushtaq 2011) to check if the numerical features
are stationary. We normalized all features and transformed the
time element into a maximum of 9 time-lags plus the current milk-
ing time (t) to predict CM one-step ahead (t + 1). We split the data
into training and testing subsets containing 80% of the observations
for training and the remaining 20% for testing. Due to the small

number of CM (positive) records (accounting for 0.04% of all the
records), we utilized several oversampling methods (e.g., random
oversampling, synthetic minority oversampling technique
(SMOTE)) (Cateni et al. 2014) and undersampling methods
(e.g., Tomek link, and edited nearest neighbors) (Bach et al. 2019)
to improve balance in the dataset. We evaluated model perfor-
mance with a 5-fold cross validation in which the data were folded
by cows with a CM incident and assessed model performance with
metrics of specificity, sensitivity, and the area under the curve of
the receiver operating characteristic (AUC-ROC). The Naïve Bayes
algorithm with all features included performed robustly and
gave the best predictions, resulting in 60% sensitivity and 88%
specificity with AUC (72%). Thus, this machine learning algorithm
could be a method for early detection of cows at-risk for CM
and help farmers take timely actions to reduce the negative
impacts of CM but a larger dataset with more incidents of CM
mastitis is likely needed to improve classification sensitivity and
specificity.
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Mathematical approach to fitting fermentation kinetic
parameters of multiple carbohydrate fractions from in vitro
gas production data

J.R. Knapp,1 N. Schlau,2 K. Taysom,2 and D.M. Taysom2
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In vitro gas production (IVGP) methods may be advantageous in
comparison to aNDFom and starch digestibility methods for
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determining carbohydrate fermentation kinetic parameters due to
the nearly continuous measurements, which allow for more
accurate and precise parameter estimates, plus ease of the method-
ology and reduced labor. In fitting a multiple carbohydrate fraction
fermentation model to IVGP data, a Monte Carlo approach was
employed in proof-of-concept testing followed by an evaluation of
fitting observed IVGP data from corn silages. In the Monte Carlo
analysis, a set of 10 corn silage samples was randomly generated
based on known population variance in nutrient composition and
fermentation parameters. Gas fermentation curves were generated
for each sample using the exponential growth function (y= digest-
ible pool× exp(-Kd(time - lag)) for each carbohydrate fraction (water
soluble carbohydrates, starch, aNDFom) and summed together.
Further randomness was added to model the within-sample varia-
tion in gas production. The model was fit to the generated gas
curves using SAS non-linear fitting procedures. Parameters for lag
time and degradation rates (Kd) of starch and aNDFom fractions
were fit with good success (p > 0.20) as evidenced by paired t-tests
between original and estimated parameters. Results highlighted
that independent measures of carbohydrate fraction size and the
digestible aNDFom pool were critical to the approach and that
parameters for starch and aNDFom fermentation could be deter-
mined with good confidence. The Monte Carlo analysis also demon-
strated that the approach was sufficiently robust to handle the
range of nutrient variation observed in “real world” corn silage.
The subsequent evaluation used a set of 12 corn silage samples with
known variation in starch and aNDFom fermentation as deter-
mined by in vitro starch (IVSD) and aNDFom digestibility (IVNDFD)
assays. Samples were incubated in an Ankom RF system in dupli-
cate and gas production data compiled at 2 min intervals for 48
hrs. The 3-fraction carbohydrate model was fit to the gas production
data. Comparing IVGP-estimated parameters to those from IVSD
and IVNDFD, both slope and mean bias was evident, likely due to
fixed lag assumptions in IVSD and IVNDFD. IVGP-estimated Kd’s
for starch and aNDFom were less than IVSD and IVNDFD estimates
(p < 0.001) and more precise. Parameter estimates deduced from
the non-linear fitting of IVGP data were statistically significant,
biologically reasonable, correlated to parameters determined in in-
dependent assays, and more precise. Overall, the mathematical
modelling approach of fitting kinetic parameters to multiple carbo-
hydrate fractions with known pool sizes was satisfactorily achieved.

