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Abstract. In this work, (amply) essential radical supplemented modules are defined and some
properties of these modules are investigated. Let M be an R-module and M = M1 +M2 + · · ·+
Mn. If Mi is essential radical supplemented for every i = 1,2, . . . ,n, then M is also essential
radical supplemented. It is proved that every factor module and every homomorphic image of an
essential radical supplemented module are essential radical supplemented. Let M be an essential
radical supplemented R-module. Then every finitely M-generated R-module is essential radical
supplemented.
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1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules
will be unital left modules.

Let M be an R-module and N ≤M. If L = M for every submodule L of M such that
M = N +L, then N is called a small (or superfluous) submodule of M and denoted
by N �M. A submodule N of an R-module M is called an essential submodule of
M and denoted by N EM in case K∩N 6= 0 for every submodule K 6= 0, or equival-
ently, N ∩L = 0 for L ≤ M implies that L = 0. Let M be an R-module and K be a
submodule of M. K is called a generalized small (briefly, g-small) submodule of M
if for every essential submodule T of M with the property M = K +T implies that
T =M, then we write K�g M. It is clear that every small submodule is a generalized
small submodule but the converse is not true generally. Let M be an R-module and
U,V ≤M. If M =U +V and V is minimal with respect to this property, or equival-
ently, M = U +V and U ∩V � V , then V is called a supplement of U in M. M is
called a supplemented module if every submodule of M has a supplement in M. Let
M be an R-module and U ≤ M. If for every V ≤ M such that M = U +V , U has
a supplement V

′
with V

′ ≤ V , we say U has ample supplements in M. If every sub-
module of M has ample supplements in M, then M is called an amply supplemented
module. If every essential submodule of M has a supplement in M, then M is called
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an essential supplemented (or briefly, e-supplemented) module. If every essential
submodules of M has ample supplements in M, then M is called an amply essential
supplemented (or briefly, amply e-supplemented) module. Let M be an R−module
and U,V ≤ M. If M = U +V and M = U +T with T E V implies that T = V , or
equivalently, M =U +V and U ∩V �g V , then V is called a g-supplement of U in M.
M is said to be g-supplemented if every submodule of M has a g-supplement in M.
The intersection of all maximal submodules of an R-module M is called the radical
of M and denoted by RadM. If M have no maximal submodules, then we denote
RadM = M. The intersection of essential maximal submodules of an R-module M
is called the generalized radical of M and denoted by RadgM. If M have no essen-
tial maximal submodules, then we denote RadgM = M. Let M be an R-module and
U,V ≤ M. If M = U +V and U ∩V ≤ RadV , then V is called a generalized (rad-
ical) supplement (or briefly, Rad-supplement) of U in M. M is called a generalized
(radical) supplemented (or briefly, Rad-supplemented) module if every submodule
of M has a Rad-supplement in M. Let M be an R-module and U ≤ M. If for every
V ≤M such that M =U +V , U has a Rad-supplement V

′
with V

′ ≤V , we say U has
ample Rad-supplements in M. If every submodule of M has ample Rad-supplements
in M, then M is called an amply generalized (radical) supplemented (or briefly, amply
Rad-supplemented) module. Let M be an R-module. We say submodules X and Y
of M are β∗ equivalent, Xβ∗Y , if and only if Y +K = M for every K ≤M such that
X +K = M and X + T = M for every T ≤ M such that Y + T = M. Let M be an
R-module X ≤ Y ≤M. If Y/X �M/X , then we say Y lies above X in M.

More information about (amply) supplemented modules are in [3, 9, 10] and [11].
More information about (amply) essential supplemented modules are in [5, 6]. More
results about g-small submodules and g-supplemented modules are in [4, 7]. The
definitions of (amply) generalized supplemented modules and some properties of
them are in [8, 10]. Some properties of (amply) generalized supplemented modules
are also in [2]. The definition of β∗ equivalence relation and some properties of this
relation are in [1].

In this paper, we define (amply) essential radical supplemented modules and in-
vestigate some properties about these modules. We constitute relationships between
essential radical supplemented modules and amply essential radical supplemented
modules by Proposition 3 and Proposition 4. We also constitute relationships between
essential radical supplemented modules and π-projective modules by Lemma 12. We
give two examples for essential radical supplemented modules separating with essen-
tial supplemented modules at the end of this paper.

Lemma 1. Let M be an R-module and K ≤ N ≤ M. If K is a generalized small
submodule of N, then K is a generalized small submodule in submodules of M which
contain N.

