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Abstract. In the present article, we introduce and study two certain classes of holomorphic
prestarlike and bi-univalent functions associated with Bazilevi¢ function. We determinate up-
per bounds for the Taylor-Maclaurin coefficients |ay| and |az| for functions belonging to these
classes. Further we point out certain special cases for our results.
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1. INTRODUCTION

Let A4 indicate the collection of all holomorphic functions in the unit disc
U = {z € C: |z| < 1} that have the form:

flz)=z+ iakz". (1.1)
k=2

We also denote by S the sub-collection of the set A4 containing of functions in U
satisfying (1.1) which are univalent in U.
A function f € 4 is called starlike of order § (0 <& < 1), if

zf’(z)}
Re >9, (zeU).
$e eed)
For f € 4 given by (1.1) and g € 4 defined by

g(x) =2+ Y b,
k=2
the "Hadamard product” of f and g is defined (as usual) by

(f+0)@) =2+ Y ahid, (eU).
k=2
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Ruscheweyh [8] defined and considered the family of “prestarlike functions” of
order 0, which are the function f such that f x I is a starlike function of order 0,

where .
I5(2) = —S7—=
(1 - 2)2(175)

The function /5 can be written in the form:

Is(z) =z + i o (8),
k=2

(0<d<1,z€U).

where

ko
ou(8) = m k> 2.

We note that @, (8) is a decreasing function in § and satisfies
o, ifd<i
lim@e(8) =<1, ifd=1
k—roo . 1
0, lf5 > 2

Singh [9] (also see Kim and Srivastava [4]) introduced and studied the family of
Bazilevi€ functions f € A4 satisfying the condition:

2 7Vf(2)

Re{(f(z))ly} >0, (zeU,y>0).

According to the Koebe one-quarter theorem (see [3]) “every function f € S has an
inverse f~! which satisfies f~'(f(z)) = z (z € U) and f(f'(w)) = w,
(Iwl < ro(f),r0(f) = 7)7, where

gw)=f'w)=w—aw’+ (243 —a3) W’ — (5a3 — Saraz +as) w*+---. (1.2)

For f € 4, if both f and f~! are univalent in U, we say that f bi-univalent function
in U. We indicate by X the family of bi-univalent functions in U given by (1.1). In
fact, Srivastava et al. [18] have actually revived the study of holomorphic and bi-
univalent functions in recent years. Some examples of functions in the family X are

1 1
< log< +Z> and —log(l—2)

1-z7 2 1—z
with the corresponding inverse functions
w e —1 e —1
, 5 and ,
I+w’ 41 ev

respectively. Other common examples of functions is not a member of ¥ are

2

z z
Z_E and —z




COEFFICIENT ESTIMATES FOR BAZILEVIC FUNCTIONS. .. 1033

Recently, many authors introduced various subfamilies of the bi-univalent func-
tions family ¥ and investigated upper bounds for the first two coefficients |a,| and |as]
in the Taylor-Maclaurin series expansion (1.1) (see, for example [1,5,10-17,19-24]).

We require the following lemma that will be used to prove our main results.

Lemma 1 ([3]). Ifh € P, then |cx| <2 for each k € N, where P is the family of all
functions h holomorphic in U for which

Re(h(z)) >0, (zeU),

where
hz)=1+cizte?+--, (zeU).

2. COEFFICIENT ESTIMATES FOR THE FUNCTIONS FAMILY Q5 (A,Y,d; Q)

Definition 1. A function f € X given by (1.1) is called in the family Qyx (4,7, d; o)
if it fulfils the conditions:
1

LU0 (), <Z“Y(f*ls)’(Z)> '
2\ ()@ ()

<A (zeU) (2.1

arg 50

and

oT
— <—, (wevu), 22)
2\ ((gxIs)(w)) " 2
0<a<1,0<A<1,y>0,0<06<1),

where the function g = f~! is given by (1.2).

(e o0 (e )
¢ | +<<<g*15><w>>1‘Y)

Remark 1. Tt should be remarked that the family Qyx(A,7, ;o) is a generalization
of well-known families consider earlier. These families are:
(1) ForA=1and 6 = %, the family Qs (A,Y,d;a) reduce to the family Ps(ct,y)
which was introduced by Prema and Keerthi [7];
2) ForA=1,y=0and 8 = %, the family Qs (2,7, ;) reduce to the family
S (o) which was given by Brannan and Taha [2];
(3) ForA=y=1and d = %, the family Qy(A,7,8; ) reduce to the family #*
which was investigated by Srivastava et al. [18].

