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ABSTRACT. One of the major problems of current time is air pollution, the assessment of air quality 

through the use of bioindicators is a major concern at the moment. Our work aims to study the response of 

Xanthoria parietina (L.) Th. Fr.  to fluoride- and lead-induced stress as an example of the phytotoxic air 

pollutants. For this purpose, lichen thalli have been treated with sodium fluoride (NaF) and lead nitrates 

(Pb(NO3)2) solutions at 0, 0.5, 1.0, 5.0 and 10 mM, for time scale of 0, 24, 48 and 96 h. Lipid peroxidation 

measured by Malondialdehyde (MDA) and chlorophyll degradation measured by optical density 

OD435/OD415 ratio are used as results of stress induced by fluoride and lead, and the accumulation of proline 

and soluble sugars are measured as indicators of responses used by X. parietina. Based on the obtained 

results, it was noted that lipid peroxidation increased correlating with increasing concentrations of NaF and 

Pb(NO3)2 (r=0.773, p=0.000712*** and r 0.865, p=0.000031***, respectively), however, chlorosis and 

proline increased correlating with increasing exposure time of NaF (r=- 0.737, p=0.0011** and r=0.783, 

p=0.00032***, respectively) and Pb(NO3)2 (r=-0.926, p<0.0001*** and r=0.811, p=0.00013***, 

respectively), whereas soluble sugar contents increased according to increasing concentrations of NaF 

(r=0.678, p=0.0010***) and according to increasing exposure time of Pb(NO3)2 (r=0.780, p=0.00036***). 

Although lead was significantly more toxic than fluoride (p=0.02*), X. parietina offers a very high 

sensitivity to fluoride, which allowed us to conclude that the toxicity of fluorine is comparable to that of 

lead. 
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INTRODUCTION 

Lichens present a very important model of symbiotic organisms associating a 

mushroom called mycobiont and green algae and/or cyanobacteria called photobiont [1], 
one of its main uses is the use as bioindicators of air quality [2, 3, 4]. Lichens have the 

ability to absorb significant amounts of trace elements from the atmosphere [5, 6]. 

Lichens are also used as biomonitors [7, 8, 9] and bioaccumulators of heavy metals [10, 

11, 12, 13]. They are capable of growing on difficult supports such as coastal rocks [14], 

and differed from most other eukaryotic organisms in their physiology, morphology and 
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their ability to tolerate extreme stresses [15].  Despite their distribution and diversity are 

influenced by climate, soil chemistry and geography [16], lichens can resist various 

stressful conditions such as drought and temperature extremes [17], salinity [18], heat 

[19] heavy metals [12] and nutrient deficiency [20]. These stresses are the source of 

reactive oxygen species (ROS), the most important adaptation mechanism used by lichens 

for tolerance to stressful conditions is the scavenging of reactive oxygen species (ROS) 

[21]. Lichens can also respond to stressful situations by displaying conventional stress-

tolerant traits including reduced growth rates, considerable longevity, low nutrient 

demand and the presence of particular morphological and physiological adaptation and 

changes in ecological behaviour for surviving in the world most hostile situations [22]. 

Stressful conditions caused several biochemical and physiological changes in the 

plants. The most commonly used parameters to study the toxicity of atmospheric 

pollutants on lichens are chlorophyll degradation [23, 24] and lipid peroxidation [25, 26].  

Exposure to abiotic stress triggers the accumulation of amino acids and amines in 

different plant species. Soluble sugars play a crucial role in a variety of metabolic 

processes, acting as a signal to control gene expression in photosynthesis, osmolyte 

production, and sucrose metabolism [27]. Proline, on the other hand, is crucial for plants; 

it protects plants from various stresses and helps in their faster recovery from stress [28]. 

Our work which relates to the study of the toxic effect induced by fluoride and lead on 

X. parietina, is the first to be carried out in our region. 

The aim of this study is to investigate the toxic effect of fluoride and lead on lipid 

peroxidation and chlorophyll degradation in X. parietina (L.) Th. Fr. lichen, and to check 

for the accumulation of proline and soluble sugars as indicators of responses used for 

adaptation to induced stress. 