Proof. See [4, Lemma 1 (2)]. �
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Lemma 2. Let M be an R-module. Then RadgM = ∑L�gM L.

Proof. See [4, Lemma 5 and Corollary 5]. �

Lemma 3. Let V be a Rad-supplement of U in M. Then RadV =V ∩RadM.

Proof. Let T be any maximal submodule of V . Since

M/(U +T ) = (U +T +V )/(U +T )∼=V/(U ∩V +T ) =V/T,

then U +T is a maximal submodule of M. Hence RadM ≤U +T and V ∩RadM ≤
U ∩V + T = T . Thus V ∩RadM ≤ RadV and since RadV ≤ V ∩RadM, RadV =
V ∩RadM. �

2. ESSENTIAL RADICAL SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every essential submodule of M has a
Rad-supplement in M, then M is called an essential radical supplemented (or briefly,
e-Rad-supplemented) module.

Clearly we see that every essential supplemented module is essential radical sup-
plemented. But the converse is not true in general. (See Examples 1 and 2).

Definition 2. Let M be an R-module and X ≤M. If X is a Rad-supplement of an
essential submodule in M, then X is called an essential radical supplement (or briefly,
e-Rad-supplement) submodule in M.

Lemma 4. Let M be an R-module, V be an e-Rad-supplement in M and x ∈ V .
Then Rx�g M if and only if Rx�g V .

Proof. (=⇒) Let Rx�g M. Since V is an e-Rad-supplement in M, there exists
U E M such that V is a Rad-supplement of U in M. Let Rx+T = V with T E V .
Then M =U +V =U +T +Rx, and since Rx�g M and (U +T )EM, U +T = M.
Let x = u+ t with u ∈U and t ∈ T . Since x, t ∈ V , then u = x− t ∈ V . Then V =
Rx+T ≤ Ru+Rt +T = Ru+T ≤V and Ru+T =V . Since u ∈U ∩V ≤ RadV , then
Ru�V and T =V . Hence Rx�g V .

(⇐=) Clear from Lemma 1. �

Corollary 1. Let M be an R-module and V be an e-Rad-supplement in M. Then
RadgV =V ∩RadgM.

Proof. Let x ∈ RadgV . Here Rx �g V and by Lemma 1, Rx �g M. Then by
Lemma 2, Rx≤ RadgM and x ∈V ∩RadgM.

Let y ∈ V ∩RadgM. Then y ∈ V and Ry�g M. By Lemma 4, Ry�g V . By
Lemma 2, Ry≤ RadgV and y ∈ RadgV .

Hence RadgV =V ∩RadgM. �

Proposition 1. Let M be an essential radical supplemented module. Then M/RadM
have no proper essential submodules.
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Proof. Let K
RadM be any essential submodule of M

RadM . Since K
RadM E

M
RadM , K EM

and since M is essential radical supplemented, K has a Rad-supplement V in M. Then
M = K +V and K ∩V ≤ RadV . Since M = K +V , M

RadM = K
RadM + V+RadM

RadM . Since
K ∩V ≤ RadM, then K

RadM ∩
V+RadM

RadM = K∩V+RadM
RadM = 0 and M

RadM = K
RadM ⊕

V+RadM
RadM .

Since M
RadM = K

RadM ⊕
V+RadM

RadM and K
RadM E

M
RadM , K

RadM = M
RadM . Hence M

RadM have no
proper essential submodules. �

Lemma 5. Let M be an R-module, U be an essential submodule of M and M1≤M.
If M1 is e-Rad-supplemented and U +M1 has a Rad-supplement in M, then U has a
Rad-supplement in M.

Proof. Let X be a Rad-supplement of U + M1 in M. Then M = U + M1 + X
and X ∩ (U +M1) ≤ RadX . Since U E M, (U +X) E M and (U +X)∩M1 E M1.
Since M1 is e-Rad-supplemented, (U +X)∩M1 has a Rad-supplement Y in M1. This
case M1 = (U +X)∩M1 +Y and (U +X)∩Y = (U +X)∩M1 ∩Y ≤ RadY . Then
M = U +M1 + X = U + X + (U +X)∩M1 +Y = U + X +Y and U ∩ (X +Y ) ≤
(U +X) ∩ Y + (U +Y ) ∩ X ≤ (U +M1) ∩ X + (U +X) ∩ Y ≤ RadX + RadY ≤
Rad(X +Y ). Hence X +Y is a Rad-supplement of U in M. �

Corollary 2. Let M be an R-module, U be an essential submodule of M and Mi ≤
M for every i = 1,2, . . . ,n. If Mi is e-Rad-supplemented for every i = 1,2, . . . ,n and
U +M1 +M2 + · · ·+Mn has a Rad-supplement in M, then U has a Rad-supplement
in M.

