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ABSTRACT

A standard paradigm in computational biology is to leverage interaction networks as
prior knowledge in analyzing high-throughput biological data, where the data give a score
for each vertex in the network. One classical approach is the identification of altered
subnetworks, or subnetworks of the interaction network that have both outlier vertex
scores and a defined network topology. One class of algorithms for identifying altered
subnetworks search for high-scoring subnetworks in subnetwork families with simple
topological constraints, such as connected subnetworks, and have sound statistical
guarantees. A second class of algorithms employ network propagation—the smoothing of
vertex scores over the network using a random walk or diffusion process—and utilize the
global structure of the network. However, network propagation algorithms often rely on
ad hoc heuristics that lack a rigorous statistical foundation. In this work, we unify the
subnetwork family and network propagation approaches by deriving the propagation
family, a subnetwork family that approximates the sets of vertices ranked highly by
network propagation approaches. We introduce NetMix2, a principled algorithm for
identifying altered subnetworks from a wide range of subnetwork families. When using
the propagation family, NetMix2 combines the advantages of the subnetwork family and
network propagation approaches. NetMix2 outperforms other methods, including net-
work propagation on simulated data, pan-cancer somatic mutation data, and genome-
wide association data from multiple human diseases.
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1. INTRODUCTION

Astandard paradigm in computational biology is to use an interaction network as prior knowledge

for interpreting high-throughput, genome-scale data. Interaction networks such as protein-protein in-

teraction networks or gene regulatory networks have informed the analysis of biological data in many

different applications, including differential expression analysis (Cho et al, 2012; de la Fuente, 2010; Dittrich

et al, 2008; Ideker et al, 2002; Ulitsky and Shamir, 2007; Vlaic et al, 2018; Xia et al, 2015), identification of

driver mutations in cancer (Creixell et al, 2015; Leiserson et al, 2015; Hofree et al, 2013; Nibbe et al, 2010;

Shrestha et al, 2017; Vandin et al, 2011), protein function prediction (Chua et al, 2006; Deng et al, 2003;

Nabieva et al, 2005; Radivojac et al, 2013; Sharan et al, 2007), prioritization of germline variants (Califano

et al, 2012; Hormozdiari et al, 2015; Huang et al, 2018; Lee et al, 2011; Leiserson et al, 2013; Robinson et al,

2017), and more (Berger et al, 2013; Cornish and Markowetz, 2014; Gligorijević and Pr�zulj, 2015; Hall-

dórsson and Sharan, 2013; modENCODE Consortium et al, 2010; Wang et al, 2011; Chasman et al, 2016;

Chiassian et al, 2015; Luo et al, 2017; Menche et al, 2015; Picart-Armada et al, 2019).

A classical approach for leveraging interaction networks in interpreting high-throughput omics data is

the identification of altered subnetworks, also called network modules or active subnetworks. Given an

interaction network and a score for each vertex (gene/protein) of the network (e.g., p-values from differ-

ential gene expression), the goal of the altered subnetwork identification problem is to identify subnetworks

(modules) that contain high scoring vertices and conform to some topological condition—for example,

connected subnetworks.{

Numerous methods for identifying altered subnetworks have been developed (see Berger et al, 2013;

Creixell et al, 2015; Cowen et al, 2017; Dimitrakopoulos and Beerenwinkel, 2017; Jia and Zhao, 2014;

Mitra et al, 2013) for reviews of these algorithms. Methods to identify altered subnetworks employ a

diverse collection of techniques, but they can be grouped into two major classes. The first class of methods

rely on the specification of a subnetwork family, or a family of subnetworks with a topological constraint;

sometimes, the family is stated explicitly—for example, the early approaches such as jActiveModules

(Ideker et al, 2001) or heinz (Dittrich et al, 2008) identify connected subnetworks—but in other methods,

the subnetwork family is implicitly specified—for example, the optimization problems of Azencott et al

(2013) and Liu et al (2017) penalize subnetworks with large cut-size and small edge-density, respectively.

The subnetwork family-based approach is closely related to the identification of network anomalies in

the data-mining and machine-learning literature (Arias-Castro et al, 2011; Arias-Castro et al, 2008; Arias-

Castro et al, 2006; Addario-Berry et al, 2010; Sharpnack et al, 2016; Sharpnack et al, 2013a,b). However, a

major challenge with these approaches is to choose an appropriate subnetwork family. For example,

connectivity is often too weak of an assumption for biological networks; for example, some methods that

use connectivity identify large subnetworks (Nikolayeva et al, 2018) because of a statistical bias in a

commonly used test statistic (Reyna et al, 2021; Chitra et al, 2021).

The second class of methods employ a mathematical framework known as network propagation (Cowen

et al, 2017). Briefly, network propagation uses a random walk or diffusion process to ‘‘smooth’’ vertex

scores across a network. By using these random walk/diffusion processes, network propagation methods

simultaneously account for all possible paths between vertices, and thus fully utilize the global structure of

the interaction network. Following Cowen et al (2017), we use the term network propagation to refer to the

broad class of methods that smooth scores over a network using a random walk or diffusion process.

This includes not only popular processes such as the random walk with restart (Page et al, 1999), but also

other processes including the heat kernel (Vandin et al, 2012b; Vandin et al, 2011) or diffusion state

distance (Cao et al, 2013; Cowen et al, 2021). Network propagation was first applied in network ranking

problems, for example, protein function prediction or disease-gene prioritization (Köhler et al, 2008;

Weston et al, 2004), where one wants to rank vertices according to their similarity to a subset of vertices

with a specific biological function.

These methods were inspired by the success of these random walk, diffusion, and graph kernel methods

for ranking problems in statistics and machine learning, for example, the PageRank algorithm (Page et al,

{A related problem is the identification of altered subnetworks according to network topology alone. Many of the
leading methods for this problem were benchmarked in a recent DREAM competition (Choobdar et al., 2019).

