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Background: STK11 mutation in LUAD affects immune cell infiltration in tumor tissue, and is associated with tumor 
prognosis. 
Objective: This study aimed to construct a STK11 mutation and immune-related LUAD prognostic model.
Materials and Methods: The mutation frequency of STK11 in LUAD was queried via cBioPortal in TCGA and PanCancer 
Atlas databases. The degree of immune infiltration was analyzed by CIBERSORT analysis. DEGs in STK11mut and 
STK11wt samples were analyzed. Metascape, GO and KEGG methods were adopted for functional and signaling pathway 
enrichment analysis of DEGs. Genes related to immune were overlapped with DEGs to acquire immune-related DEGs, 
whose Cox regression and LASSO analyses were employed to construct prognostic model. Univariate and multivariate 
Cox regression analyses verified the independence of riskscore and clinical features. A nomogram was established to 
predict the OS of patients. Additionally, TIMER was introduced to analyze relationship between infiltration abundance of 
6 immune cells and expression of feature genes in LUAD. 
Results: The mutation frequency of STK11 in LUAD was 16%, and the degrees of immune cell infiltration were different 
between the wild-type and mutant STK11. DEGs of STK11 mutated and unmutated LUAD samples were mainly enriched 
in immune-related biological functions and signaling pathways. Finally, 6 feature genes were obtained, and a prognostic 
model was established. Riskscore was an independent immuno-related prognostic factor for LUAD. The nomogram 
diagram was reliable. 
Conclusion: Collectively, genes related to STK11 mutation and immunity were mined from the public database, and a 
6-gene prognostic prediction signature was generated.
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1. Background
Lung cancer presents the highest mortality worldwide 
(1). One of its subtypes, non-small cell lung cancer 
(NSCLC), accounts for 85% among all NSCLC cases 
(2). Lung adenocarcinoma (LUAD) as a main subtype 
of NSCLC accounts for the largest proportion (3). 
Although technologies for cancer diagnosis and 
treatment have been improved recently, the overall 
prognosis of LUAD patients is poor (4). Several studies 

showed that immune cell infiltration can affect LUAD 
patient’s prognosis, and can be used as a prognostic 
predictor (5-7). In addition, mutation of the tumor 
suppressor gene STK11 not only affects immune cell 
infiltration in LUAD, but also is linked with poor 
prognosis of LUAD (7-9). Therefore, combined with the 
above studies, STK11 mutation and immune infiltration 
are both implicated in LUAD patient’s prognosis. 
At present, the establishment of multi-gene prognostic 
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prediction signatures in LUAD based on high-
throughput expression data has become a research 
hotspot. In 2021, Xinliang Gao et al (10), screened 
ferroptosis-related genes based on The Cancer Genome 
Atlas (TCGA) database and established a signature 
in LUAD with good predictive performance through 
least absolute shrinkage and selection operator 
(LASSO) analysis. In 2019, Lei Zhang et al (11), 
mined glycolysis-associated gene sets from TCGA 
database by Gene Set Enrichment Analysis (GSEA). 
Combined with Cox regression analysis, a model for 
predicting metastasis and survival time of LUAD based 
on glycolysis-related genes was constructed. Similarly, 
Cheng Yue (12) and his colleagues, based on the 
gene expression data obtained from Gene Expression 
Omnibus (GEO) and TCGA databases, established a 
signature of microenvironment-related genes in LUAD 
in 2019. However, up to now, no study has constructed 
a prognostic prediction signature in LUAD based on 
genes associated with STK11 mutation and immune. 
Herein, gene sets related to STK11 mutation and 
immune were screened. Subsequently, Cox regression 
and LASSO analyses were carried out to establish a 
6-gene signature. Finally, receiver operating charac-
teristic (ROC) curves, survival curves, Cox regression 
analysis, and other methods were introduced to verify 
the prediction performance of the model. Taken together, 
the constructed 6-gene signature can effectively predict 
LUAD patient’s prognosis.

2. Objective 
Immune cell infiltration can affect the prognosis of 
LUAD patients and can be served as a prognostic 
predictor. STK11 mutations in LUAD can affect the 
degree of immune cell infiltration in tumor tissues 
and also have an underlying association with LUAD 
prognosis. However, the molecular mechanism and 
prognostic significance of STK11 remains obscure. 
Hence, the current study attempts to construct a STK11 
mutation and immune-related LUAD prognostic model.