Proof. Clear from Lemma 5. �

Lemma 6. Let M = M1 +M2. If M1 and M2 are e-Rad-supplemented, then M is
also e-Rad-supplemented.

Proof. Let U EM. Then 0 is a Rad-supplement of U +M1 +M2 in M. Since M2
is e-Rad-supplemented and (U +M1) E M, by Lemma 5, U +M1 has a Rad-supp-
lement in M. Since M1 is e-Rad-supplemented and U E M, by Lemma 5, U has a
Rad-supplement in M. Hence M is e-Rad-supplemented. �

Corollary 3. Let M = M1 +M2 + · · ·+Mn. If Mi is e-Rad-supplemented for each
i = 1,2, . . . ,n, then M is also e-Rad-supplemented.

Proof. Clear from Lemma 6. �

Lemma 7. Every factor module of an e-Rad-supplemented module is e-Rad-supp-
lemented.

Proof. Let M be an e-Rad-supplemented R−module and M
K be any factor mod-

ule of M. Let U
K E

M
K . Then U E M and since M is e-Rad-supplemented, U has a

Rad-supplement V in M. Since K ≤U , by the proof of [8, Proposition 2.6(1)], V+K
K

is a Rad-supplement of U
K in M

K . Hence M
K is e-Rad-supplemented. �
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Corollary 4. Every homomorphic image of an e-Rad-supplemented module is
e-Rad-supplemented.

Proof. Clear from Lemma 7. �

Lemma 8. Let M be an e-Rad-supplemented R-module. Then every finitely
M-generated R-module is e-Rad-supplemented.

Proof. Let N be a finitely M-generated R-module. Then there exist a finite index
set Λ and an R-module epimorphism f : M(Λ)−→N. Since M is e-Rad-supplemented,
by Corollary 3, M(Λ) is e-Rad-supplemented. Then by Corollary 4, N is e-Rad-supp-
lemented. �

Proposition 2. Let R be a ring. Then RR is essential radical supplemented if and
only if every finitely generated R-module is essential radical supplemented.

Proof. Clear from Lemma 8. �

Lemma 9. Let M be an R-module. If every essential submodule of M is β∗ equi-
valent to an e-Rad-supplement submodule in M, then M is essential radical supple-
mented.

Proof. Let U be an essential submodule of M. By hypothesis there exists an
e-Rad-supplement submodule X in M such that Uβ∗X . Since X is an e-Rad-supp-
lement submodule in M, there exists an essential submodule Y of M such that X is a
Rad-supplement of Y in M. This case M = X +Y and X ∩Y ≤ RadX . Since Y EM,
by hypothesis, there exists an e-Rad-supplement submodule V in M such that Y β∗V .
Since Uβ∗X and M = X +Y , then M = U +Y and since Y β∗V , M = U +V . Let
x ∈U ∩V and Rx+T = M with T ≤M. Then U ∩V +T = M and since M =U +V ,
M =U +V ∩T = X +V ∩T . Since M =V +T = X +V ∩T , M =V +X ∩T . Then
by Y β∗V , M = Y +X ∩ T . Since M = X + T = Y +X ∩ T , M = X ∩Y + T . Let
x = y+ t, with y ∈ X ∩Y and t ∈ T . Since Rx+T = M, Ry+T = M also holds. By
y ∈ X ∩Y ≤ RadX ≤ RadM, Ry�M and since Ry+T = M, T = M. Hence Rx�M
and x ∈ RadM. Since V is a Rad-supplement in M, then by Lemma 3, V ∩RadM =
RadV . Since x ∈V and x ∈RadM, x ∈V ∩RadM = RadV and U ∩V ≤RadV . Hence
V is a Rad-supplement of U in M and M is essential radical supplemented. �

Corollary 5. Let M be an R-module. If every essential submodule of M lies above
an e-Rad-supplement submodule in M, then M is essential radical supplemented.

Proof. Clear from Lemma 9. �

3. AMPLY ESSENTIAL RADICAL SUPPLEMENTED MODULES

Definition 3. Let M be an R-module. If every essential submodule has ample
Rad-supplements in M, then M is called an amply essential radical supplemented (or
briefly, amply e-Rad-supplemented) module.
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Lemma 10. Let M be an amply e-Rad-supplemented module. Then every factor
module of M is amply e-Rad-supplemented.

