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Abstract. In this paper, we obtain some Hermite-Hadamard type inequalities for uniformly con-
vex functions with respect to geodesic in Hadamard space. Also, we give some application of
these functions in means.
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1. INTRODUCTION AND PRELIMINARIES

Convex analysis plays an important role in many areas of mathematics such in-
equality, optimization and monotone operator. The Hermite-Hadamard’s inequalities
give us an estimate of the (integral) mean value of a continuous convex function.
Moreover, equality holds in either side only for affine functions (i.e., for functions of
the form ax+b).

Recently, much attention have given to develop various inequalities for several
classes of convex functions and their generalizations using novel ideas (see [ 1-3,6,8—

] and the references therein). Hermite-Hadamard’s inequality is given as follows:
Let f: I — R be a convex function, and let a,b € I with a < b. Then the following

inequality holds:
f(a+ > < /bf( )],hf< f(a)—i—f( )7

where [ is an interval (finite or infinite) in R. Throughout the paper we denote by I°
the interior of 1.

The Hermite-Hadamard inequality is expressed in terms of the concept of convex-
ity. This concept can be generalized to a general metric space called Hadamard space.
So, the inequalities related to the convex or uniformly convex functions are invest-
igated in these spaces. In [5], the Hermite-Hadamard inequality is expressed on the
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Hadamard space for the convex functions. The purpose of this paper is to generalize
the Hermite-Hadamard inequality for the uniformly convex functions on this space.

We consider the basic concepts and results, which are needed to obtain our main
results. The following definitions can be found in [5, 7].

Definition 1. A geodesic is a rectifiable curve y: [0,1] — N such that the length
Of Vi ) 18 d(¥Y(11),¥(12)) forall 0 <1y <12 < 1.

Definition 2. A complete metric space (N;d) is called a global NPC space (or
Hadamard space) if for x;1,x, € N there exists a point z € N such that for each x € N

we have | | |
d(X,Z)2 < Ed(x,xl)z + Ed(x,xz)2 — Zd(xl,xz)z.

Remark 1. The point z occuring in the preceding definition plays the role of a
midpoint between x; and x;.

Remark 2. If (N;d) is a global NPC and o, 3 are two geodesic arcs starting at
x € X, then the distance map r — d(o(t),B(7)) is a convex function.

Remark 3. The following classes of spaces are NPC: complete Riemannian man-
ifolds with non-positive sectional curvature, Hilbert spaces, Bruhat Tits buildings, in
particular metric trees.

Definition 3. A subset C C B is called convex if for each geodesic v: [0,1] — B
joining two arbitrary points in C holds that y([0, 1]) C C.

2. MAIN RESULTS

In this section we give main results.
Let X be a vector space. For any two distinct a,b points in X we define the line
segment connecting a to b by

YA) :={(1=N)a+Ab: L ]0,1]}.
If need to emphasise a,b we shall write Y(A) = 0, 5(A). We denote by o, ) the set
of all (1 —A)a+ Ab such that A € [0, 1].
Definition of uniformly convex functions found in [4,5]. In the following definition

we extended it in geodesic concept. Here, we refer to more restrictive versions of
convexity introduced in reference [4].

Definition 4. Let g: H — (—oo, 40| be proper and H be a Hilbert space. Then g
is uniformly convex with modulus ¢: [0, +oc0) — [0, 40| if ¢ is increasing, ¢ vanishes
only at zero and

gler+ (1 =1)s) +1(1=1)0(|r —s]) <rg(r) + (1 —1)g(s).

Using the above definition, we introduce the definition of uniformly convex with
geodesic for a function which defined from a subset of a global NPC space to R.
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Definition 5. Suppose that (N,d) is a global NPC space, C C N be a convex set.
A function f: C C N — R is called uniformly convex with modulus ¢: [0, +o0) —
[0, ++oo] with respect to 7y (or simply y-uniformly convex) if ¢ is increasing, ¢ van-
ishes only at 0, and also, the function foy: [0,1] — R is uniformly convex function
(concept in 4), defined as