3. Materials and Methods

3.1. Data Acquisition and Bioinformatics Analysis 
Process
In TCGA and PanCancer Atlas datasets, cBioPortal 
(https://www.cbioportal.org/) was utilized to query 
STK11 mutation frequency in LUAD (13). The mRNA 

expression data (FPKM), mutation data (VarScan2 
Annotation), and patient clinical features of LUAD 
samples were accessed from TCGA database (https://
www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) (Supplementary Table 1). 
LUAD sample dataset (GSE72094) was  downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) as 
a validation set (44 samples were excluded as missing the 
clinical data), which contains mRNA expression matrix 
and clinical information (Supplementary Table 2). Bio-
informatics analyses were conducted based on the above 
datasets (Fig. 1).

3.2. Analysis of Immune Cell Infiltration
TCGA-LUAD mRNA expression profile (FPKM) 
data were employed to score abundance of tumor 
immune cell infiltration in LUAD samples based on 
CIBERSORT algorithm (14). Permutation test was 
utilized for the reliability analysis of abundance of 
immune infiltration, and the analysis results of p<0.05 
were retained. Immune cells with zero abundance of 
immune cell infiltration in all samples were deleted. 
The difference in immune infiltration abundance 
between STK11wt and STK11mut groups was analyzed 
by Wilcox test.

3.3. Differential Expression Analysis and Enrichment 
Analysis
With STK11wt sample as a control, differential analysis 
was performed on the STK11mut sample using limma 
package (15) to screen differentially expressed genes 
(DEGs; |logFC|>1, FDR<0.01). Then, the DEGs 
obtained were analyzed by DAVID (https://david.
ncifcrf.gov/) (16) for GO and KEGG analyses (q 
value <0.05). GO enrichment analysis includes three 
categories: molecular function (MF), biological process 
(BP) and cell component (CC). KEGG enrichment 
analysis revealed the main enrichment signaling 
pathways.

3.4. Construction of a Signature
Immune-related genes (17) were obtained from Import 
database (https://www.immport.org/shared/home), 
then the genes were taken intersection with DEGs to 
get immune-related DEGs. Subsequently, Metascape 
(http://metascape.org/gp/index.html#/main/step1) was 
adopted to perform functional enrichment analysis on 
immune-related DEGs (18). Univariate Cox regression 
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analysis was done using survival package (p<0.01). 
Then, glmnet (19) was applied to conduct LASSO 
analysis on the obtained genes. The penalty parameter 
lambda (λ) was selected by cross-validation method 
to remove the genes with strong correlation. Survival 
package was employed for multivariate Cox regression 
analysis of the genes screened by LASSO analysis, and 
a signature was established finally.

3.5. Signature Evaluation and GSEA 
The ROC curve was plotted using survival ROC 
package (20) with TCGA-LUAD dataset as training 
set and GSE72094 dataset as validation set. The area 
under the ROC curve (AUC) for 1, 2 and 3 years was 
analyzed. The risk score of TCGA-LUAD samples was 
computed by the signature, and patients were classified 
into high- and low-risk groups with the median risk 
score as cut-off value. Survival curves of patients were 
plotted using the survival package based on TCGA-
LUAD and GSE72094 datasets. GSEA of DEGs in 
patients of the two risk groups was performed using 
GSEA software (21).

3.6. Analysis of Tumor Immune Cell Infiltration Based 
on TIMER Algorithm
Based on TCGA-LUAD dataset, TIMER tool (https://
cistrome.shinyapps.io/timer/)(22) was employed to 
analyze correlation between abundance of tumor 
immune cell infiltration and patients’ overall survival 
(OS), feature gene expression and OS, the abundance 
of tumor immune cell infiltration and feature gene 
expression.

3.7. Independent Analysis of Signature and Construction 
of the Nomogram
Univariate and multivariate Cox regression analyses were 
performed to the risk score calculated by the prognostic 
model and the clinical information (age, gender, TMN, 
and stage). Through the rms (https://cran.r-project.org/
web/packages/rms/index.html) package and combining 
with different clinical information and risk scores, the 
nomogram for 3-year and 5-year survival probabilities 
was plotted. Foreign package (https://cran.r-project.
org/web/packages/foreign/index.html) was applied 
to draw the correction curve of the nomogram.