Empirical and mechanistic modelling of B-vitamin synthesis
and use across the rumen in dairy cows

V. Brisson,1 C.L. Girard,2 J.A. Metcalf,3 D.S. Castagnino,3 J. Dijkstra,4

and J.L. Ellis1

1Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph,
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It has long been accepted that the B-vitamin (BVit) needs of rumi-
nants are generally met by the rumen microbiome’s ability to syn-
thesize them, without their requirements ever being clearly
defined (see NRC 2001). While symptoms of deficiency are rarely
observed, positive responses have been seen in milk production,
reproduction and overall health resulting from supplementation
with rumen protected BVit (Evans et al. 2006). Such results indicate
the occurrence of subclinical deficiencies which impact the ani-
mal’s overall metabolic efficiency. The objective of this study was
to create empirical models of thiamin, riboflavin, niacin, pyridox-
ine, folate and cobalamin apparent ruminal synthesis in dairy cows
(ARS, mg/d) (representing the summation of BVit synthesis and deg-
radation by the rumen microbiota) through a meta-analysis
approach to detect the major drivers of ARS variation. Further, the
knowledge gained will be used to develop a theoretical mechanistic
framework of BVit ARS across the rumen. Data utilized were from
340 individual lactating cows from 16 published studies. Potential

model driving variables considered in the meta-analysis included
the diet chemical composition and rumen parameters. A suite of
potential models (with study treated as a random effect) were devel-
oped using PROC GLIMMIX of SAS. Dry matter intake (kg/d) was a
major driver for all BVit, with varying responses to digestible starch
(g/kg of DM) and digestible NDF (g/kg of DM) being major drivers for
all BVit studied other than cobalamin. The respective dietary BVit
concentrations (mg/kg of DM) were also driving variables for the
ARS of thiamin, riboflavin, niacin, and pyridoxine. The major driv-
ing variables identified for cobalamin ARS included dietary starch
(g/kg of DM), dietary NDF (g/kg of DM), total VFA concentration
(mM) and propionate molar proportion (% of total VFA). The hetero-
geneity of these responses to the major drivers identified through
the empirical models highlight the importance of considering these
vitamins individually. Based on this knowledge, a theoretical frame-
work was developed to explain cobalamin ARS (mg/d), which
suggests that amylolytic and fibrolytic microbial pools are respon-
sible for both the synthesis and use of BVit. Empirical models
describe a negative association between propionate molar propor-
tion and cobalamin ARS, supported by our knowledge of the use
of cobalamin in the propionate synthesis pathway as a co-enzyme
for methylmalonyl-CoA mutase (Elliot 1980). In conclusion, the
empirical models suggest different microbial groups to be repre-
sented in mechanistic approaches of BVit ARS while highlighting
the need for further research on rumen microbiome conditions
influencing BVit ARS.
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Relationship between milk urea nitrogen and urea recycling
in lactating dairy cows
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Milk urea nitrogen (MUN) and blood urea nitrogen (BUN) are
correlated with nitrogen balance and nitrogen excretion MUN
(Broderick and Clayton 1997); however there is also a genetic compo-
nent to MUN concentrations (Stoop et al. 2007) which could be associ-
ated with differences in urea transport. It was hypothesized that a
portion of the variation in MUN concentrations among cows is caused
by variation in gastrointestinal and kidney urea clearance rates. Eight
lactating cows varying MUN concentrations while fed a common diet
were infused with [15N15N] urea to determine urea-N entry rate (UER),
gastrointestinal entry rate (GER), returned to ornithine cycle (ROC),
urea-N used for anabolism (UUA), urea-N excretion in feces (UFE) and
urine (UUE). Urea clearance rates by the kidneys and gastrointestinal