Proof. Let M/K be any factor module of M, U/K E M/K and U/K +V/K =
M/K with V/K ≤ M/K. Since U/K E M/K, U E M. Since U/K +V/K = M/K,
U +V = M. Because M is amply e-Rad-supplemented, U has a Rad-supplement V

′

in M with V
′ ≤V . By the proof of [8, Proposition 2.6(1)], V

′
+K
K is a Rad-supplement

of U
K in M

K . In addition to this, V
′
+K
K ≤ V

K . Hence M/K is amply e-Rad-supplemented.
�

Corollary 6. Let M be an amply e-Rad-supplemented module. Then every homo-
morphic image of M is amply e-Rad-supplemented.

Proof. Clear from Lemma 10. �

Lemma 11. Let M be an R-module. If every submodule of M is e-Rad-supplemented,
then M is amply e-Rad-supplemented.

Proof. Let M =U +V with U EM and V ≤M. By hypothesis, V is e-Rad-supp-
lemented. Since U E M, U ∩V E V . Since V is e-Rad-supplemented, U ∩V has
a Rad-supplement K in V . Here U ∩V +K = V and U ∩K = U ∩V ∩K ≤ RadK.
Then M =U +V =U +U ∩V +K =U +K and U ∩K ≤ RadK. Hence M is amply
e-Rad-supplemented. �

Proposition 3. Let R be any ring. Then every R-module is e-Rad-supplemented if
and only if every R-module is amply e-Rad-supplemented.

Proof. (=⇒) Let M be any R-module. Since every R-module is e-Rad-supplemen-
ted, every submodule of M is e-Rad-supplemented. Then by Lemma 11, M is amply
e-Rad-supplemented.

(⇐=) Clear. �

Lemma 12. Let M be a π-projective and e-Rad-supplemented R-module. Then M
is amply e-Rad-supplemented.

Proof. Let U EM, M = U +V and X be a Rad-supplement of U in M. Since M
is π-projective and M =U +V , there exists an R-module homomorphism f : M→M
such that Im f ⊂ V and Im(1− f ) ⊂ U . So, we have M = f (M) + (1− f )(M) =
f (U)+ f (X)+U = U + f (X). Suppose that a ∈U ∩ f (X). Since a ∈ f (X), then
there exists x∈ X such that a = f (x). Since a = f (x) = f (x)−x+x = x−(1− f )(x)
and (1− f )(x) ∈ U , we have x = a + (1− f )(x) ∈ U . Thus x ∈ U ∩ X and so,
a = f (x) ∈ f (U ∩X). Therefore we have U ∩ f (X) ≤ f (U ∩X) ≤ f (RadX) ≤
Rad f (X). This means that f (X) is a Rad-supplement of U in M. Moreover, f (X)⊂
V . Therefore M is amply e-Rad-supplemented. �

Corollary 7. If M is a projective and e-Rad-supplemented module, then M is an
amply e-Rad-supplemented module.
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Proof. Clear from Lemma 12. �

Proposition 4. Let R be a ring. The following assertions are equivalent.
(i) RR is e-Rad-supplemented

(ii) RR is amply e-Rad-supplemented.
(iii) Every finitely generated R-module is e-Rad-supplemented.
(iv) Every finitely generated R-module is amply e-Rad-supplemented.

Proof. (i)⇐⇒ (ii) Clear from Corollary 7, since RR is projective.
(i) =⇒ (iii) Clear from Lemma 8.
(iii) =⇒ (iv) Let M be a finitely generated R-module. Then there exist a finite

index set Λ and an R-module epimorphism f : R(Λ) −→M. Since every finitely gen-
erated R-module is e-Rad-supplemented, R(Λ) is e-Rad-supplemented. Since RR is
projective, R(Λ) is also projective. Then by Corollary 7, R(Λ) is amply e-Rad-supp-
lemented. Since f : R(Λ) −→M is an R-module epimorphism, by Corollary 6, M is
also amply e-Rad-supplemented.

(iv) =⇒ (i) Clear. �

Example 1. Consider the Z-module Q. Since RadQ = Q, ZQ is essential radical
supplemented. But, since ZQ is not supplemented and every nonzero submodule of
ZQ is essential in ZQ, ZQ is not essential supplemented.

Example 2. Consider the Z-module Q⊕Zp for a prime p. It is easy to check that
Rad (Q⊕Zp) = Q 6= Q⊕Zp. Since Q and Zp are essential radical supplemented,
by Lemma 6, Q⊕Zp is essential radical supplemented. But Q⊕Zp is not essential
supplemented.
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