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Abstract. In this paper, a new type of stability for nonlinear systems of differential equations
called practical ψγ−exponential asymptotic stability, is presented. Some sufficient conditions for
practical ψγ−exponential asymptotic stability are provided by using Lyapunov theory. These res-
ults generalize fundamental well known results for practical exponential asymptotic and ψ−ex-
ponential asymptotic stability for nonlinear time-varying systems. In addition, these results are
using to investigate the practical ψγ−exponential asymptotic stability problem of nonlinear per-
turbed system and cascade systems. The last part is devoted to the study the problem of practical
ψγ−exponential asymptotic stabilization for some classes of nonlinear systems with delayed per-
turbation.
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1. INTRODUCTION

The problem of stability analysis and controllability of nonlinear systems has
been a topic of numerous papers and has produced a vast body of important res-
ults [4, 12, 17] and the references therein. However, in practice, disturbances often
prevent the error signals from tending to the origin. Thus, the origin is not a point
of equilibrium of the system. Such a situation often arises problems of guarantee the
stability of the origin as an equilibrium point. For this reasons, LaSalle and Lefschetz
[12] introduced the theory of practical stability when the origin is not necessary an
equilibrium point. The notion of input to state practical stability introduced by [16]
for to study uncertain dynamical systems. Under an output feedback controller the
global uniform practical stability of the closed loop system is proved by [3]. In ad-
dition, the notion of ψ−stability of degree k for ordinary differential equations has
been introduced by Akinyele [1]. Marchalo [13] gives a real start for the study of
ψ-stability, when he introduced the notions of ψ-uniform stability for trivial solution
of the nonlinear system and also obtained new sufficient conditions for the linear
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system. Recently various types of ψ−stability have been studied for nonlinear Lya-
punov matrix differential equations have been given in many papers [6, 7, 14, 15]. In
the study of stability the use of the function ψ is interpreted as a weight in the norm
which ensures which ensures rate increase solutions that are not stable in the usual
sense.
The main aim of the current paper, motivated by problems of generalized exponen-
tial asymptotical stability of nonlinear systems investigated by [4,11].Combining the
notion of practical stability with ψ−stability to ensure the study of a large number of
dynamic systems, the notion of practical ψγ−exponential asymptotical stability was
introduced. We investigate the preservation of this notion when considering a sys-
tem with a perturbation term. This leads us to study the problem of ψγ−exponential
asymptotic stability of cascade systems.
The rest of this paper is organized as follows:
First, in Section 2, basic definitions and some preliminary results about practical
ψγ−exponential asymptotical stability are presented. Then, in Section 3 some suf-
ficient conditions are given, to prove and to guarantee the main theorem about the
global uniform practical ψγ−exponential asymptotical stability. However, Section 4
establishes practical ψγ−exponentially asymptotically stability for nonlinear system
with delayed perturbation. finally we study the Practical ψγ−exponential asymptotic
stabilization.

2. PRELIMINARIES

Consider the nonlinear systems of differential equations

ẋ = f (t,x). (2.1)

where the function f ∈ C (R+×Rn,Rn). Let ψi : R+→ (0,∞), i = 1,2, ...,n be con-
tinuous functions and

ψ = diag[ψ1,ψ2, ...,ψn].

The matrix ψ(t) is invertible for each t ≥ 0. If for all i = 1,2, ...,n, ψi(t) = 1, then
ψ = I is the identity matrix. In addition, suppose

‖ f (t,0)‖ ≤ f0 ∀ t ≥ 0 (2.2)

where f0 = constant 6= 0 in general and the symbol ‖x‖ denotes arbitrary vector norm
of a vector x ∈ Rn.
The condition (2.2) means that the origin x = 0 is not required to be an equilib-
rium point for the system under consideration. Indeed, this fails in many cases when
studying the practical stability (see [8]). Throughout this paper, a solution of system
(2.1) through a point (t0,x0) ∈R+×Rn will be denoted by such a form as x(t, t0,x0),
where x(t0, t0,x0) = x0. In addition, suppose that the solution x(t, t0,x0) is defined
for all t ≥ t0. The purpose of this paper is to prove some sufficient conditions for
practical ψγ−exponential asymptotic stability of solution of the system (2.1). In the
first, some definitions are given below.
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Definition 1 ([5]). The solution x(., t0,x0) of system (2.1) is said to be
i): ψ−bounded if there exists positive constant δ(t0)<+∞, such that

sup
t≥t0
‖ψ(t)x(t, t0,x0)‖ ≤ δ(t0)<+∞.

ii): uniformly ψ−bounded, if it is ψ−bounded with δ(t0) is independent of t0.

Definition 2. Let γ > 0 be given. The system (2.1) is called globally practically
ψγ−exponentially asymptotically stable if there exist some constants λ > 0, k ≥ 1
and R≥ 0 such that for any solution x(t, t0,x0) of (2.1) satisfies

‖ψ(t)x(t, t0,x0)‖ ≤ k‖ψ(t0)x0‖γe−λ(t−t0)+R, t ≥ t0 ≥ 0, x0 ∈ Rn. (2.3)

If γ = 1, the system (2.1) is said globally practically ψ−exponentially asymptotically
stable.

Remark 1. Note that, in the particular case where ψ = I, γ 6= 1 and R ≥ 0, the
notion of practical ψγ−exponential asymptotic stability is defined as follows :

a): If R = 0, then the system (2.1) is called globally γ−exponentially asymptot-
ically stable.

b): If R> 0, then the system (2.1) is called globally practically γ−exponentially
asymptotically stable.