Figure 1. Flow chart of the analysis.
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4. Results

4.1. Frequency of STK11 Mutation in LUAD
Multiple studies indicated that STK11 is a common 
mutation site of LUAD and affects immune infiltration 
of tumor tissue (7,23). We used cBioPortal to detect 
the mutation frequency of STK11 in LUAD, and results 
displayed that the mutation frequency of STK11 in 
LUAD was 16% (Supplementary Fig. 1).

4.2. Analysis of Immune Cell Infiltration Between 
STK11wt and STK11mut in LUAD
TCGA-LUAD mutation data were analyzed and then 
434 STK11wt and 69 STK11mut LUAD samples were 
obtained. Then, CIBERSORT algorithm was applied 
to score the abundance of immune cell infiltration 
in TCGA-derived dataset (Fig. 2A). Then, 402 ST 
K11wt samples and 62 STK11mut samples were 
retained, and the correlation between the abundance 
of immune cell infiltration was analyzed (Fig. 2B). 
Subsequently, abundance of immune infiltration was 
compared between STK11mut group and STK11wt 
group (T cells CD4 naive abundance was 0 in each 
sample and therefore was not shown in the results). As 
demonstrated in the results, compared with STK11wt 
group, STK11mut group presents higher T cells 
follicular helper, Plasma cells, NK cells activated, 
and Neutrophils infiltration abundance, while lower 
Macrophages M1, Macrophages M2, and Dendritic 
cells resting abundance (Fig. 2C). 

4.3. DEGs and Enrichment Analysis of STK11mut and 
STK11wt LUAD Samples
Based on TCGA-LUAD dataset, STK11wt group 
was set as the control group, differential analysis 
was performed on STK11mut group. 823 DEGs were 
screened out, wherein expression of 455 genes was 
prominently increased and that of 368 genes was 
down-regulated (Fig. 3A). To detect DEGs-related 
biological functions and signaling pathways, GO and 
KEGG analyses were carried out. As indicated by GO 
enrichment analysis result, in the BP module, DEGs 
presented enrichment in antigen processing, immune 
response, and presentation of peptide or polysaccharide 
antigen via MHC class II (Fig. 3B). In the CC module, 
DEGs were mainly gathered in plasma membrane, 
extracellular space, and cell surface (Fig. 3C). In the 
MF module, DEGs were mainly enriched in calcium ion 

binding, cytokine activity, and MHC class II receptor 
activity (Fig. 3D). KEGG enrichment analysis result 
revealed that DEGs showed enrichment in signaling 
pathways such as rheumatoid arthritis, hematopoietic 
cell lineage, autoimmune thyroid disease, etc. (Fig. 
3E). In sum, DEGs of STK11 mutated and STK11 
unmutated LUAD samples were mainly gathered in 
immune-related biological functions and signaling 
pathways.

4.4. Construction of a STK11 Mutation and Immune-
Related Prognostic Prediction Signature in LUAD 
For the purpose of constructing the STK11 mutation 
and immune related signature for LUAD, the following 
steps were performed. First, 1,811 immune-related 
genes were overlapped with 827 DEGs obtained 
above to acquire 117 immune-related DEGs (Fig. 4A) 
(Supplementary Table 3). Subsequently, enrichment 
analysis was completed on immune-related DEGs. 
Result exhibited that the enrichment of genes laid in 
regulation of leukocyte activation, antigen processing 
and presentation and endogenous lipid antigen 
via MHC class Ib (Fig. 4B-C). Hence, it could be 
inferred that immune-related DEGs played a part in 
immune regulation. In order to construct a signature 
related to STK11 mutation and immune, a univariate 
Cox regression analysis was first performed on 117 
immune-related DEGs, obtaining 17 genes evidently 
correlated with prognosis (p<0.01) (Supplementary 
Table 4). To prevent model overfitting, LASSO Cox 
regression analysis was conducted on 17 prognostic 
genes, and 9 candidate feature genes were acquired 
(Fig. 4D-E). Finally, was performed on the results of 
LASSO analysis, and 6 optimal feature genes (CCL20, 
PGC, RAET1L, CD1E, FURIN, KL) were gained (Fig. 
4A). A signature was constructed: riskscore=0.09935 
* CCL20 - 0.03346 * PGC + 0.04047 * RAET1L - 
0.06405 * CD1E + 0.13980 * FURIN - 0.08910 * KL. 
Among the features, CCL20, CD1E, FURIN seemed 
to significantly correlate to the OS. Therefore, we 
subsequently analyzed expression of these genes 
in LUAD, finding that CCL20 and FURIN were 
evidently upregulated in the LUAD tumor tissues, 
while CD1E was downregulated in the LUAD tissues 
(Supplementary Fig. 2). As our regression analysis 
indicated CCL20 and FURIN as the risk factors, CD1E 
as a protecting factor, the results of our expression 
support our prognostic model.