tract were calculated from isotopic enrichment of urea excretion in
urine and gut entry rate, respectively, and plasma urea N concentra-
tions (PUN). Over the course of the experiment, animals weighed an
average of 506 ± 62 kg and produced 26.3 ± 4.39 kg of milk/d, with
MUN concentrations ranging from 11.6 to 17.3 mg/dL (average of
14.9 ± 2.1 mg/dL). Plasma urea N was positively correlated with UER,
UUE, and UUA (p ≤ 0.05). Kidney clearance rates, which correct for
the effect of PUN concentration and reflect transporter activity, only
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tended (p= 0.13) to be related to PUN. These results would indicate
that kidney transport activity was not significantly different across
animals, and thus would not likely be the cause of the observed range
in MUN across animals. Plasma urea N and MUN were negatively cor-
related with gut clearance rates and GER:UER ratio (p≤ 0.06). This
relationship supports the hypothesis that differences in gut urea
transport activity among animals causes variation in PUN and MUN
concentrations, and that cows with high PUN and MUN are less
efficient at recycling PUN to the gastrointestinal tract (GIT) and thus
may be more susceptible to ruminal N deficiencies when fed low
rumen degradable protein diets. If so, the relationship between a
reference MUN concentration and overall N efficiency will be varia-
ble. Such biological variation in urea metabolism necessitates an
adequate safety margin when setting regulations for maximal MUN
levels as an indicator of herd N efficiency.
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Adaptation of the Hill model to describe phosphorus
retention and excretion in calves fed milk replacer and
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In an effort to describe phosphorus retention and excretion in
calves, the dairy cow model of Hill et al. (2008) was adapted for use
in ‘SIMON’, a growth simulationmodel for calves fed milk (replacer)
and solid feed (Ellis et al. 2019). Phosphorus (P) enters the model as
phytate bound P (Pp), organic bound P (Po), and inorganic P (Pi).
Phosphorus inputs to the rumen enter their respective pools viz.
Pp, Po and Pi. Using mass action kinetics equations, flows occur
between the Pp, Po and Pi pools representing degradation of phy-
tate bound P to its lower inositols. Flows occur between the organic,
inorganic andmicrobial P pools in response to the growth and turn-
over of the rumen microbial mass. Flow of Pp, Pi and Po from the
rumen into the small intestine is based upon concentration of
respective pools and a fractional fluid passage rate. Absorption of
Pi from the small intestine into the blood pool is governed by a
Michaelis-Menten like equation whereby concentration of blood P
has an inhibitory effect on absorption. Remaining unabsorbed Pi
and undegraded Po and Pp enter the hindgut. The microbial
hindgut population is capable of further degrading Pp and Po. Pi
can enter the hindgut microbial P pool and exit the hindgut via
microbial passage. In the post-absorptive environment, P in the
blood pool has four potential destinations. Based upon bone and
body organ growth, P is pulled from the blood pool and deposited
in bone and soft tissue pools, with mobilization from the bone pool
occurring. Ruminal recycling of blood P, via saliva, in addition to
excretion of blood P to urine is dependent on blood P concentra-
tion. Preliminary simulations of the study of Berends et al. (2012)
whereby 108 and 164 kg calves were fed four levels of solid feed with
constant level of milk replacer displayed good agreement between
predicted and observed values (g/d) based upon fecal P
(CCC = 0.837) and to a lesser extent retained P (CCC = 0.583), with
poorer agreement for urinary P (CCC= 0.363). Authors hypothesize
poor prediction of urinary P may be attributed to asynchronous
supply of P from the pulse dose milk replacer feeding and the con-
stant demand of P for deposition in bone and body. Additionally, it
is possible that the model represents the rumen recycling of P