The motivation of this paper is that the notion of practical ψγ−exponential asymp-
totic stability generalizes some known types of stability. In the following remark
we cite some types of stability which are considered as special cases of practical
ψγ−exponential asymptotic stability.

Remark 2. Definition 2 generalizes the notions of ψ−stability. More precisely,
when R = 0 and γ = 1 we recover the usual definition of ψ−stability ([9]). Moreover,
for R≥ 0, ψ = I (identity matrix) and γ = 1, the practical ψγ−stability coincides with
a known practical type of stability:

a): If R = 0, then the system (2.1) is globally exponentially asymptotically
stable (see [10]).

b): If R > 0, then the system (2.1) is globally practically exponentially asymp-
totically stable (see [8]).

The relation between practical ψγ−exponential asymptotic stability and ψ−bound-
edness is given by the following remark.

Remark 3. By combining definition of practical ψγ−exponential asymptotic sta-
bility with that of ψ−boundedness, it is clear that if any solution of system (2.1) is
uniformly ψ−bounded, then it is practically ψγ−exponentially asymptotically stable.

For some systems the insurance of practical exponential asymptotic stability might
be more difficult. That is why it is sometimes more useful to look for another way
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of stability, among which the practical ψγ−exponential asymptotic stability which
requires appropriate sufficient conditions.

Next, we shall define a class of Lyapunov functions that will be used in the qualit-
ative investigations of the system (2.1).

Definition 3. Consider a continuous function V : R+×Rn −→ R+.
(1) The function V is said to be globally Lipschitz with respect to x, if there a

constant L > 0 such that
|V (t,x)−V (t,y)| ≤ L‖x− y‖, for all t ∈ R+ and x,y ∈ Rn.

(2) The total derivative of V with respect to system (2.1), denoted by D+V(2.1), is
given by

D+V(2.1)(t,x) = limsup
δ−→0+

1
δ

[
V (t +δ,x+δ f (t,x)))−V (t,x)

]
(2.4)

(3) If x(t) is a solution of (2.1), the upper right-hand derivative of V (t,x(t)),
denoted by D+V (t,x(t)), is given by

D+V (t,x(t)) = limsup
δ−→0+

1
δ

[
V (t +δ,x(t +δ))−V (t,x(t))

]
. (2.5)

Remark 4. Let V be a continuous function from R+×Rn to R+.
• If V is Lipschitz with respect to x, Yoshizawa [17] has proved that

D+V(2.1)(t,x) = D+V (t,x(t)). (2.6)

• If V ∈ C 1[R+×Rn,R+], then the equalities are satisfied

D+V(2.1)(t,x) = D+V (t,x(t)) = V̇(2.1)(t,x) :=
∂V
∂t

(t,x)+
∂V
∂x

(t,x). f (t,x). (2.7)

Definition 4. A continuous function V (t,x) is called a practical Lyapunov-ψ func-
tion for system (2.1), if there exist positive numbers λ1,λ2,λ3 > 0, a,b≥ 0, p,q,r > 0
such that

i): λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q +a, (t,x) ∈ R+×Rn,
ii): D+V(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b, (t,x) ∈ R+×Rn

where a,b≥ 0, λ1,λ2,λ3 > 0 and p,q,r > 0.

Without loss of generality, throughout the rest of the paper, if V (t,x) is a practical
Lyapunov-ψ function for system (2.1), we assume that λ1≤ λ3 and λ1λ3 < bλ2 which
we need in the rest of this work.

Remark 5. Notes that, in the above definition,
i): if V (t,x) is a Lyapunov-ψ function for system (2.1) ([9]), then V (t,x) is also

a practical Lyapunov-ψ function for system (2.1).
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ii): if p = q = r > 0 and ψ≡ I then, the practical Lyapunov−ψ function V (t,x)
ensure the global uniform practical exponential asymptotic stability of sys-
tem (2.1)(see [8]).

The following lemmas will also be required in the investigations of our results of the
paper.

Lemma 1. Let V (t) a function whose derivative V ′(t) exists for all t ∈ R+ and
satisfies the differential inequality

V ′(t)≤ p(t)V (t)+q(t)

where p(t) and q(t) are two continuous functions. Then, the function V satisfies

V (t)≤V (t0)e
∫ t

t0
p(s)ds

+
∫ t

t0
e
∫ t

s p(z)dzq(s)ds, ∀ t ≥ t0 ≥ 0.

Lemma 2. Let α,β≥ 0. Then, we have the following inequalities:

a): For all p≥ 1, (α+β)
1
p ≤ α

1
p +β

1
p .

b): For all p≥ 1, (α+β)p ≤ 2p−1(αp +βp) .

c): If (α,β) 6= (0,0), then 0≤ αβ

α+β
≤ β.

3. MAIN RESULTS

In this section, we consider practical ψγ−exponential asymptotic stability prob-
lems of solutions of system (2.1) will be discussed by the Lyapunov’s second method.
In the begining of this section, we give some sufficient conditions of practical ψγ−ex-
ponential asymptotic stability if the system (2.1) admits a practical Lyapunov−ψ

function candidate with p,q,r and a,b are arbitrary constants.

Theorem 1. Assume that there exists a continuously differentiable function V (t,x)
satisfying the following properties: For all x ∈ Rn and t ∈ R+

i): λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q +a,
ii): V̇(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b

where λ1,λ2,λ3 > 0, a,b≥ 0, p > 0 and r≥ q > 0. Then, the system (2.1) is globally
practically ψ

q
p−exponentially asymptotically stable.