1306 CHITRA ET AL.

D
ow

nl
oa

de
d 

by
 1

03
.4

3.
16

2.
16

0 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

17
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



1999). Network propagation has since become the dominant approach for network ranking (Cowen et al,

2017), and it has even been shown to be asymptotically optimal for network ranking for some random

graph models (Kloumann et al, 2017).

A major difference between network propagation and the subnetwork family approaches is that

network propagation does not output altered subnetwork(s), but only a ranking of all genes. Thus,

network propagation by itself does not estimate the vertices that are in altered subnetworks, nor even the

size of the altered subnetwork(s). Several approaches have attempted to bridge the gap between sub-

network family-based approaches and network propagation, combining the modeling of global network

topology from network propagation with heuristics to identify altered subnetwork(s) after performing

network propagation.

For example, PRINCE (Vanunu et al, 2010) identifies altered subnetworks as edge-dense subnetworks

whose vertices have large network propagated scores. The HotNet algorithms (Vandin et al, 2012a; Vandin

et al, 2011; Leiserson et al, 2015; Reyna et al, 2018) identify altered subnetworks by finding clusters in a

weighted and directed graph derived from network propagation. TieDIE (Paull et al, 2013) propagates two

sets of vertex scores and aims at finding high-scoring subnetworks for both sets of propagated scores. More

recently, the NetCore algorithm (Barel and Herwig, 2020) finds subnetworks whose vertices have large

node ‘‘coreness’’ and large propagated scores.

However, current heuristics to combine network propagation and subnetwork family approaches lack

explicit definitions of the subnetwork families, and consequently they do not have provable guarantees for

altered subnetwork identification. In contrast, methods that explicitly rely on a well-defined subnetwork

family often have statistical or theoretical guarantees, for example, jActiveModules (Ideker et al, 2001)

computes a maximum likelihood estimator whereas our recent estimator NetMix is asymptotically unbiased

(Chitra et al, 2021; Reyna et al, 2021). Thus, there remains a gap between network propagation and

subnetwork-family approaches.

Another important practical issue is the evaluation of altered subnetwork methods. Most network al-

gorithms demonstrate their performance by benchmarking their algorithm against existing network algo-

rithms. Although these comparisons are useful, they may also hide biases shared between algorithms. For

example, Lazareva et al (2021) observed that some well-known network algorithms have a bias toward

high-degree vertices in the interaction network, whereas Levi et al (2021) observed a bias in GO term

enrichment among well-known network algorithms.

To quantify the potential biases of altered subnetwork algorithms, these algorithms need to be compared

against carefully selected baselines, including baselines that do not use the interaction network and

baselines that do not use the vertex scores.

In this article, we introduce NetMix2, an algorithm which unifies the network propagation and sub-

network family approaches. NetMix2 generalizes NetMix (Reyna et al, 2021) to a wide range of subnet-

work families and vertex score distributions. NetMix2 takes as input a wide variety of subnetwork families,

including not only the family of connected subgraphs used by existing altered subnetwork methods (Dit-

trich et al, 2008; Ideker et al, 2002; Reyna et al, 2021) but also any subnetwork family defined by linear or

quadratic constraints, such as subnetworks with high edge density or subnetworks with small cut-size.

We use this flexibility to investigate the topology of subnetworks identified by network propagation

methods. We show empirically that network propagation does not correspond to standard topological

constraints on altered subnetworks such as connectivity (Dittrich et al, 2008; Ideker et al, 2002; Reyna et al,

2021), cut-size (Azencott et al, 2013), or edge-density (Liu et al, 2017). Instead, we derive the propagation

family, a subnetwork family that we show ‘‘approximates’’ the sets of vertices that are ranked highly by

network propagation approaches and thereby unifies the two major network approaches in the literature:

network propagation and subnetwork family approaches. NetMix2 also uses local false discovery rate (local

FDR) methods (Efron, 2007a,b; Efron, 2004) to flexibly model vertex score distributions, in contrast to the

strict parametric assumptions made by existing methods (Dittrich et al, 2008; Reyna et al, 2021).

On simulated data we show that NetMix2 outperforms network propagation for subnetworks from the

propagation family and other common subnetwork families. Interestingly, NetMix2 outperforms network

propagation by the largest margin for the propagation family. We then apply NetMix2 with the propagation

family to cancer mutation data and genome-wide association studies (GWAS) data from several complex

diseases. On cancer data, we show that NetMix2 outperforms existing network propagation and altered

subnetwork methods in identifying cancer driver genes.
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On GWAS data, we demonstrate that network propagation often has similar performance to

simple baselines that only use the vertex scores or only use the network. However, in cases where

network propagation outperforms these baselines, we show that NetMix2 outperforms network

propagation.

2. METHODS

2.1. Altered subnetwork problem

We start by formalizing the problem of altered subnetwork identification. Let G = (V‚ E) be an interaction

network with a score Xv for each vertex v. We assume there is an altered subnetwork A � V whose scores

fXvgv2A are drawn independently from a different distribution than the scores fXvgv 62A of vertices not in the

altered subnetwork A. The topology of the altered subnetwork is described by membership in a subnetwork

family S � P(V), where P(V) denotes the power set of all subsets of vertices V .

Following the exposition in Chitra et al (2021); Reyna et al (2021) we model the distribution of the

scores X = fXvgv2V as the altered subnetwork distribution (ASD).

2.1.1. Altered subnetwork distribution. Let G = (V‚ E) be a graph, let S � P(V) be a subnetwork

family, and let A 2 S. We say X = (Xv)v2V is distributed according to the ASD ASDS(A‚Da‚Db) provided

the Xv are independently distributed as

Xv*
Da‚ if v 2 A‚

Db‚ otherwise‚

�
(1)

where Da is the altered distribution and Db is the background distribution.

The distribution ASDS(A‚Da‚Db) is parameterized by four quantities: the altered subnetwork A, the

subnetwork family S, the altered distribution Da, and the background distribution Db.

Given the measurements X*ASDS(A‚Da‚Db) and the subnetwork family S � P(V), the goal of the

Altered Subnetwork Problem is to identify the altered subnetwork A. We formalize this problem below.

