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Abstract. We consider the two-point integral boundary value problem with boundary jumps for
third order linear integro-differential equation with the small parameter at two highest derivatives.
An asymptotic expansion of the solution of the integral boundary value problem with any degree
of accuracy with respect to a small parameter was constructed. A justification of the asymptotic
is provided.
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1. INTRODUCTION

Singularly perturbed equations act as mathematical models in many applied prob-
lems related to diffusion, heat and mass transfer, chemical kinetics and combustion,
heat propagation in thin bodies, semiconductor theory, gyroscope motion, quantum
mechanics, biology and biophysics, and many other branches of science and techno-
logy. There are a number of introductory as well as advanced books on asymptotic
methods that discuss some aspects of different perturbation techniques and their ap-
plications. Among them, let us mention, e.g., the monographs and textbooks by
Thikhonov [22], Chang and Howes [3], Kevorkian and Cole [14], Murdock [15],
Hinch [9], Wasow [27], Vishik and Lyusternik [26], Bogoliubov and Mitropolskii
[2], O’Malley [17], Van Dyke [23], Nayfeh [16], Smith [21], Eckhaus [8], Hoppen-
steadt [10], Sanders [20], Vasil’eva and Bytyzov [24, 25] and others.

We should mention that the boundary function, although widely used, is not uni-
versal. It is applied most successfully to problems whose solutions exhibit boundary
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layer types of behavior. There exist problems where this method does not work.
However, for those problems to which this method can be applied, it works in a most
effective and easy way, which makes it advantageous as compared with the other
methods. The boundary function method makes it possible to construct the asymp-
totic solution in a form that provides a uniform asymptotic approximation for the
solution of the original problem over the domain of interest and allows one to es-
timate the remainder term, which justifies the algorithm. Conditions that allow one
to verify for each particular problem, whether the boundary function method can or
cannot be used to obtain the asymptotic solution are discussed in the book [24,25] for
quite general classes of ordinary and partial differential equations. Initial and bound-
ary value problems with initial jumps for singularly perturbed ordinary and integro-
differential equations were considered [4,5,11–13]. Singularly perturbed differential
equations with piece-wise constant argument of generalized type were considered [1].
Boundary-value problems by using parametrization were investigated in [18, 19].

In the articles [6,7] local and integral boundary value problems for singularly per-
turbed integro-differential equations were considered, showing phenomena of initial
jumps at both boundaries of a given interval. For example, the solutions of the bound-
ary value problems have at both points t = 0 and t = 1 phenomena of initial jumps
respectively of the first and zero orders. Such boundary value problems are called
boundary value problems with boundary jumps. In these papers asymptotic estim-
ates of solutions were obtained and in the case of a local boundary value problem
the passage to the limit from the solution of assumed singularly perturbed problem
to the solution of the corresponding degenerate problem was described. An a similar
way the passage to the limits can be shown with some changes in the case of integ-
ral boundary value problems. However, we note that these passages to the limit are
non-uniform and have O(ε) degree of accuracy with respect to the small parameter.

Therefore, the aim of this work is to construct a uniform asymptotic expansion of
the solutions for the integral boundary value problem with any degree of accuracy
with respect to the small parameter. The scientific novelty lies in the fact that a
modification of the method of boundary functions to boundary value problems with
boundary jumps is proposed. Here the orders of the initial jumps at the ends of the
considered segment are taken into account.

2. MAIN RESULTS

Consider the singularly perturbed integro-differential equation

Lεy ≡ ε
2y′′′+ εA0(t)y′′+A1(t)y′+A2(t)y = F(t)+

1

∑
i=0

1∫
0

Hi(t,x)y(i)(x,ε)dx, (2.1)
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with integral boundary conditions

y(0,ε) = α, y′(0,ε) = β, y(1,ε) = γ+
1

∑
i=0

1∫
0

ai(x)y(i)(x,ε)dx, (2.2)

where ε > 0 is a small parameter, α,β,γ are known constants independent of ε.
We will need the following assumptions:

C1) Ai(t), F(t), a j(x) ∈CN+3[0,1], i = 0,2, j = 0,1, H0(t,x),H1(t,x) are suf-
ficiently smooth functions defined in the domain D = {0 ≤ t ≤ 1,0 ≤ x ≤ 1}
and also H1(t,1) ̸= 0.