Proof. The details of the proof are given in appendix. �

Now, the following corollaries can be easily obtained.
First, suppose that the system (2.1) admits a practical Lyapunov−ψ function can-
didate such that q = r > 0, p > 0 and a,b ≥ 0. The following corollary shows the
existence of γ > 0 such that the system (2.1) is practically ψγ−exponentially asymp-
totically stable. In this case the practical ψ−stability result is obtained by the follow-
ing Corollary.
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Corollary 1. Suppose there exists a continuously differentiable function V (t,x)
satisfying the following properties :

i): λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q +a, (t,x) ∈ R+×Rn,
ii): V̇(2.1)(t,x)≤−λ3‖ψ(t)x‖q +b, (t,x) ∈ R+×Rn

where λ1,λ2,λ3 > 0, a,b≥ 0 and p,q > 0. Then, the system (2.1) is globally practic-
ally ψ

q
p−exponentially asymptotically stable.

Remark 6. In Corollary 1, if V (t,x) is a practical Lyapunov−ψ function candidate
for the system (2.1) such that p = q > 0 and a,b ≥ 0, then we obtain sufficient con-
dition for practical ψ−exponential asymptotic stability of system (2.1). In addition,
if ψ(t) = I we obtain sufficient conditions of practical exponential stability of system
(2.1) (see [8]).

In the Theorem 1, we will end up taking a = 0 and p,q are chosen arbitrarily and
r ≥ q. The practical ψγ−exponential asymptotic stability of system (2.1) is given by
the following corollary.

Corollary 2. Suppose that there exists a continuously differentiable function V (t,x)
satisfying the following properties

i): λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q, (t,x) ∈ R+×Rn,
ii): V̇(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b, (t,x) ∈ R+×Rn

where λ1,λ2,λ3 > 0, b ≥ 0 and p,q > 0 such that r ≥ q. Then, the system (2.1) is
globally practically ψ

q
p−exponentially asymptotically stable.

Remark 7. The practical ψ
q
p−exponential asymptotic stability given by Corollary

2, generalizes that of practical stability given by Theorem 3.4 [2].

4. PRACTICAL ψγ−EXPONENTIAL ASYMPTOTIC STABILITY OF PERTURBED AND
CASCADED SYSTEMS

The purpose of this section is to investigate the practical ψγ−exponential asymp-
totic stability problem for perturbed and cascaded nonlinear systems. By using prac-
tical Lyapunov−ψ function, some criteria which guarantee the practical ψγ−expo-
nential asymptotic stability of the addressed systems are provided.

4.1. Practical ψγ−exponential asymptotic stability of perturbed systems

A great interest is attached to the relations between the solutions of the unperturbed
system (2.1) and the solutions of the perturbed system having the following form

ẏ = f (t,y)+g(t,y) (4.1)

where f ,g : R+×Rn → Rn are continuous functions. We suppose that functions f
and g satisfy all required conditions for existence and uniqueness of the solutions of
system (4.1) on the interval [t0,+∞) for all suitable initial data y0 ∈ Rn and t0 ∈ R+.
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The unique solutions of (4.1) is denoted by y(t, t0,y0), satisfying the initial conditions
y(t0, t0,y0) = y0 ∈ Rn. Suppose the following assumption hold

(A1): There exists a continuously differentiable function V : R+×Rn → R+

satisfying the following properties:
i): |V (t,x)−V (t,y)| ≤ L‖x− y‖, x,y ∈ Rn and t ∈ R+,
ii): λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q +a, x ∈ Rn and t ∈ R+,
iii): D+V(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b, x ∈ Rn and t ∈ R+

where L > 0, λ1,λ2,λ3 > 0, a,b≥ 0 and p > 0, r ≥ q > 0.
The practical ψγ−exponential asymptotic stability of perturbed system (4.1) is given
by the following theorem.

Theorem 2. Suppose that the assumption (A1) is satisfied and the perturbation
term g(t,y) satisfies

‖g(t,y)‖ ≤ λ‖ψ(t)y‖r +β (4.2)
where λ,β > 0 and r≥ q > 0 such that λ3−Lλ > 0 and . Then, the perturbed system
(4.1) is globally practically ψ

q
p−exponentially asymptotically stable.

Proof. The total derivative D+V(4.1)(t,y) of the function V (t,y) with respect to
system (4.1) satisfies

D+V(4.1)(t,y) = limsup
δ−→0+

1
δ

[
V (t +δ,y+δ( f (t,y)+g(t,y)))−V (t,y)

]
≤ limsup

δ−→0+

1
δ

[
V (t +δ,y+δ( f (t,y)+g(t,y)))−V (t +δ,y+δ f (t,y))

]
+ limsup

δ−→0+

1
δ

[
V (t +δ,y+δ f (t,y))−V (t,y)

]
≤ D+V(2.1)(t,y)+L‖g(t,y)‖,
≤−λ3‖ψ(t)y‖r +b+Lλ‖ψ(t)y‖r +Lβ,

≤−(λ3−Lλ)‖ψ(t)y‖r +b+Lβ.

Therefore, V (t,y) is a practical Lyapunov-ψ function for the perturbed system (4.1).
Then, by Theorem 1, the perturbed system (4.1) is practically ψ

q
p−exponentially

asymptotically stable. �

4.2. Practical ψγ−exponential asymptotic stability of cascaded systems

Consider now cascaded system of the form:

(Σ1) : ẋ1 = f1(t,x1)+g(t,x1,x2) (4.3)

(Σ2) : ẋ2 = f2(t,x2) (4.4)

where x1 ∈ Rn1 , x2 ∈ Rn2 with n1,n2 ∈ N∗ and x := [x1,x2]
T ∈ Rn1 ×Rn2 , denotes

the state of the closed-loop system. We assume that functions f1, f2 and g satisfy
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all required conditions for existence and uniqueness of the solutions of system (4.3)-
(4.4) on the interval [t0,+∞) for all suitable initial data x0 ∈ Rn1×Rn2 and t0 ∈ R+.