2.1.2. Altered subnetwork problem. Given X*ASDS(A‚Da‚Db) and subnetwork family S, find A.

The altered subnetwork problem (ASP) describes a broad class of problems that are studied in many

fields, including computational biology (Dittrich et al, 2008; Ideker et al, 2002; Reyna et al, 2021),

statistics (Arias-Castro et al, 2011; Addario-Berry et al, 2010; Glaz et al, 2001; Kulldorff, 1997), and

machine learning (Chitra et al, 2021; Cadena et al, 2019; Sharpnack et al, 2013a), with different

problems making different choices for the distributions Da, Db and the subnetwork family S. Two

prominent examples of distributions Da, Db that have been previously studied in the biological literature

are the following.

� Normal distributions: Da = N(l‚ 1) and Db = N(0‚ 1). Normal distributions are often used to model

z-scores (Cai et al, 2007; Donoho and Jin, 2004; McLachlan et al, 2006; Pan et al, 2003; Reyna et al,

2021). We call the ASP and ASD with these distributions the normally distributed ASP and normally

distributed ASD, respectively; for notational convenience, we use NASDS(A‚ l) to refer to the nor-

mally distributed ASD.
� Beta-uniform distributions: Da = Beta(a‚ 1) and Db = Uni(0‚ 1). Beta-uniform mixture distributions

are another common model for p-value distributions (Dittrich et al, 2008; Pounds and Morris, 2003).

We call the ASP, ASD with these distributions the Beta-Uniform ASP and Beta-Uniform ASD,

respectively.

We also list several examples of subnetwork families S, where each subnetwork family corresponds to a

different topological assumption on the altered subnetwork A. Some of these families have been explicitly

applied in biological settings, whereas other families formalize topological constraints that are implicitly

made in the biological literature.

� S = CG, the connected family, or the set of all connected subgraphs S of an interaction network G.

Dittrich et al (2008), Ideker et al (2002), and Reyna et al (2021) identify altered subnetworks by

solving the ASP for the connected family CG:
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� S = EG‚ p, the edge-dense family, or the set of all subgraphs S of G with edge-density E(S)
jSj
2

� � � p, where

E(S) = jf(u‚ v) 2 E : u 2 S‚ v 2 Sgj is the number of edges between vertices in S. The edge-dense

family EG‚ p formalizes the topological constraints made by Guo et al (2007), Liu et al (2017), Vanunu

et al (2010), which identify altered subnetworks that have large edge-density.
� S = T G‚ q, the cut family, or the set of all subgraphs S of G with cut(S)

jSj � q, where

cut(S) = jf(u‚ v) 2 E : u 2 S‚ v 62 Sgj is the number of edges with exactly one endpoint in S. The cut

family T G‚ q formalizes the topological constraints made by Azencott et al (2013), which identifies

altered subnetworks that have small cut.
� S =QG‚ q, the modularity family, or the set of all subgraphs S of G with modularity Q(S) � q. The

modularity family formalizes the topological constraints made by Ayati et al (2015), which identifies

altered subnetworks that have high modularity.

We note that the ASP—with the subnetwork families S described above—describes the problem of

identifying a single altered subnetwork in a network G. By creating a new subnetwork family consisting of

the union of k disjoint subnetworks in family S, the ASP also describes the problem of identifying multiple

altered subnetworks.

Early methods for identifying altered subnetwork solved the ASP for the connected family S = CG and

different choices of vertex score distributions Da, Db. For example, two seminal methods, jActiveModules

(Ideker et al, 2002) and heinz (Dittrich et al, 2008), solve the normally distributed and Beta-Uniform ASP,

respectively, with the connected family S = CG. Recently, we showed that many existing methods, including

jActiveModules and heinz, are biased, in the sense that they typically estimate subnetworks Â that are much

larger than the altered subnetwork A (Chitra et al, 2021; Reyna et al, 2021).

To this end, we derived the NetMix algorithm, which finds an asymptotically unbiased ÂNetMix of the

altered subnetwork A for the connected family S = CG. However, as we demonstrate in a previous work

(Reyna et al, 2021) and Section 3 next, many of these methods—including NetMix—have comparable

performance to a naive ‘‘scores-only’’ baseline that does not use the network G.

2.2. Network propagation and the propagation family

Another strategy often used to incorporate interaction networks G with high-throughput biological data is

network propagation. Network propagation involves the use of random walk or diffusion processes to

‘‘smooth’’ or ‘‘propagate’’ vertex scores Xv across a network (Cowen et al, 2017). Formally, given vertex

scores Xv, the network propagated scores Yv are computed as

Yv =
X
w2V

Mv‚ wXw (2)

where M 2 RjV j · jVj is a similarity matrix on the vertices V of the network G typically derived

from a random walk on G. One popular choice for the similarity matrix M is the random walk

with restart (personalized PageRank) similarity matrix MPPR = r(I - (1 - r)P) - 1, where r 2 (0‚ 1) is

the restart probability, I is the identity matrix, and P is the transition matrix for a random walk

with restart on G:
A few methods have attempted to use network propagation to identify the altered subnetwork A

from propagated scores Yv, for example, PRINCE (Vanunu et al, 2010) finds edge-dense subnetwork

with large propagated scores Yv. These methods implicitly assume that the propagated scores Yv are

larger for vertices v 2 A in the altered subnetwork A compared with vertices v 62 A not in the altered

subnetwork A.

However, we empirically find (Section 3.1) that this assumption generally does not hold for altered

subnetworks A 2 S from the connected family S = CG, the edge-dense family S = EG‚ p, and the cut family

S = T G‚ q, which suggests that network propagation methods do not solve the ASP with these subnetwork

families S.