MATERIALS AND METHODS 

Lichen material 

Lichen thalli samples of X. parietina were gathered in the Beni Metrane and Djimar 

region, south of Jijel (Algeria) in February-March 2018. After collection, samples were 

transferred to the laboratory in clean closed boxes. Impurities were removed, and samples 

were washed with distilled water to remove superficial dust and adherent particles. In 

each experimental vessel, fresh weights of thalli were isolated and acclimatized to 

laboratory conditions until analysis. 

  

Fluoride and lead treatment 

In comparison to distilled water, the lichen thalli of X. parietina were incubated in 

solutions of NaF and Pb(NO3)2 at 0, 0.5, 1.0, 5.0 and 10.0 mM concentrations at room 
temperature. H2SO4 or HNO3 were added to the solutions immediately before treatment 

to adjust pH to 3.5. These solutions were then stored in the dark for 0, 24, 48, and 96 h at 

room temperature. The samples were rinsed three times with distilled water after 

treatment and before each assay [29]. 

 

MDA assay  

For the MDA assay, the Health and Packer [30] method was used. 200 mg of the lichen 

thalli were homogenized in 2 mL of 0.1% trichloroacetic acid (TCA) and centrifuged at 

10000 g for 20 min. To 1 mL of supernatant, 1 mL of 20% TCA containing 0.5 mL of 
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thiobarbituric acid and 0.001 mL of butylated hydroxyl-toluene BHT at 4% solution in 

ethanol were added. The mixture was heated at 95 °C for 30 min and centrifuged at 10000 

g for 15 min, the supernatant absorbance was read at the wavelength 532 nm and corrected 

at 600 nm. MDA was calculated by multiplying by the coefficient of 155 mM-1cm-1; the 

results were expressed in µmol g-1 FW. 

 

Integrity of chlorophyll assay 

According to Ronen and Galun [31], the integrity of chlorophyll was calculated. About 

20 mg of lichen thalli were extracted in 3 mL of dimethylsulfoxide (DMSO) in dark at 65 

°C for 40 min. The optical densities at 435 nm and 415 nm for the extract were read, and 

the ratio OD435/OD415 was calculated to assess the degree of chlorophyll degradation. 

Ronen and Galun (1984) estimate that a ratio between 1.4 and 1.45 was calculated in 

lichens in the case of minimal chlorophyll degradation into phaeopigments. 

 

Proline assay 

The method used for the determination of proline is that of Troll and Linsley [32], 100 

mg of fresh lichen thalli were extracted in 2 mL of 40 % methanol at 85 °C for 60 min. 

After cooling, 1 mL of acetic acid and 1 mL of a mixture containing (120 mL of distilled 

water, 300 mL of acetic acid and 80 mL of acid orthophosphoric acid and 25 mg of 

ninhydrin) were added to 1 mL of the extract. The solution was brought to the boil for 30 

min, it gradually turns red. After cooling, 5 mL of toluene was added; the upper phase 

which contains the proline was recovered and dehydrated by the addition of disodium 

sulphate. The optical density was determined by a spectrophotometer at a wavelength of 

528 nm and the calibration curve was established by different concentrations of proline 

from a stock solution of 2 mg/100 mL of 40% methanol. Proline contents were determined 

using equation established by known concentrations of proline (y=28.0 x, R2=0.9911); the 

results were expressed in µg g-1 FW. 

 

Soluble sugars assay 

The soluble sugar contents were quantified by the method of Dubois et al. [33]. 100 

mg of fresh lichen material were extracted in 3 mL of 85% ethanol for 48 h in the dark, 

then filtered and recovered with 20 mL of distilled water, 1 mL of 5 % phenol and 5 mL 

of 1.8 N sulfonic acid were added to 1 mL of the filtrate. After incubation for 15-20 min 

in a water bath adjusted to 30 °C, the optical densities were determined at the wavelength 

490 nm. The calibration curve was established by glucose at different concentrations 

prepared from a stock solution of 250 mg/L. Soluble sugar contents (µg.g-1 FW) were 

calculated using equation established by known concentrations of glucose (y=0.731x + 

0.001, R2=0.999). 