C2) The roots µi(t), i = 1,2 of ”the additional characteristic equation”
µ2 + A0(t)µ + A1(t) = 0 satisfy the inequalities µ1(t) < −γ1 < 0, µ2(t) >
γ2 > 0.

C3) a1(1) ̸= 1.

In the work [19] a theorem was proved about asymptotic estimates of the solution for
the problem (2.1), (2.2).

In this paper, we will construct uniformly asymptotic expansion of the boundary
value problem (2.1), (2.2) on the interval 0 ≤ t ≤ 1. We will look for the asymptotic
expansion of the solution of the problem (2.1), (2.2):

y(t,ε) = yε(t)+ εwε(τ1)+ vε(τ2), τ1 =
t
ε
, τ2 =

t −1
ε

, (2.3)

where

yε(t) = y0(t)+ εy1(t)+ ε
2y2(t)+ . . . , (2.4)

wε(τ1) = w0(τ1)+ εw1(τ1)+ ε
2w2(τ1)+ . . . , (2.5)

vε(τ2) = v0(τ2)+ εv1(τ2)+ ε
2v2(τ2)+ . . . , (2.6)

(2.4) is called the regular part of the asymptotic and (2.5), (2.6) are called the bound-
ary layer parts of the asymptotic.

Substituting (2.3) into the equation (2.1), we obtain the following equality

ε
2
(

y′′′ε (t)+
1
ε2

...w ε(τ1)+
1
ε3

...v ε(τ2)

)
+ εA0(t)

(
y′′ε (t)+

1
ε

ẅε(τ1)+
1
ε2 v̈ε(τ2)

)
+A1(t)

(
y′ε(t)+ ẇε(τ1)+

1
ε

v̇ε(τ2)

)
+A2(t)(yε(t)+ εwε(τ1)+ vε(τ2))

= F(t)+
1∫

0

1

∑
i=0

Hi(t,x)
(

y(i)ε (x)+ ε
1−i (i)wε

(x
ε

)
+

1
εi

(i)
vε

(
x−1

ε

))
dx. (2.7)
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We make the substitution x
ε
= s1,

x−1
ε

= s2. Then the expression in integral of the
right-hand side of (2.7) and the integral expressions have the form

J1(t,ε) =

1
ε∫

0

1

∑
i=0

ε
2−iHi(t,εs1)

(i)
wε(s1)ds1 (2.8)

=

∞∫
0

1

∑
i=0

ε
2−iHi(t,εs1)

(i)
wε(s1)ds1 −

∞∫
1
ε

1

∑
i=0

ε
2−iHi(t,εs1)

(i)
wε(s1)ds1,

J2(t,ε) =
0∫

− 1
ε

1

∑
i=0

ε
1−iHi(t,εs2 +1)

(i)
vε(s2)ds2 (2.9)

=

0∫
−∞

1

∑
i=0

ε
1−iHi(t,εs2 +1)

(i)
vε(s2)ds2 −

− 1
ε∫

−∞

1

∑
i=0

ε
1−iHi(t,εs2 +1)

(i)
vε(s2)ds2.

The improper integrals in (2.8), (2.9) converge and the second term in (2.8), (2.9)
vanishes, because O

(
e(−γ1

t
ε)
)
, O
(

e(−γ2
1−t

ε )
)

are less than any power of ε, as ε → 0.
Writing separately for coefficients depending on t and on τ1, τ2, we get the equations
for functions yε(t), wε(τ1), vε(τ2) :

ε
2y′′′ε (t)+ εA0(t)y′′ε (t)+A1(t)y′ε(t)+A2(t)yε(t)

= F(t)+
1∫

0

1

∑
i=0

Hi(t,x)y
(i)
ε (x)dx+

∞∫
0

1

∑
i=0

ε
2−iHi(t,εs1)

(i)
wε(s1)ds1

+

0∫
−∞

1

∑
i=0

ε
1−iHi(t,εs2 +1)

(i)
vε(s2)ds2, (2.10)