poorly, affecting urinary P excretion, as limited data exists regard-
ing P recycling in calves.
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Development and implementation of a dairy calf model in
NDS Professional
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A quality dairy replacement program starts from birth and it is an
investment in the future of a dairy. NDS Professional has recently
used data from various studies, while using the same structure of
the NRC (2001) calf model, to develop a new calf model. A mainte-
nance requirement of 0.100 Mcal/kg BW0.75 was maintained, while,
as the birth weight decreases, maintenance requirement increases
accordingly, as the surface area to BW relationship will cause larger
loss. A lower efficiency of ME to NE was implemented (0.85 to 0.77)
based on works by Drackley and Van Amburgh (2005). A second
adjustment was to account for environmental conditions so that
requirements would increase outside of the thermoneutral zone
(i.e.,: 15 to 25 °C or 5 to 25 °C for calves, respectively younger or
older than 21 d). Relative to growth requirements, for calves fed
milk or milk replacer only, the NRC model set the efficiency of use
of ME to NE at 0.69 based on older data. Re-evaluation using more
recent data suggests 0.60 is consistent with less mature calves
accreting less fat and more protein tissue than the original data
used from the NRC. The cumulative intake of NFC from calf starter
appears to be a critical factor in the development of the digestibility
of NDF and NFC of the calf and, thus, the energy content in the
starter. We therefore implemented an equation from Quigley et al.
(2019) reflecting changing digestibility and starter ME contribution.
A trial with 80 Holstein calves was used to validate the model.
Records included birth body weight (BBW) and, from 5 to 82 d of
age, weekly body weights (BW), daily milk replacer (MR) and starter
intakes. The model simulated the 80 calves weekly from day 5,
using the true MR and starter intakes. The expected weekly BWs
obtained from the model for either energy or protein allowable
gain were compared with the actual BWs. Regression of observed
on predicted BWs resulted in a very high R2 of 0.98 for both energy
and protein predicted values. However, while slopes of the regres-
sions were not different than 1 (p= 0.44), intercepts were different
than 0 (p < 0.01), namely −4.41 and −1.91 for energy and protein,
respectively. Residuals were not apparently uniformly distributed,
with more positive residuals above 50 kg, showing an over predic-
tion for both energy and protein, of on average 1.16 and 0.56 kg,
respectively. However, regressions of residuals on predicted
resulted in a slope not different than 0 (p= 0.23), therefore showing
an unbiasedmodel. The Nash-Sutcliffe error was larger than 0.85 for
both predictions and therefore shows a very good fit. The NDS
Professional model thus represents at the moment a valid alterna-
tive to the NRC (2001) model, which was previously shown to be less
accurate and precise.
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Development of a model to predict dietary metabolizable
energy from digestible energy in beef cattle
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Understanding the utilization of feed energy is essential for
precision feeding in beef cattle production. We aimed to assess
whether predicting the metabolizable energy (ME) to digestible
energy (DE) ratio (MDR), rather than a prediction of ME with DE,
is feasible and to develop a model equation to predict MDR in beef
cattle. We constructed a literature database based on published
data. A meta-analysis was conducted with 306 means from 69 stud-
ies, containing both dietary DE and ME concentrations measured
by calorimetry to test whether no y-intercept is adequate in the lin-
ear relationship between DE and ME. A random coefficient model
with the study as the random variable was used to develop equa-
tions to predict MDR in growing and finishing beef cattle.
Routinely measured or calculated variables in the field (body
weight, age, daily gain, intake, and dietary nutrient components)
were chosen as explanatory variables. The developed equations
were evaluated and compared with other published equations.
The no-intercept linear equation was found to represent the
relationship between DE and ME more appropriately. The
y-intercept (−0.025 ± 0.0525) was not different from 0 (p = 0.638),
and Akaike and Bayesian information criteria of the no-intercept
model were significantly smaller than those with the y-intercept.
Within the data of growing and finishing cattle data, the physiologi-
cal stage was not a significant variable after accounting for the
study effect (p = 0.213). The mean (± SE) of MDR was 0.849
(± 0.0063). The best prediction model for MDR (n = 106 from
28 studies) was 0.9410ð± 0.02160Þ + 0.0042ð± 0.00186Þ × DMIðkgÞ−
0.0017ð± 0.00024Þ × NDFð%DMÞ − 0.0022ð± 0.00084Þ × CPð%DMÞ We
also presented a model with a positive coefficient for the ether
extract (n = 80 from 22 studies). When using these equations, the
observed ME was predicted with high precision (R2 = 0.92). The
model accuracy was also high, as shown by the high concordance
correlation coefficient (> 0.95) and small root mean square error of
prediction (RMSEP), less than 5% of the observed mean. Moreover,
a significant portion of the RMSEP was due to random bias (> 93%),
without mean or slope bias (p > 0.05). We concluded that dietary
ME in beef cattle could be accurately estimated from dietary DE
and its conversion factor, MDR, which can be predicted by the dry
matter intake and concentration of several dietary nutrients, using
the two prediction equations developed in this study.