Tang B et al.
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Figure 2. Analysis of immune cell infiltration. A) Bar graph of the abundance of immune cell infiltration in 
STK11wt and STK11mut LUAD samples (different colors represent varying types of immune cells). B) Heat map 
of infiltration abundance of immune cells in STK11wt group (blue) and STK11mut group (pink). C) Violin diagram 
of the abundance of immune cell infiltration in STK11mut group (red) and STK11wt group (blue).

A)

B)

C)
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Figure 3. DEGs and enrichment analysis of STK11mutand STK11wt LUAD samples. A) Volcano 
map of DEGs between STK11mut and STK11wt groups (red: remarkably upregulated genes, green: 
remarkably downregulated genes). B) GO enrichment analysis shows that the main BPs of DEGs 
enrichment (q value decreases as the color tends to red. The larger the circle, the more genes are 
enriched). C) GO enrichment analysis shows the CCs where DEGs are mainly enriched. D) GO 
enrichment analysis exhibits the MFs where DEGs are mainly enriched; E. KEGG enrichment analysis 
displays the signaling pathways where DEGs are mainly enriched.

A)

B) C)

D) E)
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Figure 4.  Construction of a signature in LUAD related to STK11 mutation and immune. A) Venn diagram of immune-
related genes and DEGs. B) Functional enrichment analysis of immune-related DEGs and sequencing the enriched modules 
according to the P value. C) Enrichment analysis network of immune-related DEGs displayed according to the enriched 
functional modules. Nodes of the same color correspond to function modules of the corresponding color. The larger the 
size of nodes indicates that more genes are contained. D) The LASSO regression model coefficients of 17 prognostic 
genes, with different color curves representing the variation trajectories of gene coefficients of different characteristics with 
the penalty parameter λ. E) The optimal penalty parameter λ selected from the LASSO regression model. F) Forest plot of 
the relationship between 6 feature genes in multivariate Cox regression model and OS rate of patients.

A) B)

C)

D)

E) F)
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Figure 5. Evaluation of performance of signature. A) Distribution of patient risk scores in TCGA-LUAD 
dataset. The median value of risk score is utilized as a cutoff line to classify patients into two risk groups. B) Heat 
map of 6 feature genes and clinical features in the two risk groups (*p<0.05, ** p<0.01, and *** p<0.001). C) 
Relationship between patient risk scores and survival in TCGA-LUAD dataset. (D,E) ROC analysis of the 6-gene 
signature in TCGA-LUAD and GSE72094 datasets. (F,G) Survival curves of the two risk groups in TCGA-
LUAD and GSE72094 datasets.

A) B)

C)

D) E)

F) G)
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4.5. Evaluation of the Performance of the Signature 
To evaluate performance of the 6-gene signature, 
riskscore of each sample was firstly c omputed b y the 
model, and the median value of the riskscore was utilized 
as the threshold to sort patients into two risk groups (Fig. 
5A). Subsequently, the relationship between survival 
time and risk score was analyzed, revealing that patients’ 
survival deteriorated as risk score increased (Fig. 5C). 
Concomitantly, the expression of 6 feature genes in 
different clinical features and the two risk groups was 
analyzed. The results suggested that CD1E, PGC and 
KL were lowly expressed in the high-risk group while 
RAET1L, CCL20 and FURIN expression was the 
opposite. In addition, the chi-square test revealed that the 
distribution of N stage, staging and survival status also 
had prominent differences between the two risk groups 
(Fig. 5B). Next, performance of the 6-gene signature 
was evaluated by drawing ROC curves and survival 
curves. As demonstrated in the results, in the training 
set, the AUC of 1, 2 and 3 years of OS was 0.711, 0.694 
and 0.7, respectively (Fig. 5D). In the validation set, the 
AUC of 1, 2 and 3 years of OS was 0.678, 0.695 and 
0.694, respectively (Fig. 5E). The survival curves of 
both TCGA-LUAD and GSE72094 datasets indicated a 
lower survival rate in the high-risk group (Fig. 5F-5G). 
To examine whether this immune-related prognostic 
model could be used to assess immunotherapy efficacy, 
the correlations between the risk score and several 
immune checkpoint genes (PD-1, PDL-1, LAG3, CTLA-4) 
were analyzed. However, the analyses results did 

not show any significant associations between them 
(Supplementary Fig. 3), indicating this model was 
inappropriate to assess immunotherapy efficacy.