The main goal is to give some sufficient conditions which guarantee that if the
system (4.4) and the system

ẋ1 = f1(t,x1) (4.5)

are practically ψγ−exponentially stable where γ > 0, then the cascaded system (4.3)-
(4.4) is also practically ψγ−exponentially asymptotically stable, if the interconnec-
tion term g(t,x1,x2) satisfies some condition of boundedness. The unique solution
of cascaded system (4.3)-(4.4) is denoted by x(., t0,x0), which satisfies x(t0, t0,x0) =
x(t0) = x0.
In this part, we consider ψ1 = diag[ψ1

1,ψ
1
2, ...,ψ

1
n1
] and ψ2 = diag[ψ2

1,ψ
2
2, ...,ψ

2
n1
] with

ψ1
i : R+→ (0,∞), i = 1,2, ...,n1 and ψ2

i : R+→ (0,∞), i = 1,2, ...,n2 be continuous
functions. Before proposing our theorem, we introduce the following assumptions:

(A2): There exist two functions V1(t,x1) and V2(t,x2) having the following
properties: For i = 1,2

i): Vi ∈ C 1(R+ ×Rni ,R+) and |Vi(t,xi)−Vi(t,yi)| ≤ Li‖xi − yi‖ for all
xi,yi ∈ Rni and for each t ∈ R+,

ii): λi‖ψi(t)xi‖p ≤Vi(t,xi)≤ βi‖ψi(t)xi‖q +ai, (t,xi) ∈ R+×Rni ,
iii): D+Vi(Σi)(t,xi)≤−ci‖ψi(t)xi‖r +bi, (t,xi) ∈ R+×Rni

where ai,bi ≥ 0, Li,λi,βi,ci > 0 for i = 1,2 and p > 0, r ≥ q > 0.
(A3): The interconnection term g(t,x1,x2) satisfies the following boundedness

condition

‖g(t,x1,x2)‖ ≤ δ(‖ψ1(t)x1‖r +‖ψ2(t)x2‖r +1), t ∈ R+, x1 ∈ Rn1 , x2 ∈ Rn2 (4.6)

where δ > 0 and r ≥ q > 0.

Theorem 3. We assume assumptions (A2) and (A3) are satisfied. Then, under
the condition min(c1,c2)> 2δL1 max

{
2

r−2
2 ,2

2−r
2
}

, the cascaded system (4.3)-(4.4) is

globally practically ψ
q
p−exponentially asymptotically stable.

Proof. Let define the function W (t,x) by

W (t,x) =V1(t,x1)+V2(t,x2),

where x = [x1,x2]
T ∈ Rn1×Rn2 . Consider the matrix function Ψ(t) given by

ψ(t) =
[

ψ1(t) 0
0 ψ2(t)

]
, t ∈ R+.

Then, for all t ∈R+ and x= [x1,x2]
T ∈Rn1×Rn2 , we obtain ψ(t)x=

[
ψ1(t)x1,ψ2(t)x2

]T
.

By Lemma 2 we have, for all r > 0

‖ψ(t)x‖r =
[
‖ψ1(t)x1‖2+‖ψ2(t)x2‖2

] r
2 ≤max

{
2

r−2
2 ,2

2−r
2
}
(‖ψ1(t)x1‖r+‖ψ2(t)x2‖r).
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The total derivative D+W(Σ1,Σ2)(t,x) of W with respect to system (4.3)-(4.4) satisfies

D+W(Σ1,Σ2)(t,x)≤ D+V1(4.3)(t,x1)+D+V2(4.4)(t,x2),

≤ D+V1(4.5)(t,x1)+D+V2(4.4)(t,x2)+L1‖g(t,x1,x2)‖,
≤−c1‖ψ1(t)x1‖r +b1− c2‖ψ2(t)x2‖r +b2 +L1‖g(t,x1,x2)‖,

≤−min(c1,c2)
(
‖ψ1(t)x1‖r +‖ψ2(t)x2‖r

)
+δL1(‖ψ1(t)x1‖r +‖ψ2(t)x2‖r +1)+b1 +b2,

≤− min(c1,c2)

max
{

2
r−2

2 ,2
2−r

2
}‖ψ(t)x‖r +δL1(‖ψ1(t)x1‖r +‖ψ2(t)x2‖r)

+b1 +b2 +δL1.

Using the inequalities

‖ψ1(t)x1‖ ≤ ‖ψ(t)x‖, ‖ψ2(t)x2‖ ≤ ‖ψ(t)x‖, ‖ψ(t)x‖ ≤ ‖ψ1(t)x1‖+‖ψ2(t)x2‖
(4.7)

yield
D+W (t,x)≤−c‖ψ(t)x‖r +b, t ∈ R+, x ∈ Rn1×Rn2 (4.8)

where b = b1 + b2 + δL1 and c = min(c1,c2)

max
{

2
r−2

2 ,2
2−r

2
} − 2δL1 > 0. By condition ii), the

function W (t,x) satisfies

λ1‖ψ1(t)x1‖p +λ2‖ψ2(t)x2‖p ≤W (t,x)≤ β1‖ψ1(t)x1‖q +β2‖ψ2(t)x2‖q +a1 +a2.