 

Statistical analysis 

Three repetitions were performed at each concentration, so we can calculate the 

standard deviation (SD). The statistical study was performed using the ORIGIN 6.0 

system using the test univariate variance (one way ANOVA). For the study, the results 

were expressed as mean±SD. The difference was considered to be not significant when 

p>0.05(NS), significant when 0.01<p<0.05 (*), highly significant when 0.001<p<0.01 (**) 

and very highly significant when p<0.001 (***). 
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Correlation matrices between NaF, Pb(NO3)2 and different studied parameters were 

analyzed by STATISTICA Version 10 software. 

RESULTS AND DISCUSSION 

MDA accumulation 

Results of the MDA contents in the thalli of X. parietina treated by different 

concentrations of NaF and Pb(NO3)2 during 0, 24, 48 and 96 h are presented in Fig. 1. 

Correlation matrices between NaF / MDA, Pb(NO3)2 / MDA are presented in Fig. 2.  

 

 

Fig. 1. MDA accumulation in X. parietina treated with different concentrations of (A): 

NaF, (B): Pb(NO3)2 

 

According to Fig. 1, no significant increase in the MDA content was noted as a 

function of the concentrations of NaF (p=0.179NS) and Pb(NO3)2 (p=0.109NS). However, 

depending on exposure time, a significant increase of MDA content was noted with 

treatment by NaF (=0.005**) and Pb(NO3)2 (p=0.014*). 

 

 

 

Fig. 2. Correlation matrices between NaF / MDA (A), Pb(NO3)2/MDA (B). 

(A): r=0.773, p=0.000712***, (B): r=0.865, p=0.000031*** 
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From the data presented in Fig. 2, the statistical analysis results shows a significant 

positive correlation between MDA (Fig. 2 A) and NaF concentration, and between MDA 

and Pb(NO3)2 concentration (Fig. 2 B).  

During lipid peroxidation, a wide variety of aldehydes are formed, among these 

aldehydes is MDA. MDA is used as an interesting biomarker and diagnostic for lipid 

oxidative damage under drought stress [34, 35]. MDA is also accumulated in plants under 

heavy metal stress such us mercury [36]. Compared to the control test, our results show 

that the exposure of X. parietina to NaF and Pb(NO3)2 solutions caused a significant 

increase in MDA content (p<0.05*) where we found a positive correlation between MDA 

contents in X. parietina and increasing concentrations of NaF and Pb(NO3)2 (r=0.773, 

p=0.000712*** and r=0.865, p=0.000031***respectively). The same results were 

obtained by Dzubaj et al. [37] and Pisani et al. [38] who showed that X. parietina reacts 

against fluorine, boron and lead-induced stress by increasing of the MDA content. Our 

results are in agreement with those of El-Shora et al. [39] which showed that lead stress 

increased MDA contents in the treated plants, and those of Alsherif et al. [40] which 

indicated that heavy metal contamination resulted in significant increases in MDA in 

plants. Also, our results are in the same line with those obtained by Fan et al. [41] who 

show that MDA content increased in Festuca arundinacea Schreb after high 

concentration of fluorine treatment. Kacienė et al. [42] showed that oxidative stress 

induced by stress factors of different origin-ozone, ultraviolet (UV)-B radiation, drought, 

cadmium and copper, causes the increase in the content of MDA in barley. Likewise, 

Gutiérrez-Martínez et al. [43] noticed that the MDA content increases with increasing 

concentrations of cadmium accumulated in the leaves and roots of Phaseolus vulgaris 

plants under cadmium stress. 

 

Chlorophyll integrity variations 

Variations of the OD435/OD415 ratio in X. pareitina are presented in Fig. 3. Correlation 

matrices between NaF/OD435/OD415 ratio, Pb(NO3)2/OD435/OD415 ratio are presented in 

Fig. 4. 

 

 

 

Fig. 3. Variations of the OD435/OD415 ratio in X. parietina treated with different 

concentrations of (A): NaF, (B): Pb(NO3)2 
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Depending on exposure time, Fig. 3 (A) shows that the variations of OD435/OD415 ratio 

in the thalli treated with the different concentrations of NaF are significant (p = 0.009**), 

but depending of concentrations they are not significant (p=0.422NS). 