Thus, we derive a subnetwork family S that approximates the sets of vertices that are ranked highly by

network propagation methods. Informally, we first observe that network propagation methods identify

altered subnetworks A whose vertices v 2 A have large propagated scores Yv. By making the simplifying

assumption that the vertex scores Xv = 1fv2Ag are binary, we observe that the propagated score

Yv =
P

w2A Mv‚ w of a vertex v is large if the similarity Mv‚ w is large for many w 2 A. Intuitively, one natural
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way to enforce that the similarities Mv‚ w are large is to lower-bound them, that is, require that Mv‚ w � d for

many w 2 A and for some (large) constant d > 0.

This intuition motivates the formal definition of the propagation familyMd‚ p, or the set of all subgraphs

S such that at least a p fraction of tuples (u‚ v) 2 S have both Mu‚ v � d and Mv‚ u � d (We constrain both

Mu‚ v and Mv‚ u since the similarity matrix M derived from network propagation is not necessarily sym-

metric.). We note that the propagation family Md‚ p is equal to the edge-dense family EGd‚ p for the

similarity threshold graph Gd = (V‚ Ed), which has edge (u‚ v) 2 Ed if and only if Mu‚ v � d and Mv‚ u � d.

We partially formalize our informal derivation of the propagation familyMd‚ p with the following result,

which bounds the probability of the altered subnetwork A being the subset of vertices with the largest

propagated scores, given data X*NASDMd‚ p
(A‚ l) from the normally distributed ASD with propagation

family Md‚ p and with density p = 1, that is, cliques in the similarity threshold graph Gd.

Proposition 1. Let G = (V‚ E) be a graph and let M 2 [0‚ 1]jV j · jV j be a matrix indexed by vertices V.

Define r = minv2V Mv‚ v, c = maxv 62V

P
w2A Mv‚ w, and d = maxv‚ w2V

P
u2V (Mw‚ u - Mv‚ u)2. Let

X*NASDMd‚ 1
(A‚ l) where l � 1 and d >

c - 2r + 4
ffiffiffiffiffiffiffiffiffi
d log n
p

jAj - 1
. Then with probability at least 1 - 1

jV j, the altered

subnetwork A consists of the jAj vertices with the largest propagated scores Yv.

2.3. NetMix2

We derive the NetMix2 algorithm, which solves the ASP for a wide range of subnetwork families S and

distributions Da, Db (Fig. 1). In particular, NetMix2 solves the ASP for the propagation familyMd‚ p, and

thus bridges the gap between the ASP and network propagation. NetMix2 consists of two steps.

Step One. The first step of NetMix2 is to estimate the numberdjAj of vertices in the altered subnetwork A.

Our previous method NetMix (Reyna et al, 2021) estimated djAj by fitting the vertex scores fXvgv2V to a

FIG. 1. Overview of the NetMix2 algorithm. The inputs to NetMix2 are a graph G, gene scores fXvgv2V , and a

subnetwork family S. First, NetMix2 computes an estimate jbAj of the size jAj of the altered subnetwork A using local

false discovery rate (local FDR). Next, NetMix2 solves an optimization problem to identify the subnetwork S 2 S size

jSj = jbAj from the input subnetwork family S and with the largest total vertex score
P

v2S Xv. By default, NetMix2 uses

the propagation family S =Md‚ p. In this case, NetMix2 constructs an additional graph (the similarity threshold graph)

based on vertex similarities quantified by Personalized PageRank from the input graph. The choice of subnetwork

family S for NetMix2 is flexible and can be generalized to other families defined by linear or quadratic constraints,

including the connected family CG, edge-dense family EG‚ p, and cut family T G‚ q.
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Gaussian mixture model (GMM), under strict parametric assumptions on the altered distribution

Da = N(l‚ 1) and background distribution Db = N(0‚ 1). However, not all vertex score distributions are well-

fit by normal distributions of this form. Thus, in NetMix2, we extend NetMix by using local false discovery

rate (local FDR) methods (Efron, 2007a,b; Efron, 2004) to estimate jAj, as local FDR methods make mild

assumptions on the forms of the distributions Da, Db.

However, one practical issue is that the original local FDR methods (Efron, 2007a,b; Efron, 2004)

assume that the altered distribution Da is two-sided, whereas in our applications we assume that the

altered distribution Da is one-sided. Thus, we define the following heuristic to estimate the number

of vertices in a one-sided altered distribution. First, we fit the vertex scores X = (Xv)v2V using local

FDR methods (Efron et al, 2011; Efron, 2007a,b; Efron, 2004), which yields (1) an estimate blb of

the mean of the background distribution Db and (2) estimates cfdrv of fdrv = P(v 62 AjXv) for each

vertex v (the quantity fdrv is known as the local FDR for vertex v). We then estimate the size jAj of

the altered subnetwork A as the number of vertices v with score Xv > l̂b and estimated local FDRcfdrv < 0:5, that is,

djAj = jfv 2 V : Xv > l̂b andcfdrv < 0:5gj: (3)

The first condition, Xv > blb, ensures that our estimate djAj only counts vertices v with scores Xv that are

larger than expected, consistent with our assumption that the altered distribution Da is one-sided. The

second condition, cfdrv < 0:5, is equivalent to 1 -cfdrv � 0:5, whose left-hand side is approximately

1 -cfdrv � 1 - fdrv = P(v 2 AjXv). Thus, the second condition ensures that our estimate of jAj only counts

vertices v with probability at least 0:5 of being in the altered subnetwork A.

Step Two. The second step of NetMix2 is to compute the subnetwork S 2 S with size jSj =djAj and the

largest total vertex score Xv:

bANetMix2 = argmax
S2S
jSj�cjAj

X
v2S

Xv: (4)

This optimization problem can be formulated as an integer linear program or integer quadratic program

for a number of subnetwork families, including the edge-dense family EG‚ p, the cut family T G‚ q, the

connected family CG, and the propagation family Md‚ p. Note that Eq. (4) involves maximizing the sumP
v2S Xv of the vertex scores Xv, whereas the objective in the NetMix optimization problem (Reyna et al,

2021) is the sum
P

v2S rv of the vertex responsibilities rv = P(v 2 AjXv). In practice, we observe that

maximizing the sum of the vertex scores Xv yields slightly better performance than maximizing the sum of

the responsibilities rv.