...w ε(τ1)+A0(ετ1)ẅε(τ1)+A1(ετ1)ẇε(τ1)+ εA2(ετ1)wε(τ1) = 0, (2.11)
...v ε(τ2)+A0(ετ2 +1)v̈ε(τ2)+A1(ετ2 +1)v̇ε(τ2)+ εA2(ετ2 +1)vε(τ2) = 0. (2.12)

Let us expand the functions Ai(ετ1), i = 0,1,2 and H j(t,εs1), j = 0,1 into Taylor
power series in ε in a neighborhood of the point 0:

Ai(ετ1) = Ai(0)+ ετ1A′
i(0)+

(ετ1)
2

2!
A′′

i (0)+ . . .+
(ετ1)

k

k!
A(k)

i (0) . . . , i = 0,1,2,

H j(t,εs1) = H j(t,0)+ εs1H ′
j(t,0)+ . . .+

(εs1)
k

k!
H(k)

j (t,0) . . . , j = 0,1. (2.13)
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Expand the functions Ai(ετ2 + 1), i = 0,1,2 and H j(t,εs2 + 1), j = 0,1 into Taylor
power series in ε in a neighborhood of the point 1:

Ai(ετ2 +1) = Ai(1)+ ετ2A′
i(1)+

(ετ2)
2

2!
A′′

i (1)+ . . .+
(ετ2)

k

k!
A(k)

i (1) . . . , i = 0,1,2,

H j(t,εs2 +1) = H j(t,1)+ εs2H ′
j(t,1)+ . . .+

(εs2)
k

k!
H(k)

j (t,1) . . . , j = 0,1. (2.14)

Substituting the formulas (2.4)-(2.6), (2.13), (2.14) into (2.10)-(2.12) and equating
the coefficients at the corresponding powers of ε on both sides of (2.10)-(2.12), we
obtain the sequence of equations for the functions yk(t), wk(τ1), vk(τ2).

For yk(t), k = 0,1, . . . we have the linear integro-differential equations

A1(t)y′k(t)+A2(t)yk(t) = Fk(t)+
1∫

0

1

∑
i=0

Hi(t,x)y
(i)
k (x)dx+∆k(t), (2.15)

where F0(t) = F(t),

Fk(t) =
∞∫

0

(
k−2

∑
i=0

si
1

i!
H(i)

0 (t,0)wk−2−i(s1)+
k−1

∑
i=0

si
1

i!
H(i)

1 (t,0)ẇk−1−i(s1)

)
ds1

+

0∫
−∞

(
k−1

∑
i=0

si
2

i!
H(i)

0 (t,1)vk−1−i(s2)+
k−1

∑
i=0

si+1
2

(i+1)!
H(i+1)

1 (t,1)v̇k−1−i(s2)

)
ds2

− y′′′k−2(t)−A0(t)y′′k−1(t), k = 1,2, . . .

∆k(t) =
0∫

−∞

H1(t,1)v̇k(s2)ds2, k = 0,1,2, . . . (2.16)

The values ∆k(t), k = 0,1,2, . . . are called the initial jumps of the integral term.
For wk(τ1), k = 0,1,2, . . . we have the linear differential equations with constant

coefficients
...w k(τ1)+A0(0)ẅk(τ1)+A1(0)ẇk(τ1) = Φk(τ1), (2.17)

where Φ0(τ1) = 0,

Φk(τ1) =−
k

∑
i=1

τ
i−1
1

(i−1)!
A(i−1)

2 (0)wk−i(τ1)−
k

∑
i=1

τi
1

i!
A(i)

1 (0)ẇk−i(τ1)

−
k

∑
i=1

τi
1

i!
A(i)

0 (0)ẅk−i(τ1), k = 1,2, . . . (2.18)

For vk(τ2), k = 0,1,2, . . . we have the linear differential equations with constant
coefficients

...v k(τ2)+A0(1)v̈k(τ2)+A1(1)v̇k(τ2) = Pk(τ2), (2.19)



314 A. E. MIRZAKULOVA AND M. K. DAUYLBAYEV

where P0(τ2) = 0,

Pk(τ2) =−
k

∑
i=1

τ
i−1
2

(i−1)!
A(i−1)

2 (1)vk−i(τ2)−
k

∑
i=1

τi
2

i!
A(i)