FOrer+ (1 =10)8) +1(1=0)0(|r—s[) < (1=1) £ (v(s)) + 1./ (¥(r)), (2.1)
for each ¢ € [0,1]. Where y: [0,1] — C is geodesic and 0 < r,s < 1.
Theorem 1. Let (N,d) be a global NPC space, C C N be a convex set and f: C —

R be a uniformly convex function. y: [0, 1] — 0, p) is geodesic with y(0) = a,¥(1) =
b, then

7(¥(3)) +5 [ o0 < [ r000n< o (3) - gon @2

Proof. Since, y: [0,1] = 0 ) is geodesic also, f is uniformly convex for 0 <
r,s < 1 we have

FOr+ (1 =1)s))+1(1=0)o(|r—s|) < (1 =) f(v(s)) +1f(¥(r))

Lett = % in (2.1), we conclude that

(r(52)) + Loty < LD 10D,

Also, if s = 1 — r then

£(1(3)) + Jotor < POV SO0

By integrating with respect to r from r = 0 to r = 1 we obtain

£(1(3))+ 5 owans [ snar

[} s =rar= [ ety
[ otizr=1par= [ gt

f (v (;)) = /0 ' o()du < /0 ' Flaan (0)dM.

For second inequality from (2.1), if r = 1,5 = 0 in (2.1) we have

F(v(@) +1(1=1)o(1) <tf(v(1))+ (1 —1)f(¥(0)).

since
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Now, by integrating with respect t from t = 0 to t = 1 we have

[} rexenans gott) < 2 r) + 5 76x0)).

Therefore,
1 1
[ 7 ) < 00,0 (3 ) - 000

g

Remark 4. Note that the first inequality, in (2.2), is stronger than the second , i.e.

<[ (1)L o
< O(f(a).f(5)) (>—¢ / AL

Proof. Let m = m(a,b) be midpoint a and b then

2 [ st ian=2 [ fousian+2 [ rers)an

1 1
— / FYam(X))dA+ / S Ymp (X)) dh
0 0

S Vam(0) + f (Yam(1)) 1
< > - 6¢(1)

N
:f@“*’())z*fm 000 ~ (1)
(1o (1)) 1020 et £

2
1 1
+ Z/O ¢(Z)dl

which completes the proof. ([l

Proposition 1. Let (N,d) be a global NPC space, C C N be a convex set and
f: C — R a uniformly convex function, then

((3)) =3 (0 () o ((3)) -4 (3)
Si(f@(l))*f(v(i))%fw(é)
< [ oo oo (5)
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Lemma 1. If1,...,1, >0, Y} tr = 1, {x;}!_, is an increasing sequence of [0,1],
(N,d) be a global NPC space and f: C — R be a uniformly convex function then

n n—1 n
f (y (Z thk>> + Y it 0 —x) < Y af (v(x
k=1 i=1 k=1

Proof. The proof is by induction. By the use of Definition 5 first observe that
the result clearly holds for n = 2. Assume it holds for n, x; < xp, < .-+ < x,41 and
Z”“ t; =1, > 0. So by the inductive hypothesis

n+l n—
) B2
=1 i=l n el

—110(x2 —x1) — - — g2ty 1O(Xp—1 — Xp—2)
InXn + In1Xn 41
_tnfl(tn +tn+l)¢ <”"”" — Xp_1
In+1tht1

n—1 t X,
< T 00) G 100) |22
i=1 n n+1
tn+lf(y(x,,+1)) . Intpt1 _ :|
by +ths (fn+ln+])2¢(xn+l X )

n—2
— Y titi10(xip1 —Xi) =t 12006 — X 1)
i=1

n+1
< Z tl tntn+1¢(xn+l _xn) tntnflq)(xn _xnfl)
- Z titi19(Xiv1 — X;)
i=1
n+1 n
=Y uf(v(xi)) = Y titi19(xie1 —x).
i=1 i=1
Which completes the proof. U

Theorem 2. Let (N,d) be a global NPC space, C C N be a convex set, f: C — R
be a uniformly convex function and k, p be positive integers, then

f<v(1>> +;/1¢(t)dt+1p¢ (1,,)

1 k! 21+1
<5 5/ () +3 [ o0
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1 kP—1 i+1 i 1
< — _
< L1 (1(%r)) o (1)) a0