2.3.1. Parameter selection. The definition of the propagation family Md‚ p depends on two pa-

rameters: the similarity threshold d which defines the edges Ed in the similarity threshold graph Gd and the

minimum edge density p of altered subnetworks. In our analyses below, we chose the values of these

parameters to reflect the network properties of the input diseases. For all analyses, we set d so that the

number jEdj of edges in the similarity threshold graph is 40% of the original protein interaction network,

rounded to the nearest 25,000.

We chose this parameter to have a large number jEdj of pairs of vertices in the similarity threshold graph

Gd with high pairwise similarity while also balancing the computational tractability of NetMix2, whose

run-time increases with the number jEdj of edges. We set the minimum edge density parameter p according

to the network properties of a set R of reference genes for each disease. See the Supplementary Notes and

Eq. (16) in Supplementary Data S1 for more details, and see Table S2 for the parameter values we use in

our analyses (Section 3).

2.3.2. Implementation, data, and code availability. We implement NetMix2 using Python 3.

We use the Python implementation of locFDR R package from https://github.com/leekgroup/locfdr-

python for the first step of NetMix2. We use the Gurobi optimizer (Gurobi Optimization, LLC,

2021) to solve the integer linear/quadratic program in Eq. (4). NetMix2 code as well as a tutorial

( Jupyter notebook) for running NetMix2 are publicly available at https://github.com/raphael-group/

netmix2.
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2.4. Scores-only and network-only baselines

When evaluating any algorithm for the identification of altered subnetworks, we argue that it is essential

to compare against two baselines: a ‘‘scores-only’’ baseline that only uses the vertex scores Xv and a

‘‘network-only’’ baseline that only uses the interaction network G. These two baselines quantify whether

the altered subnetwork algorithm is outperforming simpler approaches that do not integrate vertex scores

with a network.

These baselines should be evaluated on each dataset and match as closely as possible the inputs to the

altered subnetwork problem. A scores-only baseline is straightforward: we rank the vertices v by their

vertex scores Xv. Because this baseline outputs a ranked list of all vertices in the graph, we threshold the

ranking when evaluating against other altered subnetwork algorithms by taking the k most highly ranked

vertices for some integer k.

Defining a network-only baseline is a more subtle issue, and it was discussed in two recent articles (Levi

et al, 2021; Lazareva et al, 2021). Levi et al (2021) benchmarks altered subnetwork algorithms on randomly

permuted vertex scores eXv while keeping the network G fixed. The authors find that many existing methods

output similar altered subnetworks (in terms of GO enrichment) on their permuted data, which suggests that

these methods are utilizing the network G more than the vertex scores Xv.

Lazareva et al (2021) benchmarks altered subnetwork algorithms on randomly permuted networks with

the same degree distribution as G while keeping the vertex scores Xv fixed. The authors find that many

existing algorithms output similar altered subnetworks on permuted networks, indicating a degree bias in

these methods. We propose a more direct network-only baseline: we rank vertices v by their network

centrality score N(v) for a network centrality measure N that is derived from the topological constraints

used by the altered subnetwork algorithm.

For example, for an algorithm that relies on the connected subfamily, we propose that degree centrality

N(v) = dv is an appropriate measure, as in Lazareva et al (2021). However, for network propagation

algorithms that use random walk with restart, we claim that the PageRank centrality N(v) = (MPPR � 1)v,

where 1 2 Rn is an all-ones vector, is the more appropriate network-only baseline. This is because com-

pared with degree centrality, PageRank centrality better captures how network propagation methods use the

interaction network G.

3. RESULTS

We evaluated NetMix2 on simulated data and on real datasets, including somatic mutations in cancer and

genome-wide association studies (GWAS) from several diseases. Unless indicated otherwise, we ran

NetMix2 with the propagation family Md‚ p using the personalized PageRank matrix MPPR with restart

probability r = 0:4‚ using the parameters in Supplementary Table S1. We solved the integer program in Eq.

(4) using the Gurobi optimizer (Gurobi Optimization, LLC, 2021).

We ran Gurobi for up to 24 hours, which typically results in a near-optimal solution for the protein-

protein interaction networks G that we used. For all ranking methods (e.g., network propagation, scores-

only, and network-only baselines), we estimated the altered subnetwork bA as the jbANetMix2j highest ranked

vertices, where bANetMix2 is the output of NetMix2.

3.1. Simulated data

We compare NetMix2, network propagation, a scores-only baseline, and a network-only baseline on

simulated instances of the Altered Subnetwork Problem with various subnetwork families S derived from

the HINT+HI protein interaction network G = (V‚ E) (Leiserson et al, 2015; Reyna et al, 2021). This

network contains 15,074 vertices and around 170,000 edges. The edges E are a union of the protein-protein

and protein-complex interactions between proteins from the HINT network (Das and Yu, 2012) and the

protein-protein interactions from the HI network (Rolland et al, 2014).

For each instance, we randomly selected a subnetwork A 2 S of size jAj = 0:01n and drew a sample

X*ASDS(A‚Da‚Db) with altered distribution Da = N(1:8‚ 1:2) and background Db = N(0:1‚ 0:9). Note

that we use slightly different altered and background distributions compared with the normally dis-

tributed ASD, so as to reflect the systemic errors in measurement often found in real data (Efron,

2007b,a; Efron, 2004).
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We implant altered subnetworks A from four different subnetwork families S: the connected family

S = CG, the edge density family S = EG‚ p with density p = 0:15, the cut family S = T G‚ q with cut size q = 6,

and the propagation family S =Md‚ p with d chosen so that Gd has 200‚ 000 edges and with edge density

p = 0:3 in Gd. The edge density (resp. cut-size) parameters are chosen to be at least three standard deviations

above (resp. below) the average edge density (resp. cut-size) for a subnetwork A of size jAj = 0:01n.