1 (1)v̇k−i(τ2)

−
k

∑
i=1

τi
2

i!
A(i)

0 (1)v̈k−i(τ2), k = 1,2, . . . (2.20)

Substituting the boundary conditions (2.2) into the asymptotic expansion (2.3), we
get

∞

∑
i=0

ε
iyi(0)+ ε

∞

∑
i=0

ε
iwi(0)+

∞

∑
i=0

ε
ivi

(
−1

ε

)
= α, (2.21)

∞

∑
i=0

ε
iy′i(0)+

∞

∑
i=0

ε
iẇi(0)+

1
ε

∞

∑
i=0

ε
iv̇i

(
−1

ε

)
= β, (2.22)

∞

∑
i=0

ε
iyi(1)+ ε

∞

∑
i=0

ε
iwi

(
1
ε

)
+

∞

∑
i=0

ε
ivi(0) = γ+

1∫
0

1

∑
i=0

ai(x)

(
∞

∑
j=0

ε
jy(i)j (x)

)
dx

+

1∫
0

1

∑
i=0

ai(x)

(
ε

1−i
∞

∑
j=0

ε
j (i)
w j

(x
ε

))
dx+

1∫
0

1

∑
i=0

ai(x)

(
1
εi

∞

∑
j=0

ε
j (i)v j

(
x−1

ε

))
dx.

(2.23)

We make the substitution x
ε
= s1,

x−1
ε

= s2. Then the expression in integral of the
right-hand side of (2.23) and the integral expressions have the form

I1(ε) =

1
ε∫

0

1

∑
i=0

ε
2−iai(εs1)

(i)
wε(s1)ds1 (2.24)

=

∞∫
0

1

∑
i=0

ε
2−iai(εs1)

(i)
wε(s1)ds1 −

∞∫
1
ε

1

∑
i=0

ε
2−iai(εs1)

(i)
wε(s1)ds1,

I2(ε) =

0∫
− 1

ε

1

∑
i=0

ε
1−iai(εs2 +1)

(i)
vε(s2)ds2 (2.25)

=

0∫
−∞

1

∑
i=0

ε
1−iai(εs2 +1)

(i)
vε(s2)ds2 −

− 1
ε∫

−∞

1

∑
i=0

ε
1−iai(εs2 +1)

(i)
vε(s2)ds2.

The improper integrals in (2.24), (2.25) converges and the second term in (2.24),
(2.25) vanishes, because O

(
e(−γ1

t
ε)
)
, O
(

e(−γ2
1−t

ε )
)

are less than any power of ε, as
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ε → 0. Since
(i)
wk
(1

ε

)
,

(i)
vk
(
−1

ε

)
, i = 0,1 are boundary layer functions, hence

(i)
wk
(1

ε

)
→ 0,

(i)
vk
(
−1

ε

)
→ 0, i = 0,1, k = 0,1,2 . . . as ε → 0.

Expand the functions ai(εs1), i = 0,1 into Taylor power series in ε in a neighbor-
hood of the point 0:

ai(εs1) = ai(0)+ εs1a′i(0)+
(εs1)

2

2!
a′′i (0)+ . . .+

(εs1)
k

k!
a(k)i (0) . . . , i = 0,1. (2.26)

Expand the functions ai(εs2 +1), i = 0,1 into Taylor power series in ε in a neighbor-
hood of the point 1:

ai(εs2 +1) = ai(1)+ εs2a′i(1)+
(εs2)

2

2!
a′′i (1)+ . . .+

(εs2)
k

k!
a(k)i (1) . . . , i = 0,1.