A slight decrease in OD435/OD415 ratio in thalli treated with the different concentrations 

of Pb(NO3)2 is recorded after 24 h of treatment (p>0.05NS), while between 24 h and 96 of 

treatment, a significant decrease in this ratio was noticed (p=0.036*). 

 

 

Fig. 4. Correlation matrices between NaF/OD435/OD415 ratio (A), 

Pb(NO3)2/OD435/OD415 ratio (B). (A): r=- 0.737, p=0.0011**, (B): r=- 0.926, 

p<0.0001*** 

 

 From the data presented in Fig. 4, the statistical analysis results shows a significant 

negative correlation between OD435/OD415 ratio and exposure time of NaF (Fig. 4 A) and 

between OD435/OD415 ratio and exposure time of Pb(NO3)2 (Fig. 4 B).  

The most commonly used metric to quantify chlorophyll degradation is the ratio of optical 

density of chlorophyll samples read at 435 and 415nm. A ratio of 1.4 informs about 

chlorophyll integrity, any reduction in this value indicates the degradation of chlorophyll 

to provide stress to the organism [44, 45]. Ours results show that a ratio of 1.4 was 

obtained in lichen thalli treated with distilled water (control), but for those treated with 

different concentrations of NaF and Pb(NO3)2, a decrease in this ratio was noted. 

According to this results, we found that the decrease of the OD435/OD415 ratio is in 

correlation with increasing exposure time of X. parietina to NaF and Pb(NO3)2 (r=- 0.737, 

p=0.0011** and r=-0.926, p<0.0001*** respectively). Our results are in agreement with 

those obtained by Shukla and Upreti [46], who reported that OD435/OD415 ratio values 

decreased with the increase in the amount of Cu, Pb and Zn in the lichen Pyxine 

subcinerea Stirton and of Bajpai et al. [47]; Sharma and Singh [48] and Chetia et al. [49] 

who indicate that chlorosis increases in lichens under heavy metals stress and with those 

obtained by Panda [50], who reported that chlorosis is one of the symptoms of fluoride 

toxicity in plants. 

 

Proline accumulation 

Treatment with increasing exposure time to increasing concentrations of NaF and 

Pb(NO3)2 caused a general increasing accumulation of proline in X. parietina (Fig. 5). 

Correlation matrices between NaF/proline, Pb(NO3)2/proline are presented in Fig. 6. 

(A) (B) 
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Fig. 5. Accumulation of proline in X. parietina treated with different concentrations of 

(A): NaF, (B): Pb(NO3)2 

 

 

According to the Fig. 5 (A), it was noticed that the accumulation of proline in thalli 

increases significantly with increasing NaF concentrations (p=0.0052**) but not 

significantly with increasing exposure time (p=0.177NS). 

According to Fig. 5 (B), no significant accumulation of proline in the thalli treated 

with the 0.5, 1 and 5 mM concentrations of Pb(NO3)2 was noted (p=0.08NS), however with 

the high concentration of Pb(NO3)2 (10 mM), proline accumulation was significant ( 

p=0.016*). Depending on exposure time, significant accumulation of proline (p=0.013*) 

after 96 h of treatment with all concentrations of Pb(NO3)2 was noted. Therefore, it can 

be concluded that the accumulation of proline varies much more with time than with 

concentration. 

 

 

 
Fig. 6. Correlation matrices between NaF/proline (A), Pb(NO3)2/proline (B). 

(A): r=0.783, p=0.00032***, (B): r=0.811, p=0.00013*** 
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proline to protect the structure of its macromolecules [53]. Amri and Layachi [54] 

reported that exogenous application of proline on a Faba bean (Vicia faba) plant cultived 

under cadmium stress helped the plant recover from the cadmium stress-induced 

physiological changes. The determination of proline in lichens is a detective method of 

the various possible stress phenomena. Our results show a significant increase in proline 

content in X. parietina correlating with increasing exposure time to NaF and Pb(NO3)2 

(r=0.783, p=0.00032*** and r=0.811, p=0.00013***respectively), the same result was 

obtained by Li et al. [55] who reported that proline contents increased in maize varieties 

under Cd stress. Likewise, our results are similar to those obtained by Koleva et al. [56], 

which were noted that Phaseolus vulgaris seedlings under cadmium-induced stress 

exhibited an increased level of proline. Several other studies indicate also that proline 

increases under the action of other types of stress: salt stress [53], water limitation [57], 

changing climate conditions [52], UV radiation [58], heat stress tolerance [59] and 

nutrient deficiency [28]. 