Then, by Lemma 2 and (4.7), we obtain

λ‖ψ(t)x‖p ≤W (t,x)≤ β‖ψ(t)x‖q +a, t ∈ R+, x ∈ Rn1×Rn2

with β = β1 + β2, λ = min(λ1,λ2)
2p−1 and a = a1 + a2. Therefore, W (t,x) is a practical

Lyapunov-ψ function for the cascaded system (4.3)-(4.4). Then, by Theorem 1, the
cascaded system (4.3)-(4.4) is globally practically ψ

q
p−exponentially asymptotically

stable. �

5. PRACTICAL ψγ−EXPONENTIAL ASYMPTOTIC STABILIZATION

We denote by M(n,m)(R) the set of all n×m matrices with real coefficients where
m,n ∈ N∗.
In this section, we conclude to some practical ψγ−stabilization problem of a class
nonlinear control system with delayed perturbations using feedback controls.
Consider the following nonlinear time-varying differential equation with delay.

ẋ = f (t,x)+g(t,x)
( r

∑
i=0

qi(t,x(t− τi(t)))+u
)
, r ∈ N, t ∈ R+, x ∈ Rn (5.1)

where
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• f : R+×Rn −→ Rn, g : R+×Rn −→M(n,m)(R) are continuous functions.
• x ∈ Rn is the state and u ∈M(n,1)(R) is the control.
• qi(t,x(t− τi(t)) ∈M(m,1)(R) are the perturbations terms.
• τi(t), i = 1,2, ...,r are the time delays positive, continuous and there exist

positive constants τi, i = 1,2, ...,r such that 0≤ τi(t)≤ τi.
The initial condition function is given by x(t)=ϕ(t), t ∈ [t0−τ, t0] where τ= max

1≤i≤r
{τi}

and ϕ(t) is a continuous function on [t0− τ, t0].
The nominal system and is defined by

ẋ = f (t,x)+g(t,x)u. (5.2)

The unforced nominal system of (5.1) is defined by

ẋ = f (t,x). (5.3)

Our goal is to find a feedback u = u(t,x) which make the closed-loop system

ẋ = f (t,x)+g(t,x)
( r

∑
i=0

qi(t,x(t− τi(t)))+u(t,x)
)
, r ∈ N

practically ψγ−exponentially asymptotically stable, where γ > 0.
In order to study the practical ψγ−exponential asymptotic stability of closed-loop
system, we need the following assumptions

(A4): There exists a continuously differentiable function V : R+×Rn −→ R+

which satisfies

λ1‖ψ(t)x‖p ≤V (t,x)≤ λ2‖ψ(t)x‖q +a (5.4)

V̇(5.3)(t,x)≤−λ3‖ψ(t)x‖r +b (5.5)

for all (t,x) ∈ R+×Rn , where λ1,λ2,λ3 > 0, a,b≥ 0 and p > 0, r ≥ q > 0.
(A5): The perturbation term qi(t,x(t− τi(t)) checking:

‖qi(t,x(t− τi(t))‖ ≤ βi‖x(t− τi(t))‖, βi > 0, i = 1,2, ...,r. (5.6)

Theorem 4. System (5.1) satisfying assumptions (A4) and (A5) is globally prac-
tically ψ

q
p−exponentially asymptotically stable under the following controller

u(t,x) =

−
[ r

∑
i=0

βiχi(t)
]2[

gT (t,x)
∂V
∂x

(t,x)
]

‖ ∂V
∂x

T
(t,x).g(t,x)‖

r

∑
i=0

βiχi(t)+ ε‖ψ(t)x‖r
(5.7)

where ε > 0 and
χi(t) = max

s∈[t−τi,t]
‖x(s)‖, i = 1,2, ...,r (5.8)
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Proof. Applying (5.7) to (5.1) gives a new form of a closed-loop dynamical sys-
tem:

ẋ = f (t,x)+g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))+g(t,x)u(t,x). (5.9)

By using (5.5) and (5.8), the derivative V̇(5.9)(t,x) of the function V along the traject-
ories of (5.9), satisfies

V̇(5.9)(t,x) = V̇(5.3)(t,x)+
∂V
∂x

T

(t,x).g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))

+
∂V
∂x

T

(t,x).g(t,x)u(t,x),

≤−λ3‖ψ(t)x‖r +b+
∂V
∂x

T

(t,x).g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))

+
∂V
∂x

T

(t,x).g(t,x)u(t,x),

≤−λ3‖ψ(t)x‖r +b+‖∂V
∂x

T

(t,x).g(t,x)‖
r

∑
i=0
‖qi(t,x(t− τi(t)))‖

+
∂V
∂x

T

(t,x).g(t,x)u(t,x),

≤−λ3‖ψ(t)x‖r +b+‖∂V
∂x

T

(t,x).g(t,x)‖
r

∑
i=0

βi‖x(t− τi(t))‖

+
∂V
∂x

T

(t,x).g(t,x)u(t,x).

By using the feedback (5.7) we obtain:

V̇(5.9)(t,x)≤−λ3‖ψ(t)x‖r +b+β− β2

α+β

=−λ3‖ψ(t)x‖r +b+
αβ

α+β

with α = ε‖ψ(t)x‖r and β = ‖ ∂V
∂x

T
(t,x).g(t,x)‖

r

∑
i=0

βiχi(t). Therefore, it follows from

ii) of Lemma 2 that,

V̇(5.9)(t,x)≤−λ3‖ψ(t)x‖r +b+ ε‖ψ(t)x‖r =−(λ3− ε)‖ψ(t)x‖r +b. (5.10)

By using (5.4) and (5.10), the function V (t,x) is a practical Lyapunov ψ−function
for the closed loop system (5.9). Then, under the controller (5.7), the system (5.1) is
globally practically ψ

q
p−exponentially asymptotically stable.