We ran each method on vertex scores X, with NetMix2 also having the subnetwork family S as input, to

obtain an estimate bA of the altered subnetwork A. We found that NetMix2 outperformed the other three

methods—network propagation, scores-only, and network-only—for altered subnetworks A 2 S from all

four families S (Fig. 2). However, the advantage of NetMix2 over the other methods depended on the

subnetwork family S.

For example, NetMix2 only slightly outperformed the scores-only baseline for the connected family CG

and cut family T G‚ q, and it only moderately outperformed the scores-only baseline for the edge-dense

family EG‚ p, suggesting that these families impose relatively weak constraints on the altered subnetwork A,

as discussed for the connected family by Reyna et al (2021). On the other hand, NetMix2 substantially

outperformed the scores-only baseline for the propagation familyMd‚ p, demonstrating that the propagation

family Md‚ p provides strong topological constraints on the altered subnetwork.

We also observed (Fig. 2) that the performance of network propagation depends on the subnetwork family

S. In particular, network propagation had similar performance to the scores-only baseline for the connected

family CG and edge dense family EG‚ p and worse performance for the cut family T G‚ q, suggesting that

network propagation is not well suited to identifying altered subnetworks A from these subnetwork families.

On the other hand, network propagation had a substantial gain over the scores-only baseline for the

propagation familyMd‚ p. This demonstrates that the propagation family contains subnetworks whose vertices

are likely to be highly ranked by network propagation. Interestingly, we observe that for altered subnetworks A

from the propagation family Md‚ p, the network-only baseline also outperforms the scores-only baseline.

This is most likely due to the close relationship between the propagation familyMd‚ p and the network-

only baseline: the network-only baseline ranks vertices by their PageRank centrality whereas the propa-

gation family Md‚ p is derived from the personalized PageRank matrix. Interestingly, ranking vertices by

their degrees—as suggested by Lazareva et al (2021)—performed much worse than PageRank centrality

(F-measure � 0:05, not shown in Fig. 2) for altered subnetworks A from the propagation family Md‚ p,

demonstrating the importance of using a network-only baseline that models the same topological properties

as the network method.

3.2. Somatic mutations in cancer

Next, we compared the performance of NetMix2 on the task of identifying cancer driver genes against

four other methods for identification of altered subnetworks: NetMix (Reyna et al, 2021), Heinz (Dittrich

et al, 2008), NetSig (Horn et al, 2018), and Hierarchical HotNet (Reyna et al, 2018). We also compared

FIG. 2. Comparison between NetMix2, network propagation, a scores-only baseline, and the PageRank centrality

network-only baseline in identifying altered subnetworks from different subnetwork families S implanted in the

HINT+HI interaction network.
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with four ranking methods: network propagation, the scores-only baseline, the network-only baseline,

and the degrees-only baseline on MutSig2CV p-values from The Cancer Genome Atlas (TCGA) PanCanAtlas

project using the STRING interaction network.

For each vertex (gene) v, the vertex score Xv is a z-score computed from p-values from MutSig2CV

(Lawrence et al, 2014), a statistical method that predicts cancer driver genes based on the frequency that the

gene is mutated in a cohort of cancer patients. We obtained these scores for 10,437 samples across 33

cancer types from the TCGA PanCanAtlas project (Bailey et al, 2018). We ran each method using the

vertex scores Xv and the STRING protein-protein interaction network (Szklarczyk et al, 2015) and eval-

uated the performance by computing the overlap between genes in their reported subnetworks and reference

lists of cancer driver genes from the COSMIC cancer gene census (CGC) (Tate et al, 2019), OncoKB

(Chakravarty et al, 2017), and TCGA (Bailey et al, 2018). Further details on datasets and procedures for

running each method are included in the Supplementary Data S1.

We found that NetMix2 using the propagation family outperformed other methods in F-measure for all

three reference gene sets (Table 1). In addition, comparing NetMix2 using the propagation family and

NetMix2 using the connected family (the second best method) shows that the altered subnetwork found

using the propagation family contains several genes that are not found by using the connected family

(Supplementary Fig. S1).

For example, NetMix2 using the propagation family identifies nine CGC driver genes that are not found

by using the connected family including PDGFRA, an oncogene whose gain-of-function mutations promote

cancer growth (Velghe et al, 2014) and NCOR2, a well-known tumor suppressor implicated in breast and

prostate cancers (Battaglia et al, 2010); none of these genes are found by the baseline methods (Supple-

mentary Fig. S2).

We also found that NetMix2 outperforms the altered subnetwork methods with different parameter

settings, including Heinz with FDR = 0:005 as well as the network-only baseline with degree centrality

(Supplementary Table S2). In particular, ranking vertices by degree had a substantially lower F-measure

compared with ranking vertices by PageRank centrality—again demonstrating the importance of an ap-

propriately chosen network-only baseline. We also observe that many network approaches, including

NetSig and Hierarchical HotNet, had lower F-measure than the scores-only baseline. Although it is possible

that we did not use the optimal parameters for these methods, our results suggest that these methods were

over-fitting to the network compared with the vertex scores.

3.3. Genome-wide association studies

We next applied NetMix2 to data from genome-wide association studies (GWAS), another application

where network approaches are often used to prioritize germline variants that are associated with biological

Table 1. Results of Altered Subnetwork Identification Methods Using

MutSig2CV Cancer Driver Gene p-Values from TCGA Tumor Samples

Method

STRING network

Subnetwork size

CGC OncoKB TCGA

Number F-measure Number F-measure Number F-measure

NetMix2 280 132 0.3 133 0.313 151 0.546

NetMix 313a 129 0.282 130 0.295 147 0.502

Heinz (FDR = 0.01) 335 139 0.297 138 0.306 156 0.513

NetSig 773 145 0.211 172 0.257 84 0.161

Hierarchical HotNet 246 73 0.172 70 0.172 74 0.285

Network propagation 280 86 0.195 89 0.210 98 0.354

Scores-only 280 126 0.286 127 0.3 145 0.524

Network-only 280 77 0.175 83 0.196 55 0.199

Subnetworks are evaluated using reference sets of cancer genes from CGC, OncoKB, and TCGA. The best scores are colored in bold red.
aGMM from NetMix overestimated the size of the subnetwork, thus we excluded genes with outlier scores as described by Reyna

et al (2021).