 

Soluble sugars accumulation 

The effect of different concentrations of NaF and Pb(NO3)2 on the content of soluble 

sugars in X. parietina are shown in Fig. 7. Correlation matrices between NaF/soluble 

sugars, Pb(NO3)2/soluble sugars are presented in Fig. 8. 

 

 

 

Fig. 7. variations of soluble sugar contents in X. parietina treated with different 

concentrations of (A): NaF, (B): Pb(NO3)2 
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Fig. 7 (A) shows a significant increase in soluble sugar contents in thalli treated with all 

concentrations of NaF (p=0.01*), but depending of exposure time, the variations in 

soluble sugar contents were not significant (p=0.23NS). Unlike NaF, Fig. 7 (B) shows no 

significant increase in soluble sugar contents depending of concentrations (p=0.238NS), 

and a significant increase depending of exposure time (p=0.010*).  
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Fig. 8. Correlation matrices between NaF/soluble sugars (A), Pb(NO3)2/soluble sugars 

(B). (A): r=0.678, p=0.0010***, (B): r=0.780, p=0.00036*** 

 

 

From the data presented in Fig. 8, the statistical analysis results shows a significant 

positive correlation between soluble sugars (Fig. 8 A) and NaF concentration, and 

between soluble sugars contents (Fig. 8 B) and exposure time of Pb(NO3)2.  

Like proline, soluble sugars are part of the adaptation strategies used by plants to 

combat and tolerate stressful conditions [27, 34, 60]. The results obtained show a 

significant increase in the content of soluble sugars correlating with increasing 

concentration of NaF (r=0.678, p=0.0010***) and correlating with increasing exposure 

time of X. parietina to Pb(NO3) 2  (r=0.780, p=0.00036***); these results are in agreement 

with the results obtained by Gandonou et al. [61] who showed that soluble sugars 

accumulate  in two sugarcane cultivars under salt stress. According to Abbaspour et al. 

[62], the increase of the salinity stress resulted in the increasing concentration of soluble 

sugars in three pistachio cultivars. Also, several other studies showed that drought stress 

increased the contents of soluble sugars in the leaves of soybean seedlings [63] and in 

Sophora davidii (Franch.) [64]. Our results are also concomitant with those obtained by 

Aldoobie and Beltagi [65], who reported that contents of total soluble sugars increased in 

common bean (Phaseolus vulgaris L. cv. Nebraska) plants in response to lead, cadmium 

and nickel stress. 

According to Ahmad et al. [66], plants accumulate soluble sugars as a defense 

mechanism against stressful conditions caused by drought and water scarcity, varying 

temperature from minimal to maximum level, and accumulation of salt and heavy metals. 

Our results show that chlorosis, lipid peroxidation, accumulation of proline and soluble 

sugars in X. parietina under Pb(NO3)2 treatment are more intense than under NaF 

treatment. Based on our statistical analyses, it was concluded that lead is significantly 

more toxic than fluoride (p=0.02*). 

CONCLUSION 

The results of the present study showed a significant increase of MDA content in X. 

parietina correlating with increasing concentrations of NaF and Pb(NO3)2, and a 

significant increase of OD435/OD415 ratio and proline accumulation correlating with 

increasing exposure time of NaF and Pb(NO3)2, results showed also that soluble sugar 

contents increased correlating with increasing concentrations of NaF and correlating with 

increasing exposure time of Pb(NO3)2. Despite the fact that lead was more toxic than 
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fluoride, X. parietina has a very high sensitivity to fluoride, we were able to draw the 

conclusion that fluoride must be classified among the most toxic air pollutants, and 

therefore to open the field to other works to study and compare the toxicity of fluorine 

with that of heavy metals on the various other ecosystems.  
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