1
< O£(x(0).£ (1)) <2> - 6¢(1)‘
Proof. Using Hermite-Hadamard inequality we have
2i+1
))+f( (%)

- 2
if we add the above inequality from i =0 to i = k¥ — 1 we have

= 2i+1 kPl 1
IZOf<Y< 2kp >>+4/0¢ dt<2/ l:+l dt

S <ﬁ>)+f<v<f;}>> v

1
- <o(),

TS 2 _gq)(l)-
Since,
=1 1
Zo/o f(%%f;—;)) UW:k”/g fOu(r))dr
14! 2i+1 e |
kp i_ZOfO( 2%p >>+4 | 0@dr < | f((n))dr
1ES (V) + /8 1
<o L e

Also, in view of Lemma 1 we have
1 1 K3 72i+1
1(1(3)) = (o 5 (5 )))
lkp
<5 5/ (%
g 5 T - 1[ (( )+ ()]
kPl.;O 2 2kP kP

f((

So,

2
In view of the above relation the proof is completes.

87
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Theorem 3. Let (N,d) be a global NPC space, C C N a convex setand f: C — R
be a uniformly convex function, then

(2] ro-wn(3) <= o o

where

o o(3)) <0 wr((5)

L(A) = %(f(Y(%)) +AL(V(0)) + (1 =) f(V(1)))-

Proof. In veiw of Theorem 1 we have

£(1(3)) 1 ) 00 [ r0an)an <o (3 ) - gon:

Now, assume that f is a uniformly convex function on C. yis a geodesic from (0) to

Y(A) so
< < >> 4/ o(t dt</ Y[Ox())dtgf(“Y(O));f(Y(l))_¢(61).

Also, if yis a geodesic from y(A) to y(1) we have
(2 02 [t [ oy LHRVELE0D 1)

Multipling above inequality in A, 1 — A repectivly and add them we have

M)+ — /¢ dt<7L/ Ok] dl+ 1—-A /f 7»1]

—/f i < L(1) ~ 0(1),

and
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Hence,

(3 re-vo(3) s L L

O
Theorem 4. Let p € [2,+c0) and ¥ be a geodesic. Then the following inequality
holds.
1\|? 27!-» P P
Z infp2=2.1—2"2
() 12

P 1
< ’y(é) +i/0 O(t)dt
1
g/o 0t s (W) d

< PO 277
- 2 3

Proof. According to ([4], Proposition 10.13), since |- | is uniformly convex with
modules of convexity | - |2. Hence for p € [2,+0) is uniformly convex with modules
of convexity ¢ such that ¢ satisfing

0 >2""Pmin{p2~%,1-272}|.]7,

by integrating with respect t we have

1 1
/(])(t)dt22171’min{p27§71—27§}/ It|Pdt
0 0

Z  min{p22,1-2"%}.

21-p

P P
= min{p2~2,1-2"2}.
P {r }
Thus,
1\|? 271, p p
- ] 277 1-2"2
2) + P min{p2~2, }

i
< ’v(1> el o
/ 10t (W) [Pl

YOI+ YO 1
< IOPEIONE_Loq1)
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p p -p ,
< h«lﬂigh«oﬂ——23nﬂn{p25,1——2§}

3. APPLICATIONS TO SPECIAL MEANS

Consider the following special means for two nonnegative real numbers o, 3, o 7 B
as follows:

(1) The arithmetic mean:

o
A:A(G'?B) = _2+’_[37 a7B€R7
with o, > 0.
(1) The logarithmic mean:
_ B*OC
L=L(a,p) =7, a#P,a,peR
( 7[3) lnB_lna7 #Bv 7[36 9

with o, B > 0.
(2) The generalized logarithmic mean:

Bn+1 _ OL"+1

(I1—|—1)(B—()C):| , nE Z\{—I,O},Ot?é B,OC,B € R,

Lo.p)-|
with a,, § > 0.

Proposition 2. Let a,b € R with a < b,a # 0 and let p be even number. Then, the
following inequality holds:

271
[A(a, b)) + min{p272,1-272} < [L,(a,b)]?
p+1
27 ) _»
<A(a’,b") — Tmln{pZ 2,1-272}.
Proof. Put the geodesic a(A) = Aa+ (1 —A)b in Therorem 4. O
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