CGC, cancer gene census; TCGA, The Cancer Genome Atlas.
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traits (Greene et al, 2015; Jia and Zhao, 2014). We first analyzed GWAS data for eight different disease

traits from Carlin et al (2019). The original study by Carlin et al (2019) introduced the NAGA method (also

in companion article by Fong et al, 2019) that outputs a ranked list of genes by applying network

propagation to gene scores Xv obtained by selecting the single nucleotide polymorphism (SNP) with

minimum p-value in the neighborhood of each gene v. The genes are then ranked by their propagated scores

Yv, and these rankings are evaluated using reference lists of disease genes from the DisGeNET database

(Piñero et al, 2020).

As a preliminary analysis, we first compared NAGA (network propagation) against our scores-only and

network-only (PageRank centrality) baselines. The original study by Carlin et al (2019) claimed that

network propagation outperforms the scores-only baseline (as well as existing network ranking methods for

GWAS) in recovering reference genes for all eight diseases. They demonstrated their claim by comparing

network propagation against other ranking methods (rather than as altered subnetwork methods) using the

area under the receiver operating characteristic curve (AUROC) metric.

However, when the reference gene list is small (which is typically the case for GWAS data), the AUROC

of a ranking algorithm is not necessarily representative of its performance; two network ranking algorithms

may have similar AUROC even if they have noticeably different performance (Davis and Goadrich, 2006).

Therefore, we re-evaluated the network ranking approaches from Carlin et al (2019) for prioritizing disease

genes using area under the precision-recall curve (AUPRC), a metric that is reported to be a more ap-

propriate metric for assessing ranking algorithms compared with AUROC when the reference sets are small

(Davis and Goadrich, 2006).

We focused our comparison on network propagation (using the same parameters as NAGA), the

scores-only baseline, and the network-only baseline using PageRank centrality. We used the PCNet

interaction network G (Huang et al, 2018), the same network used in the original evaluation by Carlin

et al (2019).

We found that—contrary to the claims of Carlin et al (2019)—network propagation does not always

outperform the scores-only baseline (Fig. 3). Further, based on the additional comparison to the network-

only baseline, we identified three distinct groups of GWAS datasets (Fig. 3). In the first group are three

diseases (schizophrenia, hypertension, type 1 diabetes) where the network-only AUPRC was comparable

a b

FIG. 3. (a) Comparison of three network ranking methods—network propagation, scores-only, and network-only

(PageRank centrality)—on GWAS data from Carlin et al (2019). Network ranking methods are evaluated by their

AUPRC using reference lists of disease genes (Piñero et al, 2020). (b) Comparison of four altered subnetwork

identification methods—NetMix2, network propagation, scores-only, and network-only (PageRank centrality)—for

diseases from (a) where network propagation has at least 10% larger AUPRC compared with the scores-only and

network-only baselines. Methods are evaluated according to the number of reference genes in the estimated altered

subnetwork. AUPRC, area under the precision-recall curve.
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(<10% difference) to the network propagation AUPRC. In other words, the first group consists of datasets

where the vertex scores Xv did not seem to add much value compared with using only the network G in

identifying reference genes. Interestingly, this group includes schizophrenia, a disease that Barel and

Herwig (2020), Carlin et al (2019) specifically highlight as a case where network propagation outperformed

the scores-only baseline in AUROC.

The second group consists of two diseases (Crohn’s disease, coronary artery disease) where the scores-

only AUPRC was comparable to (or larger than) the network propagation AUPRC. This group consists of

diseases where the network G seemingly did not add much value compared with using only the vertex

scores Xv in identifying reference genes. The third and final group consists of three diseases (Rheumatoid

arthritis, bipolar disorder, type 2 diabetes) where the network propagation AUPRC is noticeably larger (by

at least 10%) than the AUPRC for both scores-only and network-only.

This group consists of diseases where using both the network G and scores Xv is better at iden-

tifying reference genes than using either alone, and it is the group of diseases where one would expect

altered subnetwork approaches to perform well. We also note that for all eight diseases, ranking

vertices by their degree (not shown in Fig. 3) had lower AUPRC than ranking vertices by their

PageRank centrality, again illustrating the benefit of comparing with appropriate network-only

baselines.

Next, we compared NetMix2 against network propagation and the two baselines for the three diseases

in the latter group: rheumatoid arthritis, bipolar disorder, and type 2 diabetes (Fig. 3b). We found that

for two out of three diseases (rheumatoid arthritis and bipolar disease) NetMix2 identified noticeably

more reference genes than network propagation. These results are consistent with the simulations in

Figure 2, and they demonstrate that NetMix2 using the propagation family outperforms network

propagation for the diseases where both the scores and the network are important for identifying

reference disease genes.

We also observed that for type 2 diabetes, our procedure for setting the minimum edge density parameter

p appears to be sub-optimal, as NetMix2 using p = 0:2 identifies a subnetwork with 20 reference genes

compared with the 10 reference genes identified with NetMix2 using p = 0:05 (Fig. 3b).

One empirical observation from comparing the subnetworks identified by different approaches is

that the NetMix2 subnetwork was similar to the scores-only subnetwork, whereas the network

propagation subnetwork was more similar to the network-only subnetwork (Supplementary Fig. S3).

As a result, we expect that the quality of the gene scores Xv computed from the GWAS summary

statistics of individual SNPs plays an important role for the performance of NetMix2 as well as the

scores-only baseline.

Recent studies by Lamparter et al (2016), Nakka et al (2016) report that the minSNP method—which

finds the most significant SNP in surrounding regions of each gene and was used by Carlin et al (2019) to

compute the gene scores in this experiment—introduce bias toward longer genes and do not account for

linkage disequilibrium, a well-known confounding factor in GWAS summary statistics (Uffelmann et al,

2021).