(2.27)
In view of (2.24)-(2.27), equating the coefficients at the corresponding powers of ε

on both sides of (2.21)-(2.23), we obtain the following conditions

y0(0) = α, yk(0)+wk−1(0) = 0, k = 1,2, . . . (2.28)

y′0(0)+ ẇ0(0) = β, y′k(0)+ ẇk(0) = 0, k = 1,2, . . . (2.29)

y0(1) = γ+(a1(1)−1)v0(0)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx; (2.30)

yk(1) = γk +(a1(1)−1)vk(0)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx; k = 1,2, . . . , (2.31)

where

γk =

∞∫
0

(
k−2

∑
i=0

si
1

i!
a(i)0 (0)wk−2−i(s1)+

k−1

∑
i=0

si
1

i!
a(i)1 (0)ẇk−1−i(s1)

)
ds1 (2.32)

+

0∫
−∞

(
k−1

∑
i=0

si
2

i!
a(i)0 (1)vk−1−i(s2)+

k−1

∑
i=0

si+1
2

(i+1)!
a(i+1)

1 (1)v̇k−1−i(s2)

)
ds2, k = 1,2, . . .

Calculating the improper integrals (2.16) and using the condition vk(−∞) = 0,
k = 0,1,2, . . ., we get

∆k(t) =
0∫

−∞

H1(t,1)v̇k(s2)ds2 = H1(t,1)(vk(0)− vk(−∞)) = H1(t,1)vk(0).

The function y0(t) is a solution of the following problem

A1(t)y′0(t)+A2(t)y0(t) = F(t)+
1∫

0

1

∑
i=0

Hi(t,x)y
(i)
0 (x)dx+H1(t,1)v0(0),
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y0(0) = α, y0(1) = γ+(a1(1)−1)v0(0)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx. (2.33)

We can find y0(t) and v0(0) from problem (2.33).
Thus, for determining the boundary functions w0(τ1), v0(τ1), we consider the case

k = 0. The differential equation (2.19) is of the third order; this equation requires
three conditions. We construct the characteristic equation of

µ3 +A0(1)µ2 +A1(1)µ = 0. (2.34)

The numbers µ1(1), µ2(1) are the roots of µ2 + A0(1)µ + A1(1) = 0 and satisfy
µ1(1)< 0, µ2(1)> 0, µ3 = 0. Then the general solution of (2.19) is

v0(τ2) =C1eµ1(1)τ2 +C2eµ2(1)τ2 +C3. (2.35)

Using the initial condition (2.30) in (2.35) and the equality v0(−∞) = 0, we get

C1 =C3 = 0, C2 =
1

1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 .

As a result,

v0(τ2) =
1

1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

eµ2(1)τ2 . (2.36)

Considering the derivative of the solution (2.36) taken twice with respect to τ2 and
estimating the value at the point τ2 = 0, we obtain

v̇0(0) =
µ2(1)

1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 ,

v̈0(0) =
µ2

2(1)
1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 . (2.37)

The boundary layer function v0(τ2) is a solution of the problem
...v 0(τ2)+A0(1)v̈0(τ2)+A1(1)v̇0(τ2) = 0,

v0(0) =
1

1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 ,

v̇0(0) =
µ2(1)

1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 ,
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v̈0(0) =
µ2

2(1)
1−a1(1)

γ− y0(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
0 (x)dx

 .

By this means, we construct the characteristic equation of (2.17)

µ3 +A0(0)µ2 +A1(0)µ = 0. (2.38)

The numbers µ1(0), µ2(0) are the roots of µ2 + A0(0)µ + A1(0) = 0 and satisfy
µ1(0)< 0, µ2(0)> 0, µ3 = 0. Then the general solution of (2.17) is

w0(τ1) =C1eµ1(0)τ1 +C2eµ2(0)τ1 +C3. (2.39)

Using the initial condition (2.29) in (2.39) and the equality w0(∞) = 0, we get

C1 =
β− y′0(0)

µ1(0)
C2 =C3 = 0,

and as a result,

w0(τ1) =
β− y′0(0)

µ1(0)
eµ1(0)τ1 . (2.40)

Considering the derivative of the solution (2.40) taken twice with respect to τ1 and
estimating the value at the point τ1 = 0, we obtain

w0(0) =
β− y′0(0)

µ1(0)
, ẅ0(0) = µ1(0)(β− y′0(0)). (2.41)

The boundary layer function w0(τ1) is a solution of the problem
...w 0(τ1)+A0(0)ẅ0(τ1)+A1(0)ẇ0(τ1) = 0,

w0(0) =
β− y′0(0)

µ1(0)
, ẇ0(0) = β− y′0(0), ẅ0(0) = µ1(0)(β− y′0(0)).