Prediction of body condition score in dairy cows in CNCPS
and NDS Professional

G. Esposito,1,2 E. Raffrenato,1,2 K. Harvatine,3 and E. Melli1

1RUM&N Consulting, 42123 Reggio Emilia, Italy.
2Department of Animal Sciences, Stellenbosch University, Matieland 7602, Stellenbosch, WC,
South Africa.
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The body condition score (BCS) prediction allows to fine tune dairy
cows’ diets according to the objectives and the predicted animal
responses. In the CNCPS, BCS is a function of the animal’s energy
reserves (NRC 2001) presenting the following limitations: peak milk
yield (MY) is a breed set value; nutrient partitioning across lactation
is not considered; intake, MY and composition, are assumed to be
constant. The aim of this study was to develop and validate alterna-
tive BCS prediction models (BCSNDS) to overcome the CNCPS BCS
(BCSCNCPS) limitations. Two BCSNDS were developed: BCSNDSv1

included in the BCSCNCPS the “cows’ actual potential”, calculated as
predicted peak MY over breed-specific peak, and the fat catabolism
equation by Johnson et al. (2016); BCSNDSv2, in addition, accounts
for dynamic milk production (Wood 1967) and intake (Allen et al.
2019). Model predictions after 30 d in milk (DIM) were validated by
using the following data, obtained at 25, 50 and 80 DIM from 50
Holstein Friesian: diet composition and characterization, parity,
age, BW, BCS, milk yield and composition, and intake. BCS was
predicted at 55, 80 and 110 DIM. The observed values were regressed
on the predicted ones and RMSPE calculated. At 55 DIM, the
BCSCNCPS and BCSNDSv1 had a similar R2 (0.48), compared with the
BCSNDSv2 (R2 = 0.035), but the BCSNDSv1 had the lowest RMSPE
(0.312 vs 0.330 and 0.509 of the BCSCNCPS and BCSNDSv2) and the best
NSE (−0.13 vs −2.02 and −0.78 of the BCSCNCPS and BCSNDSv2). The
accuracy of all themodels was dramatically reduced with prediction
at 80 DIM (R2 ≤ 0.12). At 110 DIM, the BCSNDSv2 was the most accurate
model with a R2 of 0.535, a RMSPE of 0.156 and a NSE of 0.52 vs. a R2

of 0.166 and 0.214, RMSPE of 0.545 and 0.278, and NSE of -0.45 and
0.18 for the BCSCNCPS and BCSNDSv1, respectively. All the models pre-
sented a very low slope indicating a high variability of the predicted
BCS over the observed ones. Very interestingly, except for the pre-
diction at 110 DIM with BCSNDSv2, for which the residuals were
evenly distributed, and for the prediction at 55 DIM with BCSNDSv1,
for which the residuals showed the opposite trend, all the other
models and predictions had increased residuals with low BCS
observed. In conclusion, although a more dynamic model seemed
to be more accurate, prediction accuracy becomes more reliable
after peak lactation.
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MANU, a mathematical nutrition modeling framework to
assist on predictive and non-predictive multiple regression
applied to model biological data

A. Macias-Franco,1 A.E.M. Silva,1 F.H. Moura,1 A.B. Norris,2

S.C. Valadares Filho,3 and M. Fonseca1
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Accurate prediction of carcass (CA) and empty body (EBW) composi-
tion are fundamental for assessing nutrient requirements. Current
predictive CA and EBW models rely on stepwise feature selection
(SFR). Smith (2018) describes that, though SFR-models may fit data
well, they perform poorly in out-of-sample predictions. The goals
herein involve the development of a mathematical nutritionmodel-
ing framework (MANU; Figure 1) designed to assist in the decision
making of animal scientists using predictive and non-predictive
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multiple regression while modeling biological phenomena. In a
regression model such as Ŷ = β̂0 + X1β̂1+ · · · +Xpβ̂p, Ŷ represents the
predicted response, β̂0 the intercept, Xp the predictor variables, and
β̂p the corresponding coefficients of the predictors. Generating
estimates for β̂p is troublesome when many predictors are available
and are highly correlated. Statistical significance represents one of
the largest flaws of SFR at the expense of excluding biologically rel-
evant parameters. The MANU-framework proposes three alternatives:
first the ridge regression (RR) works conserving all features with regu-
larization/penalization on coefficients: β̂i;RR = ðXTX + λIPÞ−1XTy, where
IP is the identity matrix and λ a penalization coefficient; second, the
least absolute shrinkage and selection operator (LASSO) also penalizes
coefficients: β̂i;LASSO = argminðjjY − Xβjj22 + λ