�
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Next, consider the nonlinear uncertain system with delayed perturbations of the form

ẋ = f (t,x)+g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))+g(t,x)(1+δ(t,x))u, r ∈ N (5.11)

where δ(t,x) represents the uncertainties terms. Now, we need the following assump-
tion:

(A6): There exists a continuous function φ(t,x) such that for all t ∈ R+ and
x ∈ Rn

1+δ(t,x)≥ φ(t,x)> 0. (5.12)

Theorem 5. Suppose that assumptions (A4) - (A6) are satisfied. Then, the sys-
tem (5.11) is globally practically ψ

q
p−exponentially asymptotically stable under the

following controller

u(t,x) =

−
[ r

∑
i=0

βiχi(t)
]2[

gT (t,x)
∂V
∂x

(t,x)
]

φ(t,x)‖ ∂V
∂x

T
(t,x).g(t,x)‖

r

∑
i=0

βiχi(t)+ ε
∗(t,x)‖ψ(t)x‖r

(5.13)

where ε∗(t,x) = εφ(t,x) such that 0 < ε < λ3.

Proof. Substituting (5.13) into (5.11) yields the following form:

ẋ = f (t,x)+g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))+g(t,x)(1+δ(t,x))u(t,x). (5.14)

From assumption (A5), the derivative V̇(5.14)(t,x) of the practical Lyapunov ψ−func-
tion V (t,x) along the trajectories of (5.14) satisfies

V̇(5.14)(t,x) = V̇(5.3)(t,x)+
∂V
∂x

T

(t,x).g(t,x)
r

∑
i=0

qi(t,x(t− τi(t)))

+
∂V
∂x

T

(t,x).g(t,x)(1+δ(t,x))u(t,x),

≤−λ3‖ψ(t)x‖r +b+‖∂V
∂x

T

(t,x).g(t,x)‖
r

∑
i=0
‖qi(t,x(t− τi(t)))‖

+
∂V
∂x

T

(t,x).g(t,x)(1+δ(t,x))u(t,x).

Then, from (5.8) and (5.13) we get

V̇(5.14)(t,x)≤−λ3‖ψ(t)x‖r +b+
β

φ(t,x)
− β2

φ(t,x)(α+β)

=−λ3‖ψ(t)x‖r +b+
αβ

φ(t,x)(α+β)
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with α = ε∗(t,x)‖ψ(t)x‖r and β = φ(t,x)‖ ∂V
∂x

T
(t,x).g(t,x)‖

r

∑
i=0

βiχi(t). By using ii)

of Lemma 2 , we obtain

V̇(5.14)(t,x)≤−λ3‖ψ(t)x‖r +b+
ε∗(t,x)‖ψ(t)x‖r

φ(t,x)
,

=−(λ3− ε)‖ψ(t)x‖r +b.

Similarly of the proof of Theorem 4, the function V (t,x) is a practical Lyapunov
ψ−function for the closed loop system (5.14). Then, under the controller (5.13), the
system (5.11) is globally practically ψ

q
p−exponentially asymptotically stable.

�

6. CONCLUSION

In this paper, we have presented some new conditions for practical ψγ−exponential
asymptotic stability of nonlinear systems of differential equations. A main theorem
for practical ψγ−exponential asymptotic stability is established. In addition, one of
our main interests is the study of the problem of practical ψγ−exponential asymp-
totic stability of the perturbed systems and cascade systems. Based on this study,
we reached a novel result in practical ψγ−exponential asymptotic stabilization for
dynamical systems with delayed perturbations. To guarantee that the closed-loop
system is practically ψγ−exponentially asymptotically stable, a continuous control-
ler is provided and sufficient conditions are given. Furthermore, a class of nonlinear
systems with delayed perturbations and uncertain control has been considered.
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APPENDIX A. PROOF OF THEOREM 1

Proof. Let x(t) := x(t, t0,x0) be the solution of system (2.1) through (t0,x0)∈R+×
Rn. In the following, the practical ψ

q
p−exponential asymptotic stability of the system

(2.1) is shown. Four cases are presented

Case 1: : If q = r, then it follows from the conditions i) and ii) that, the deriv-
ative V̇(2.1)(t,x) of the function V (t,x) along the trajectories of (2.1) satisfies

V̇(2.1)(t,x)≤−
λ3

λ2
V (t,x)+

aλ3

λ2
+b, t ∈ R+, x ∈ Rn.
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By using Lemma 1 with p(t) =−λ3
λ2

and q(t) = b+ aλ3
λ2

, we obtain

V (t,x(t))≤V (t0,x0)e
− λ3

λ2
(t−t0)+(a+

bλ2

λ3
)
(
1− e−

λ3
λ2
(t−t0)), t ≥ t0, x0 ∈ Rn.

Thus, for all t ≥ t0 ≥ 0 and x0 ∈ Rn

V (t,x(t))≤V (t0,x0)e
− λ3

λ2
(t−t0)+(a+

bλ2

λ3
)
(
1− e−

λ3
λ2
(t−t0))

≤ λ2‖ψ(t0)x0‖pe−
λ3
λ2
(t−t0)+ae−

λ3
λ2
(t−t0)+(a+

bλ2

λ3
)
(
1− e−

λ3
λ2
(t−t0))

≤ λ2‖ψ(t0)x0‖pe−
λ3
λ2
(t−t0)+

(
a+

bλ2

λ3

)
.