Theorem 1. Ler f € Qz(A,7,8;0) (0<a<1,0<A<1,y>0,0<8<1) be
given by (1.1). Then

20
|as| <
’ VO +2) (4 1)(1—8) (24(1 = 8) + 1) + Y(ou 1) (y+ 1) (1 - 3)°
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and
< B
P28 [+ 12+ 1)(1-8)  (¥+2)(3-29)]
where
Y(o,A) = 2001 —A) + (1 — ) (A+1)°. (2.3)

Proof. Tt follows from conditions (2.1) and (2.2) that

l Zliy (f*lf))/ (Z) Zli’y(f*]g))/ (Z) l}» _ . 9
: (<<f @) (((f*k,)(z))”) ) " o

and

2\ (g*I)w)'™  \ ((g*Is)(w)'™

where g = f~! and p, ¢ in P have the following series representations:

p(2) =1+ piz+pp?+psz+--- 2.6)

l(wl“/(g*lﬁ)ll(w + (WIY(g*IS)/(KVU ) = [la(w)]*, 25

and
gw) =1+ qw—+gw* +qzw’ +---. 2.7
Comparing the corresponding coefficients of (2.4) and (2.5) yields
(Yy+1)(A+1)(1-9)

}\’ ay = opi, (2.8)
(Y+2)(A+1)(1—-98)(3—29)
21 “
I R R A ) (S R R |
2 a; = ops + P1
2.9)
EeEn0-y, o, 210
and
(20 D1 962 55,
. Myt DA+ D+ O]9 )
2 a; = ogz + q1-
(2.11)

In view of (2.8) and (2.10), we conclude that
PL=—q (2.12)
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and
2(y+ D2 A+ 12 (1-8)?
D e S{1-9) a; =’ (pi+qi). (2.13)

Also, by using (2.9) and (2.11), together with (2.13), we find that

(W+QXK+1KL_&@_Q& 2pw+zxy_na+1ywy+n%1_m}u—af) .
@

7y + e

o(o—1)
2
Further computations show that

(- D+ A+1)°(1-8)° ,
oc}\_Z ay.

=o(p2+q2)+ (P%‘HI%) =o(p2+q2)+

o*A (P2 +¢2)
OA(Y+2) (A +1)(1—8) (2y(1 = 8) + 1) + Y (o, A) (y+1)* (1 = §)*
where Y (o, ) is given by (2.3).
By taking the absolute value of (2.14) and applying Lemma 1 for the coefficients p»
and g, we have

(2.14)

aj =

200\
VO +2) (4 1)(1—8) (2y(1 = 8) + 1) + X(ot 1) (y+ 1) (1 - 3)°
To determinate the bound on |a3|, by subtracting (2.11) from (2.9), we get
+2)(A+1)(1-98)(3—25 oo —1
ATV (4, 8y —a(pr g+ 4% (1 ).
(2.15)

Now, substituting the value of a% from (2.13) into (2.15) and using (2.12), we deduce
that

laa| <

oo CRita) oA (p2 —42) (2.16)
2(y+ 12 (A+1)2(1-8)*  (y+2)(A+1)(1-8)(3-29)
Taking the absolute value of (2.16) and applying Lemma 1 once again for the coeffi-
cients p1, p2, 1 and gz, it follows that

40h oA N 1
AD(1=8) | (y+1)2A+1)(1-8)  (¥+2)3-28) |

laz| <
(

0

Remark 2. In Theorem 1, if we choose
) A=1and d = %, then we have the results which was given by Prema and
Keerthi [7, Theorem 2.2];
(2) A=1,y=0andd= %, then we have the results obtained by Murugusundara-
moorthy et al. [6, Corollary 6];
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B)A=y=1landd= %, then we obtain the results obtained by Srivastava et al.
[18, Theorem 1].

3. COEFFICIENT ESTIMATES FOR THE FUNCTIONS FAMILY Q5 (A,Y,0;[3)
Definition 2. A function f € X given by (1.1) is called in the family Q3 (1,7, 5; )
if it fulfills the conditions:
1 Zkﬂ(f*ISY(Z)+_ 2V (f ) (2)
2\ (1)@ \((f+I)(=)' "

1

) >B, (zeU) (3.1

and

U (Wt ) (M el () wev), (2
’ <<g*15><w>>‘—Y+(<<g*15><w>>““’> B et G

0<B<L,0<A<1,y>0,0<8<1),
where the function g = f~! is given by (1.2).