4.6. GSEA Results
For the purpose of exploring the signaling pathways of 
marked enrichment in the two risk groups, GSEA results 
suggested that the high-risk group was remarkably 
enriched in the p53 and riboflavin metabolism-related 
signaling pathways (Fig. 6A-6B), indicating that the regula-
tion of these two signaling pathways was prominently 
different in the two risk groups.

4.7. Analysis of Correlation Between Feature Genes, 
Immune Cell Infiltration and Prognosis of LUAD
By using TIMER, the survival curves of patients in 
high and low immune infiltration groups, and high and 
low expression groups of 6 optimal feature genes were 
analyzed in the LUAD dataset. The results indicated 
that patients in the B-cell high infiltration group had 
a higher survival rate (Fig. 7A). Patients in the high 
KL expression group, and low REAT1L had a higher 
survival rate, compared with the corresponding control 
groups, respectively (Fig. 7B). Besides, the correlation 
between the expression of 6 optimal feature genes and 
immune cell infiltration degree was analyzed. The results 
uncovered that CD1E level was markedly positively 
linked with the infiltration degree of CD4+T cells, B 
cells, macrophages and dendritic cells (Fig. 7C).

Figure 6. GSEA analyzed pathway enrichment in low- and high-risk groups. A) Enrichment of 
DEGs in the p53 signaling pathway in the two risk groups. B) Enrichment of DEGs in the signaling 
pathways related to riboflavin metabolism in the two risk groups.

Tang B et al.
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Figure 7. Immune cell infiltration analysis of feature genes. A) Survival curves of the high and low 
immune cell infiltration groups. B) Survival curves of the 6 optimal feature genes in the high and the low 
expression groups. C) Analysis of the correlation between the expression of the optimal feature genes and 
the degree of tumor immune cell infiltration.

A)

B)

C)
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4.8. Independence of the Signature Evaluated with 
Clinical Information and Construction of the Nomogram
To determine the independence of the signature, univariate 
Cox regression analysis was conducted on independent 
prognostic factors like age, gender, TMN, stage, and risk 
score, uncovering that TNM, stage, and risk score were 
evidently correlated with LUAD patient’s prognosis (Fig. 
8A). Further, we performed multivariate Cox regression 
analysis of the above clinical features and risk scores. 

The result suggested that only risk score was markedly 
associated with the prognosis of LUAD patients (Fig. 8B). 
Finally, the risk scores and clinical features were combined 
to draw a nomogram to predict the 3-year and 5-year OS 
probabilities of patients (Fig. 8C). At the same time, the 
prediction performance of the nomogram was measured 
by calibration curves, and the results suggested that the 
predicted 3-year and 5-year survival rates presented a 
high degree of fit with the actual ones (Fig. 8D,E).

Figure 8. Independence of the signature evaluated with clinical information. (A,B) Univariate and 
multivariate Cox regression analyses for varying clinical features and risk scores. C) Nomogram of predicted 
3-year and 5-year survival drawn in combination with different clinical features and risk groups. (D,E) 
Calibration curves of the 3-year and 5-year survival prediction nomogram.

A) B)

C)