Thus, the zeroth approximation of the asymptotic expansion is completely construc-
ted.

The function yk(t) is a solution of the problem

A1(t)y′k(t)+A2(t)yk(t) = Fk(t)+
1∫

0

1

∑
i=0

Hi(t,x)y
(i)
k (x)dx+H1(t,1)vk(0),

yk(0) =−wk−1(0), yk(1) = γk +(a1(1)−1)vk(0)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx, (2.42)

where the functions Fk(t) and constants γk are defined by the formulas (2.16) and
(2.32). We can find yk(t) and vk(0) from the problem (2.42).
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Let us consider k = 1,2, . . .. The general solution of (2.19) has the form

vk(τ2) =C1eµ1(1)τ2 +C2eµ2(1)τ2 +C3 +

τ2∫
−∞

K3(τ2,s)Pk(s)ds, (2.43)

where K3(τ2,s) is the Cauchy function, which has the form

K3(τ2,s) =
1

A1(1)
− 1

µ1(1)(µ2(1)−µ1(1))
eµ1(1)(τ2−s)

+
1

µ2(1)(µ2(1)−µ1(1))
eµ2(1)(τ2−s)

and Pk(s) is given by the formula (2.20). Using the initial condition (2.32) in (2.43)
and the equality vk(−∞) = 0, we get C1 =C3 = 0,

C2 =
1

1−a1(1)

γk − yk(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx

−
0∫

−∞

K3(0,s)Pk(s)ds.

As a result,

vk(τ2) =

 1
1−a1(1)

γk − yk(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx


−

0∫
−∞

K3(0,s)Pk(s)ds

eµ2(1)τ2 +

τ2∫
−∞

K3(τ2,s)Pk(s)ds. (2.44)

Considering the derivative of the solution (2.44) taken twice with respect to τ2 and
estimating the value at the point τ2 = 0, we obtain

v̇k(0) =

 1
1−a1(1)

γk − yk(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx

−
0∫

−∞

K3(0,s)Pk(s)ds

µ2(1)

+

0∫
−∞

K′
3(0,s)Pk(s)ds, (2.45)

v̈k(0) =

 1
1−a1(1)

γk − yk(1)+
1∫

0

1

∑
i=0

ai(x)y
(i)
k (x)dx

−
0∫

−∞

K3(0,s)Pk(s)ds

µ2
2(1)

+

0∫
−∞

K′′
3 (0,s)Pk(s)ds. (2.46)
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From the initial value problem (2.19), (2.32), (2.45), (2.46), we can define the bound-
ary layer functions vk(τ2), k = 1,2, . . ..

In this way, the general solution of (2.17) has the form

wk(τ1) =C1eµ1(0)τ1 +C2eµ2(0)τ1 +C3 +

∞∫
τ1

K3(τ1,s)Φk(s)ds, (2.47)

where K3(τ1,s) is the Cauchy function of the form

K3(τ1,s) =
1

A1(0)
− 1

µ1(0)(µ2(0)−µ1(0))
eµ1(0)(τ1−s)

+
1

µ2(0)(µ2(0)−µ1(0))
eµ2(0)(τ1−s)

and Φk(s) is given by the formula (2.18). Using the initial condition (2.29) in (2.47)
and the equality wk(∞) = 0, we get C2 =C3 = 0,

C1 =− 1
µ1(0)

y′k(0)−
∞∫

0

K′
3(0,s)Φk(s)ds

 .

As a result,

wk(τ1) =− 1
µ1(0)

y′k(0)−
∞∫

0

K′
3(0,s)Φk(s)ds

eµ1(0)τ1 −
∞∫

τ1

K3(τ1,s)Φk(s)ds.

(2.48)
Considering the derivative of the solution (2.48) taken twice with respect to τ1 and
estimating the value at the point τ1 = 0, we obtain

wk(0) =− 1
µ1(0)

y′k(0)−
∞∫

0

K′
3(0,s)Φk(s)ds

−
∞∫

0

K3(0,s)Φk(s)ds, (2.49)

ẅk(0) =−µ1(0)

y′k(0)−
∞∫

0

K′
3(0,s)Φk(s)ds

−
∞∫

0

K′′
3 (0,s)Φk(s)ds. (2.50)

From the initial value problem (2.17), (2.31), (2.49), (2.50), we can define the bound-
ary layer functions wk(τ1), k = 1,2, . . ..