By using the condition i) of Theorem 1 and condition a) of Lemma 2, the
solution x(t, t0,x0) satisfies

‖ψ(t)x(t, t0,x0)‖≤ p

√
λ2

λ1
‖ψ(t0)x0‖

q
p e−

λ3
pλ2

(t−t0)+ p

√
aλ3 +bλ2

λ1λ3
, ∀ t ≥ t0≥ 0, ∀x0 ∈Rn.

Case 2 : : If r > q and p = q, we distinguish two subcases: whether the func-
tion ψ(t)x(t) start from outside or inside the closed ball of Rn, B1 := {x ∈
Rn;‖x‖ ≤ 1}.
• ‖ψ(t0)x0‖ > 1. In this case, there exists T0 ∈]0,+∞] such that
‖ψ(t)x(t)‖ > 1 for all t ∈ [t0, t0 + T0[ and ‖ψ(t0 + T0)x(t0 + T0)‖ = 1.
Hence, we get that

V̇(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b

=−λ3‖ψ(t)x‖r−q‖ψ(t)x‖q +b

≤−λ3‖ψ(t)x‖q +b

≤−λ3

λ2
V (t,x)+

aλ3

λ2
+b.

By using Lemma 1, the following inequality is obtained

V (t,x(t))≤V (t0,x0)e
− λ3

λ2
(t−t0)+(a+

bλ2

λ3
)
(
1− e−

λ3
λ2
(t−t0)), t ∈ [t0, t0 +T0[. (A.1)

From the condition i), it is easy to see that for all t ∈ [t0, t0 +T0[, we have

‖ψ(t)x(t, t0,x0)‖p ≤ λ2

λ1
‖ψ(t0)x0‖pe−

λ3
λ2
(t−t0)+

aλ3 +bλ2

λ1λ3
.

Then, by condition i) of Lemma 2, the estimation is obtained

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0‖e

− λ3
pλ2

(t−t0)+ p

√
aλ3 +bλ2

λ1λ3
, t ∈ [t0, t0 +T0[.
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In addition, for each t ≥ t0 + T0, either ‖ψ(t)x(t)‖ ≤ 1, or ‖ψ(t)x(t)‖ >
1. In this second case, we can again invoke the continuity of the function
ψ(t)x(t) to see that there exists a nonempty time-interval [τ,τ + T ], with
T ∈ (0,+∞], containing t and such that ‖ψ(t)x(t)‖ > 1 for all s ∈ (τ,τ+T ],
with ‖ψ(τ)x(τ)‖ = 1. Hence, integrating from τ to t ∈ [τ,τ+T ], we obtain,
whenever ‖ψ(t)x(t)‖> 1, it holds that

V (t,x(t))≤V (τ,x(τ))e−
λ3
λ2
(t−τ)

+(a+
bλ2

λ3
)
(
1− e−

λ3
λ2
(t−τ))

≤(λ2‖ψ(τ)x(τ)‖p +a)e−
λ3
λ2
(t−τ)

+(a+
bλ2

λ3
)
(
1− e−

λ3
λ2
(t−τ))

≤λ2 +a+
bλ2

λ3

=
λ2λ3 +aλ3 +bλ2

λ1λ3
.

Then, by condition i) of Theorem 1, the solution x(t, t0,x0) satisfies

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

Then, the solution x(t, t0,x0) is uniformly ψ−bounded.
To sum up, for all t ≥ t0, if ‖ψ(t0)x0‖> 1 we have the following

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0‖e

− λ3
pλ2

(t−t0)+ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

• ‖ψ(t0)x0‖ ≤ 1. In this case, as long as ‖ψ(t)x(t)‖ ≤ 1, we have trivially

that ‖ψ(t)x(t, t0,x0)‖ ≤ p
√

λ2λ3+aλ3+bλ2
λ1λ3

. If ‖ψ(t)x(t)‖ > 1 at some in-
stant t > t0, then, again, there exists a nonempty time-interval [τ,τ+T ],
with T ∈ (0,+∞] and τ > t0, containing t and such that ‖ψ(s)x(s)‖ > 1
for all s ∈ (τ,τ+ T ], with ‖ψ(τ)x(τ)‖ = 1. By integration from τ to
t ∈ [τ,τ+T ], we obtain that, whenever ‖ψ(t)x(t)‖> 1, it holds that

V (t,x(t))≤ λ2λ3 +aλ3 +bλ2

λ1λ3
.

By using condition i) of Theorem 1, we have

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.
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Hence, for all t ≥ t0 and x0 ∈ Rn, we have

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0‖e

− λ3
pλ2

(t−t0)+ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

Then, the system (2.1) is practically ψ−exponentially asymptotically stable.
Case 3: : If r > q and q < p, then from Condition i) it follows that

‖ψ(t)x‖q
(

λ1‖ψ(t)x‖p−q−λ2

)
≤ a. (A.2)

If a = 0, then by (A.2), we get

‖ψ(t)x‖ ≤ p−q

√
λ2

λ1
, t ∈ R+, x ∈ Rn.

In particular, the solution x(t, t0,x0) is uniformly ψ−bounded.
On the other hand, if a > 0, we distinguish two subcases: whether the func-
tion ψ(t)x(t) start from outside or inside the ball B1
• ‖ψ(t0)x0‖ > 1. In this case, there exists T0 ∈]0,+∞] such that
‖ψ(t)x(t)‖ > 1 for all t ∈ [t0, t0 + T0[ and ‖ψ(t0 + T0)x(t0 + T0)‖ = 1.
Hence, we get that

‖ψ(t)x(t)‖q(
λ1‖ψ(t)x(t)‖p−q−λ2

)
≤ a≤ a‖ψ(t)x(t)‖p, ∀ t ∈ [t0, t0 +T0[.