Py
j=1 jβjjÞ where Y ∈ ℜn

is the continuous response, X is the n × p design matrix, β ∈ ℜp the
parameter vector, and λ a penalty parameter that defines inclusion
criteria within a given model (Meier et al. 2008); lastly, the net elastic
regression (NET) combines the benefits of L1-LASSO and L2-RIDGE
penalizations, being: β̂i;NET = ð1 + λ2

n ÞfargminjjY − Xβjj2 + λ2jjβjj2+
λ1jjβjj1gwhere Y∈ ℜn is the continuous response, X the nxp design
matrix, β ∈ ℜp the parameter vector, and λ1 and λ2 are the penaliza-
tion coefficients (Hoerl and Kennard 1970; Tibshirani 1996; Zou and
Hastie 2003). The MANU-framework was evaluated on 19 currently
published predictive models to highlight the poor out-of-sample pre-
diction of the models generated with SFR; these results are compared
with MANU models. A total of 121 predictive equations were gener-
ated for CA and EBW chemical and physical fat composition. The
MANU-frameworkmodels generated better predictions for all models

evaluated; Table 1 provides an example for CA and EBW physical fat
data. Features selected from RR, LASSO, and NET highlight not only
the betterment in predictive ability, but also inclusion of additional
significant biological features. Overall, this work will assist research-
ers in generation of more parsimonious, precise and accurate models
and improve biological understanding of current CA and EBW
predictions.
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A proposed methodology for modeling gut health additives
in monogastrics

N.S. Ferguson1

1Trouw Nutrition Innovation, 7504 McLean Rd. E., Puslinch, ON, N0B 2J0, Canada.

The proposed methodology assumes an existing process that quan-
tifies the impacts of health on tissue growth and maintenance.

Fig. 1. Flow chart of proposed MANU framework algorithm for generation of empirically adequate and correct predictive
mathematical models.
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The foundation was based on three key aspects of gastro-intestinal
tract (GIT) functionality: (1) microbial population; (2) integrity of
the gut epithelium and barrier; and (3) immune-modulation. Any
modification of these GIT characteristics will impact the health sta-
tus of the animal, nutrient digestibility, and maintenance require-
ments. The framework for incorporating feed additives into a
mechanistic growth model combines (1) quantifying the mode of
action of the additive, and (2) the metabolic consequences within
the animal. Firstly, to quantify the ability of an additive to influence
the microbial population, GIT integrity and immune-modulation
capacity, a metabolic index defining its influence relative to an
objective standard is required, with a maximum, for each of the 3
possible modes of action. The index values and their effects will be
influenced by their dose (or efficacy), probability of success based
on existing health status, a predefined maximum beneficial effect,
age of the animal and in the case of immunomodulation, the poten-
tial to over stimulate the immune system. The second component
of the framework is to define the consequences on animal metabo-
lism namely (1) improve health status; (2) improve nutrient digesti-
bility; and (3) improve post absorption nutrient utilization.
Improving general health status will improve the ability of the indi-
vidual to express its genetic potential, and reduce maintenance
costs, resulting in an increase in protein growth rate and possibly
an increase in feed intake. With improved gut health nutrient
digestibility and absorption will also increase resulting in a higher
efficiency of nutrient utilization. Providing optimum immune-
stimulation can also improve efficiency of nutrient utilization post
absorption by reducing maintenance. The total beneficial effects of
additives on animal performance will be from the sum of the bene-
fits from the microbial, GIT integrity and immunomodulation func-
tions. As metabolic effects of gut health additives are likely to be
partially additive, the proposed method will allow some synergistic
effect between additives, because of their different modes of action.
However, over-estimating the cumulative effect of multiple

additives will be prevented because there is a maximum level for
each mode of action. Model predictions were validated against
swine data from trials and published literature for a commercial
gut modifier, in-feed acidifier, zinc oxide and copper sulphate and
all results showed the predicted results were within 1 s.e.m of the
trial or published data means.

Modeling amino acid transport in bovine mammary
epithelial cells.

A.C. Hruby,1 I.A.M.A. Teixeira,1,2 P.S. Yoder,1 and M.D. Hanigan1

1Department of Dairy Science, Virginia Tech, Blacksburg, VA USA.
2Department of Animal Science, UNESP, Jaboticabal, São Paulo 14884-900, Brazil.