Thus, the kth approximation of the asymptotic expansion is completely construc-
ted. The following theorem is true.

Theorem 1. Let assumptions (C1)-(C3) hold. Then for sufficiently small ε the
boundary value problem (2.1), (2.2) has a unique solution on [0,1] which can be
expressed by the formula

y(t,ε) = yN(t,ε)+RN(t,ε),
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where yN(t,ε) is defined by the relation

yN(t,ε) =
N

∑
i=0

ε
iyi(t)+ ε

N+1

∑
i=0

ε
iwi(τ1)+

N+2

∑
i=0

ε
ivi(τ2), (2.51)

and the following estimates for the remainder term RN(t,ε) are true∣∣∣R(i)
N (t,ε)

∣∣∣≤Cε
N+1, i = 0,1,2, 0 ≤ t ≤ 1,

where C > 0 is a constant independent of ε and N ≥ 0 is an integer number.

Proof. Let us construct the Nth partial sum (2.51) of the expansion (2.3), here
N ≥ 0 is an integer number, the functions yi(t), wi(τ1), vi(τ2) are regular and bound-
ary layer parts of the asymptotic.

Substituting (2.51) into equation (2.1), we obtain

ε
2y′′′N + εA0(t)y′′N +A1(t)y′N +A2(t)yN = F(t)+O(εN+1)+

1∫
0

1

∑
i=0

Hi(t,x)y
(i)
N (x,ε)dx.

(2.52)
Hence, the function yN(t,ε) satisfies equation (2.1) with the accuracy O(εN+1). Using
(2.51) in (2.2), we obtain the conditions

yN(0,ε) =
N

∑
i=0

ε
iyi(0)+ ε

N+1

∑
i=0

ε
iwi(0)+

N+2

∑
i=0

ε
ivi

(
−1

ε

)
= α+O(εN+1), (2.53)

y′N(0,ε) =
N

∑
i=0

ε
iy′i(0)+

N+1

∑
i=0

ε
iẇi(0)+

1
ε

N+2

∑
i=0

ε
iv̇i

(
−1

ε

)
= β+O(εN+1), (2.54)

yN(1,ε)−
1∫

0

1

∑
i=0

ai(x)y
(i)
N (x)dx =

N

∑
i=0

ε
iyi(1)+ ε

N+1

∑
i=0

ε
iwi

(
1
ε

)
+

N+2

∑
i=0

ε
ivi(0)

−
1∫

0

[
a0(x)

(
N

∑
i=0

ε
iyi(x)+ ε

N+1

∑
i=0

ε
iwi

(x
ε

)
+

N+2

∑
i=0

ε
ivi

(
x−1

ε

))
(2.55)

+ a1(x)

(
N

∑
i=0

ε
iy′i(x)+

N+1

∑
i=0

ε
iẇi

(x
ε

)
+

1
ε

N+2

∑
i=0

ε
iv̇i

(
x−1

ε

))]
dx = γ+O(εN+1),

Since
(i)
wk
(1

ε

)
,
(i)
vk
(
−1

ε

)
, i = 0,1 are boundary layer functions in (2.53)-(2.55), it fol-

lows that
(i)
wk
(1

ε

)
→ 0,

(i)
vk
(
−1

ε

)
→ 0, i = 0,1, k = 0,1,2 . . . as ε → 0.

Let us set

RN(t,ε) = y(t,ε)− yN(t,ε) =⇒ y(t,ε) = RN(t,ε)+ yN(t,ε), (2.56)

here RN(t,ε) is called the remainder term of the asymptotic.
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Substituting (2.56) into (2.1), considering that the function yN(t,ε) satisfies the
equation (2.52) and the boundary conditions (2.53)-(2.55), we get the problem for
the remainder term RN(t,ε) :

ε
2R′′′

N + εA0(t)R′′
N +A1(t)R′

N +A2(t)RN = O(εN+1)+

1∫
0

1

∑
i=0

Hi(t,x)R
(i)
N (x,ε)dx,

(2.57)
RN(0,ε) = O(εN+1), ;R′

N(0,ε) = O(εN+1),

RN(1,ε) =
1∫

0

1

∑
i=0

ai(x)R
(i)
N (x,ε)dx+O(εN+1).