D) E)
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5. Discussion
In the past 20 years, with the in-depth understanding 
of lung cancer genome atlas and the development of 
new drugs, the treatment regimens for NSCLC have 
developed from a simple combination of targeted 
therapy and chemotherapy to a combination of chemo-
therapy, targeted therapy and immunotherapy based 
on gene diagnosis (24). Meanwhile, the selection of 
treatment plan for lung cancer surgery also refers to 
the prognosis assessment of lung cancer, and clinically 
it is widely believed that the factors influencing the 
prognosis of lung cancer include pathological and 
clinical features of lung cancer (25). In recent years, to 
evaluate the prognosis of lung cancer more accurately, 
a number of studies generated prognostic risk model 
according to on the gene expression profile of lung 
cancer to evaluate the prognosis of lung cancer (26). 
Similarly, based on the public database data set of 
LUAD, this study constructed a 6-gene signature 
with genes related to STK11 mutation and immune as 
features.
STK11 is a commonly mutated gene in LUAD. Based 
on TCGA data, this study uncovered that the mutation 
frequency of STK11 in LUAD was 16%, which 
was consistent with the results of several published 
studies (27). In a literature review published in Nature 
Reviews Caner, Ferdinandos Skoulidis and John V. 
Hepmach(28) concluded that mutation of STK11, a 
tumor suppressor gene, is central to the heterogeneity 
of lung cancer, but also affect immune cell infiltration 
in LUAD tumor tissue(29,30). Here, the abundance of 
immune cell infiltration in STK11mut and STK11wt 
LUAD datasets was analyzed, finding that there were 
marked differences in the abundance of immune cell 
infiltration between the two groups. Moreover, Weijing 
Cai et al. (31), study in 2018 mentioned that MHC I 
and II neoantigens often appear in STK11 mutated 
LUAD tissue, which was in accordance with the results 
of functional enrichment analysis of immune-related 
DEGs in this work.
Qian Song et al. (32), designed a 30-gene prognostic 
risk prediction model in LUAD on the basis of 
immune-related genes, and revealed that the prediction 
performance of the model is good, and there are evident 
differences in immune infiltration degree among the 
two risk groups predicted by the model. Similarly, 
this study identified the DEGs of STK11 mutated and 
STK11 non-mutated LUAD samples, selected immune-

related DEGs, further screened OS-related feature genes 
from them, and then constructed a 6-gene signature 
of LUAD. Compared with the research of Qian Song 
et al., this study not only employed ROC curve and 
survival curve to evaluate prediction performance of 
the model, but also drew a nomogram based on risk 
grouping and clinical features to predict probability 
of 3-year and 5-year survival. Therefore, this paper 
provides more reference data for prognosis prediction 
of LUAD. Interestingly, in a similar study, survival 
curves between STK11 mutation and non-mutation 
LUAD cases presented differently depending on their 
immune infiltration degree (33), indicating that STK11 
mutation correlated highly with immune infiltration, 
being consistent with the conclusion in section 1.1. 
Based on the understandings above, we first exhibited 
an STK11-immune-related model to effectively assess 
LUAD prognosis. 
Among the 6 genes, CCL20 and FURIN seem to 
contribute much to LUAD patients` prognosis. 
CCL20, understood as an inflammatory chemokine, 
could specifically bind to CCR6, promoting cancer 
progression in various tumors, which consists with our 
prediction. The diverse pathways triggered by CCL20-
CCR6 interaction were associated with cell migration, 
invasion, angiogenesis, as well as immune infiltration 
in cancers (34). Also, furin was considered as a well-
understood tumorigenesis factor reported to promote 
tumor growth in various cancers (35). According to 
the previous studies, activation or upregulation of 
furin could mediate several tumor-promoting signaling 
pathways, like IGF1R/STAT3, Hippo-YAP, and NICD/
PTEN, causing aggressive phenotypes in different 
cancers (36-38).
Although 6 prognostic-related feature genes in LUAD 
were finally identified and a 6-gene signature was 
constructed, there are still deficiencies. The analysis 
demonstrated that CD1E gene, as a protective factor 
that could evidently suppress LUAD, was also markedly 
positively correlated with the abundance of different 
immune cell infiltration. Therefore, we speculated that 
this gene is pivotal in LUAD development. However, 
the mechanism of this gene in LUAD has not been 
further investigated. Hence, in the next step, we try 
to further investigate the regulatory mechanism of 
CD1E in LUAD by combining bioinformatics analysis, 
molecular experiments and cell experiments.

Tang B et al.
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6. conclusion 
To sum up, we mined the genes closely correlated with 
STK11 mutation and immune via a series of bioinformatics 
analysis, disclosed the immunoregulatory function of 
genes, and established a risk assessment model that 
can accurately predict the prognosis of LUAD patients. 
It underlay the exploration of the prognostic value of 
STK11 in regulating the immune microenvironment, 
and provided an essential reference for the diagnosis 
and treatment of clinical STK11 mutation in LUAD.
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