Transport of amino acids (AA) by bovine mammary epithelial cells
is subject to competition from other AA for common transporters
and exchange activity. For example, System L works by exchanging
non-essential AA (NEAA) for larger essential AA (EAA). In a meta-
analysis, valine (Val) was negatively correlated with milk protein,
potentially indicating transport competition (Hanigan et al. 2018).
Further, Jackson et al. (2000) observed that Val influx was inhibited
by high concentrations of lysine and leucine in porcine mammary
tissue. Thus, the objective of this study was to assess the impact of
varied NEAA and Val concentrations on EAA influx and efflux
rates. Treatments were low (70% of in vivo, LV) or high (200% of in
vivo; HV) Val; and low (LNEAA) or high glutamine, glycine, and
alanine as a group (HNEAA) arranged in a 2 × 2 factorial design.
Mammary cells were obtained from the State Key Laboratory of
Animal Nutrition, Beijing, China (Hu et al. 2009). Nearly confluent
cells were cultured for 24 h in a medium with AA profile and con-
centrations of lactating dairy cow plasma. Twenty-four plates were
randomly assigned to treatment (3 plates per treatment) and time
point (0, 0.5, 1, 5, 15, 60, and 240 min). Cells were preloaded with
15N-AA followed by 13C-AA as described by Yoder et al. (2020).
Enrichments in media, cell cytosol, and cell protein were assessed

Table 1. Evaluation and assessment of currently published predictive equations for carcass and empty body physical fat
measures compared with newly generated predictive equations with the MANU framework.

No.a Methodb Equationsc Rd RMSEe MAEf CCCg Cbh

Carcass physical fat
Reparametrized BID = −31.522 (4.387)+ 0.173 (0.010) * SBW 0.825 11.223 8.979 0.838 0.923

MANU LASSO = −95.719+ 0.076* (SBW)+ 1.265 *
(HBW)+ 0.147 * (PBW)+ 0.024 *
(PGL)+ 0.592* (RiDe) −0.503* (Sc)
+ 0.273 * (DIAG)

0.838 7.366 6.151 0.902 0.985

Empty body physical fat
Reparametrized BID = −190.333 (17.219)+ 2.661 (0.770) *

HBW+ 1.982 (0.478) * RiDe
0.861 28.043 24.287 0.672 0.724

MANU NET = −140.975+ 0.217 * (SBW)+ 1.953 *
(HBW)+ 0.220 * (RuHe)+ 0.267 * (PGL) –
0.714 * (Sc)+ 0.300 * (DIAG)+ 0.106 * (AbWi)

0.859 11.020 9.953 0.924 0.997

aReparametrized= represents currently published models reparametrized with our data for prediction; MANU= best three
equations generated with the proposed MANU framework.

bFeature selection method: BID= bidirectional stepwise selection, LASSO= least absolute shrinkage and selector operator,
NET= net elastic regression.

cparentheses with numbers in equations represent standard error.
dR2= goodness of fit.
eRMSE= root mean squared error.
fMAE=mean absolute error.
gCCC= concordance correlation coefficient.
hCb= correction bias.
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at each time point. Flux parameters (per (min × protein volume))
were fitted to unlabeled, 13C, and 15N pools and isotope ratios by
replicate using FME. Parameter and flux estimates were accessed
for treatment effects by ANOVA. Statistical significance and tend-
encies were declared at p < 0.05 and p < 0.1, respectively. High Val
resulted in lower influx rate constants (Ki) for Val and leucine,
probably due to feedback and competitive inhibition, respectively,
and increased Ki for threonine. High NEAA tended to increase Ki

for isoleucine and increased Ki for leucine, phenylalanine, threo-
nine, and Val. There were treatment interactions for isoleucine
and leucine; also, the Ki for Val tended to be highest with HNEAA
and LV. In addition, HNEAA increased efflux rate constants (Ke)
for isoleucine, leucine, and Val with tendencies to increase Ke for
phenylalanine and threonine. In summary, relationships among
AA can affect both influx and efflux in cells. If the responses are

the same in vivo, nutritionists may have to also consider some
NEAA when balancing for EAA.

References
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