The problem (2.57) is of the same type as the problem (2.1), (2.2). By applying
asymptotic estimates of the solution [19] for the solution of the problem (2.57), we
obtain

|RN(t,ε)| ≤Cε
N+1 +Cε

N+2e−γ1
t
ε +Cε

N+1eγ2
t−1

ε ≤Cε
N+1,∣∣R′

N(t,ε)
∣∣≤Cε

N+1 +Cε
N+1e−γ1

t
ε +Cε

Neγ2
t−1

ε , (2.58)∣∣R′′
N(t,ε)

∣∣≤Cε
N+1 +Cε

Ne−γ1
t
ε +Cε

N−1eγ2
t−1

ε .

The estimate of the remainder term RN+2(t,ε) in the interval [0,1] is similar to (2.58):

|RN+2(t,ε)| ≤Cε
N+3 +Cε

N+4e−γ1
t
ε +Cε

N+3eγ2
t−1

ε ≤Cε
N+3,∣∣R′

N+2(t,ε)
∣∣≤Cε

N+3 +Cε
N+3e−γ1

t
ε +Cε

N+2eγ2
t−1

ε , (2.59)∣∣R′′
N+2(t,ε)

∣∣≤Cε
N+3 +Cε

N+2e−γ1
t
ε +Cε

N+1eγ2
t−1

ε .

So, the equality

y(t,ε) = yN(t,ε)+RN(t,ε) = yN+2(t,ε)+RN+2(t,ε) (2.60)

holds.
From (2.60) it follows that

R(i)
N (t,ε) = y(i)N+2(t,ε)− y(i)N (t,ε)+R(i)

N+2(t,ε), i = 0,1,2. (2.61)

Using the estimates (2.58), (2.59) for the remainder term (2.61), we obtain

RN(t,ε) = ε
N+1yN+1(t)+ ε

N+2yN+2(t)+ ε
N+3wN+2(τ1)+ ε

N+4wN+3(τ1)

+ ε
N+3vN+3(τ2)+ ε

N+4vN+4(τ2)+RN+2(t,ε)

⇒ |RN(t,ε)| ≤Cε
N+1, (2.62)

R′
N(t,ε) = ε

N+1y′N+1(t)+ ε
N+2y′N+2(t)+ ε

N+2ẇN+2(τ1)+ ε
N+3ẇN+3(τ1)

+ ε
N+2v̇N+3(τ2)+ ε

N+3v̇N+4(τ2)+R′
N+2(t,ε)
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⇒
∣∣R′

N(t,ε)
∣∣≤Cε

N+1, (2.63)

R′′
N(t,ε) = ε

N+1y′′N+1(t)+ ε
N+2y′′N+2(t)+ ε

N+1ẅN+2(τ1)+ ε
N+2ẅN+3(τ1)

+ ε
N+1v̈N+3(τ2)+ ε

N+2v̈N+4(τ2)+R′′
N+2(t,ε)

⇒
∣∣R′′

N(t,ε)
∣∣≤Cε

N+1. (2.64)

The theorem is proved. □

3. CONCLUSION

The boundary value problem with boundary jumps for singularly perturbed integro-
differential equation was considered. To determine the zeroth approximation of the
regular part y0(t), we have problem (2.33). Problem (2.33) is different from the usual
degenerate problem obtained from (1) as ε = 0. Here by virtue of the integral term,
an additional term occurs, ∆(t) = H1(t,1)v0(0), called the initial jump of the integ-
ral term. The integral boundary condition is also changed: γ+(a1(1)− 1)v0(0) is
taken instead of γ, where (a1(1)−1)v0(0) is called the initial jump of the solution. A
similar situation is observed for the kth approximation of the regular part yk(t) (see
(2.42)). An algorithm of asymptotic expansion of the solution with any degree of
accuracy with respect to a small parameter was constructed. The problems for de-
termining the regular and boundary layer parts were completely obtained. A theorem
about uniformly asymptotic expansion is proved.
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