Then,

‖ψ(t)x(t)‖q(
λ1‖ψ(t)x(t)‖p−q−λ2−a

)
≤ 0, ∀ t ∈ [t0, t0 +T0[.

Therefore,

‖ψ(t)x(t)‖ ≤ p−q

√
λ2 +a

λ1
, ∀ t ∈ [t0, t0 +T0[.

In addition, for each t ≥ t0+T0, either ‖ψ(t)x(t)‖≤ 1, or ‖ψ(t)x(t)‖> 1.
In this second case, as in the case 2 we get, whenever if ‖ψ(t)x(t)‖> 1,
it holds that

‖ψ(t)x(t)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

• ‖ψ(t0)x0‖ ≤ 1. In this case, as long as ‖ψ(t)x(t)‖ ≤ 1, we have trivially
that

‖ψ(t)x(t)‖ ≤ p−q

√
λ2 +a

λ1
≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.
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If ‖ψ(t)x(t)‖> 1 at some instant t > t0, then, as in the case 2, we obtain
that, whenever ‖ψ(t)x(t)‖> 1, it holds that

‖ψ(t)x(t)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

Therefore, the solution x(t, t0,x0) is uniformly ψ−bounded
Case 4: : If r > q and p < q, then from Condition i) it follows that

‖ψ(t)x‖p(
λ1−λ2‖ψ(t)x‖q−p

)
≤ a. (A.3)

If a = 0, then from (A.3), we have for all t ∈ R+ and x ∈ Rn

‖ψ(t)x‖ ≥ η := q−p

√
λ1

λ2
.

Then, for all (t,x) ∈ R+×Rn, we have

V̇(2.1)(t,x)≤−λ3‖ψ(t)x‖r +b,

=−λ3‖ψ(t)x‖r−q‖ψ(t)x‖q +b,

≤−λ3η
r−q‖ψ(t)x‖q +b,

≤−λ3ηr−q

λ2
V (t,x)+b.

By Lemma 1 with p(t) =−λ3ηr−q

λ2
and q(t) = b, we obtain

V (t,x(t))≤V (t0,x0)e
− λ3ηr−q

λ2
(t−t0)+

bλ2

λ3ηr−q

(
1− e−

λ3ηr−q

λ2
(t−t0)), t ≥ t0, x0 ∈ Rn.

Therefore, from the condition i) of Theorem 1 and condition a) of Lemma 2,
we have

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0)‖

q
p e−

λ3ηr−q

pλ2
(t−t0)+ p

√
bλ2

λ1λ3ηr−q , t ≥ t0,x0 ∈ Rn.

If a > 0, we distinguish two subcases: whether the function ψ(t)x(t) start
from outside or inside the closed ball B1.
• ‖ψ(t0)x0‖> 1: In this case, there exists T0 ∈]0,+∞] such that

‖ψ(t)x(t)‖ ≥ 1, ∀ t ∈ [t0, t0 +T0[ and ‖ψ(t0 +T0)x(t0 +T0)‖= 1. (A.4)

Then, we have

‖ψ(t)x(t)‖p(
λ1−λ2‖ψ(t)x(t)‖q−p

)
≤ a≤ a‖ψ(t)x(t)‖q, ∀ t ∈ [t0, t0 +T0[.
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Therefore,

‖ψ(t)x(t)‖p(
λ1− (λ2 +a)‖ψ(t)x(t)‖q−p

)
≤ 0, ∀ t ∈ [t0, t0 +T0[.

Then, for all t ∈ [t0, t0 +T0[, we have ‖ψ(t)x(t)‖ ≥ η := q−p

√
λ1

λ2 +a
.

Hence, for all t ∈ [t0, t0 +T0[, we obtain

D+V (t,x(t))≤−λ3ηr−q

λ2
V (t,x(t))+b.

By Lemma 1 with p(t) =−λ3ηr−q

λ2
and q(t) = b, we obtain

V (t,x(t))≤V (t0,x0)e
− λ3ηr−q

λ2
(t−t0)+

bλ2

λ3ηr−q

(
1− e−

λ3ηr−q

λ2
(t−t0)), t ∈ [t0, t0 +T0[.

Therefore, from condition i) of Theorem 1 and condition a) of Lemma
2, we have

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0)‖

q
p e−

λ3ηr−q

pλ2
(t−t0)+ p

√
bλ2

λ1λ3ηr−q , t ∈ [t0, t0 +T0[.

In addition, for each t ≥ t0 + T0, either ‖ψ(t)x‖ ≤ 1 in which case

‖ψ(t)x(t)‖ ≤ p
√

λ2λ3+aλ3+bλ2
λ1λ3

, or ‖ψ(t)x‖ > 1. In this second case, as
in the case 2, we obtain, whenever ‖ψ(t)x(t)‖> 1, it holds that

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

• ‖ψ(t0)x0‖≤ 1: As in the previous cases, we get, as long as ‖ψ(t)x(t)‖≤
1, we have trivially that ‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2λ3+aλ3+bλ2

λ1λ3
. If

‖ψ(t)x(t)‖ > 1 at some instant t > t0, then, as in the case 2, we obtain,
whenever ‖ψ(t)x(t)‖> 1, it holds that

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2λ3 +aλ3 +bλ2

λ1λ3
.

To sum up, there exist λ,R > 0, such that for all t ≥ t0 ≥ 0 and x0 ∈ Rn, we have the
following:

‖ψ(t)x(t, t0,x0)‖ ≤ p

√
λ2

λ1
‖ψ(t0)x0‖

q
p e−

λ3
pλ2

(t−t0)+R.

Then, the system (2.1) practically ψ
q
p−exponentially asymptotically stable.

�
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