Remark 3. It should be remarked that the family Q3 (A,7,d;p) is a generalization
of well-known families consider earlier. These families are:
(1) For A =1 and & = 1, the family Q5 (),,8;p) reduce to the family Ps(B,Y)
which was introduced by Prema and Keerthi [7];
(2) FrA=1,y=0and 8 = %, the family Q5 (A,y,06;P) reduce to the family
S5(B) which was given by Brannan and Taha [2];
(3) ForA=y=1and = %, the family Q3 (A,7,8;B) reduce to the family # ()
which was investigated by Srivastava et al. [18].

Theorem 2. Let f € Q5 (A,7,8B) (0<P<1,0<A<1,v>0,0<8<1) be
given by (1.1). Then

ol < 2 /T—B
VA2 (4 1)(1—8) (211 = 8)+ 1) +2(1 =) (y+1)> (1 - 8)’

and

4r(1-P) A(1—B) N 1
A+D(1=8) | (y+1)>(A+1)(1-8) (¥+2)(3-28)|

Proof. In the light of the conditions (3.1) and (3.2), there are p,q € P such that

1 [ (f 1) (2) + (Zly(f*ls)' ()
2V ((Fls) )" \((f*Is)(2)" Y

laz| <
(

) =B+(1-P)p(x)  (3.3)
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and

2\ (gxI)w) "\ ((gxLs)(w)

where p(z) and g(w) have the forms (2.6) and (2.7), respectively. Comparing the
corresponding coefficients in (3.3) and (3.4) yields

(y+DHA+1)(1-9)

1 (le(g*js) fW) N <w1_y(g*18) 1(W ) ) =B+ (1-B)g(w), (3.4)

: a = (1-B)pi, (3.5)
(Y+2)(A+1)(1—98)(3—29)
20 3
My+2) (= DA+ 1)+ (y+1)*(1=1)| (1-8)? )
+ e a=(1-B)p (3.6
SEDREN0-8), g, a7
and
(Y+2)(A+1)(1—-98)(3—29) (2 2 )
20 @2
M2 (0= D0+ + (17 (1=2)| (1-8)
+ v a=01-Bg. (8
From (3.5) and (3.7), we get
P1=—q (3.9)

and

2 2 2
2(y+1) (7»;1) (1-39) Z=(1-B2(P+d). (3.10)

Adding (3.6) and (3.8), we obtain

<(y+2)(x+ 1)(1-38)(3-29)
A

2 My + (= DO D+ (- DP(1-1)] (0 sf)

+ 1=1-PB)(p2+92).

(3.11)

7\,2

Hence, we find that

AM(1—B)(p2+4q2)
AMY+2)(A+1)(1=8) (2y(1 —8)+ 1) +2(1—=1) (y+1)* (1 —8)*

a} =
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By applying Lemma 1 for the coefficients p, and ¢,, we deduce that
2h+/1—
ar] < vi-P —
\/MY+2)(7»+ DI =8)(2y(1=8) +1)+2(1 =A) (y+1)"(1-9)
To determinate the bound on |as|, by subtracting (3.8) from (3.6), we get

(7—1—2)(7»4-1);1 —OB=2) () = (1B (p2—a2).

or equivalently
A1-B)(p2—q2)
. 3.12
(T 2)(nF 1)(1—8)(3—29) -12)
Substituting the value of a% from (3.10) into (3.12), it follows that
RO’ (i) MI-B)(m—a)
2+ 1)* A+ 12 (1=8)*  (Y+2)(A+1)(1-8)(3-29)

By applying Lemma 1 once again for the coefficients pi, p»2, g1 and g», we deduce
that

2
az=a; +

40 (1—B) A(1—P) !
AD(1=8) | (y+1)2(A+1)(1-8) (¥+2)3-25)|

laz| <
(
O

Remark 4. In Theorem 2, if we choose
(1) A=1and 6= % then we have the results which was given by Prema and
Keerthi [7, Theorem 3.2];
2) A=1,y=0and 6= % then we have the results obtained by Murugusundara-
moorthy et al. [6, Corollary 7];
B) A=y=1landd= % then we obtain the results obtained by Srivastava et al.
[18, Theorem 2].
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