To address this issue, we examined another set of GWAS (Levi et al, 2021) where gene scores are

computed using the Pascal method (Lamparter et al, 2016). Briefly, Pascal aggregates SNP p-values

from GWAS into gene scores while correcting for confounders, including linkage disequilibrium and

gene length. We applied NetMix2 to Pascal scores of six diseases from the GWAS data in Levi et al

(2021).

We used the STRING interaction network (Szklarczyk et al, 2015), the same network used by Levi et al

(2021), and compared against three ranking methods—network propagation, the scores-only baseline, and

the network-only (PageRank centrality) baseline—as well as DOMINO, the altered subnetwork identifi-

cation method presented in Levi et al (2021). Similar to the previous experiment, we evaluated the methods

by computing the overlap between subnetworks identified by each method and DisGeNET reference

disease gene sets (Piñero et al, 2020).

We found that the Pascal gene scores alone represent a strong signal for recovering disease reference

genes as the scores-only baseline outperformed other methods in four of the six diseases, namely atrial

fibrillation, coronary artery disease, age-related macular degeneration, and Crohn’s disease (Fig. 4).

Consistent with the results on the previous GWAS experiment, we also found that the NetMix2 subnetwork

was more similar to the scores-only subnetwork, whereas the network propagation subnetwork was more

similar to the network-only subnetwork (Supplementary Fig. S4).
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Thus, it is not surprising to see that NetMix2 performed nearly as well as the scores-only baseline in

these four diseases. The strong performance of scores-only baseline using Pascal scores demonstrates that

the quality of gene scores is an important component of the performance of altered subnetwork methods.

We next evaluated DOMINO against the scores-only and network-only baselines—comparisons that

were missing from the DOMINO publication (Levi et al, 2021)—and against NetMix2. We found that

DOMINO performed worse than the baseline methods as well as NetMix2 in five of the six diseases, with

coronary artery disease being the lone exception (Fig. 4). On the other hand, NetMix2 was comparable to

the best performing methods in five diseases (Fig. 4a). For schizophrenia, the altered subnetwork identified

by NetMix2 contained 71 genes that were not found by the ranking methods (Fig. 4b).

These 71 genes are significantly enriched (p-value = 6.46e-06, fold enrichment = 3.34; hypergeometric

test) for the reference genes for schizophrenia from the DisGeNet database (Fig. 4c). Further, the altered

subnetworks identified by NetMix2 for schizophrenia as well as breast carcinoma are significantly enriched

(schizophrenia: p-value = 2.04e-11, fold enrichment = 16.1; hypergeometric test, and breast carcinoma:

p-value = 1.56e-22, fold enrichment = 6.38; hypergeometric test) for genes whose expression is significantly

associated with the corresponding diseases according to recent studies of expression quantitative trait loci

(eQTL) and GWAS data (Guo et al, 2018; Zhu et al, 2016).

We also find that the procedure for setting the minimum edge density parameter p is sub-optimal for

schizophrenia, as NetMix2 using p = 0:07 outperforms all other methods, identifying a subnetwork with 61

reference genes compared with the 57 reference genes identified with NetMix2 using p = 0:06 (Supple-

mentary Fig. S5). Lastly, we note that the results were qualitatively similar when we used the size of the

subnetwork identified by DOMINO (instead of the subnetwork found by NetMix2) to threshold the ranking

methods (Supplementary Fig. S6).

Taken together, these results demonstrate the importance of evaluating methods for identifying altered

subnetwork against the scores-only or the network-only baseline methods, both to gauge the potential bias

from either source of information and to comprehensively assess the performance of a network method.

4. DISCUSSION

We introduced NetMix2, an algorithm that unifies the network propagation and subnetwork family-based

approaches for analyzing biological data using interaction networks. NetMix2 is inspired by network

propagation, a standard approach for solving the network ranking problem, and attempts to bridge the gap

a b

c

FIG. 4. (a) Comparison of NetMix2, DOMINO, network propagation, and the scores-only and network-only (Pa-

geRank centrality) baseline methods on GWAS data from Levi et al (2021) using the STRING interaction network

(Szklarczyk et al, 2015). (b) Overlap in genes in altered subnetworks in schizophrenia identified by scores-only,

NetMix2, network propagation, and network-only. (c) Schizophrenia reference genes in the altered subnetworks from

(b). GWAS, genome-wide association studies.
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between two paradigms for using networks in the analysis of high-throughput genomic data—network

ranking and the identification of altered subnetworks—in a principled way by explicitly deriving a new

family of subnetworks called the propagation family that approximates the altered subnetworks found by

network propagation methods. We showed that NetMix2 is effective in finding disease-associated genes

using somatic mutation data in cancer and GWAS data from multiple diseases.

Our evaluation also revealed that simple baseline methods that use either only the vertex scores or only

the interaction network sometimes perform surprisingly well, often outperforming more sophisticated

network methods. Although publications describing new network methods typically benchmark against

other network methods, these publications are wildly inconsistent in benchmarking against scores-only and

network-only baselines, and only rarely does a publication contain benchmarks using both baselines.

Further, some publications use a network-only baseline that uses a different type of network information

compared with the method under evaluation. For a fair comparison, it is essential that the network-only

baseline and the proposed altered subnetwork method use the same network information; for example,

PageRank centrality is a more appropriate benchmark for network propagation methods than vertex degree.

Although NetMix2 outperformed every other method we tested on cancer data, the performance of

NetMix2—and other network methods—was generally underwhelming on the GWAS data; we observed

only a modest improvement over baseline methods even in the diseases where NetMix2 worked well. There

are several possible reasons for this discrepancy. First, the diseases in the GWAS data that we analyzed

may have high genetic complexity. Indeed, multiple studies have suggested that the signal from GWAS

data for complex traits are more widely dispersed throughout the genome (including non-coding genomic

regions) than previously predicted, resulting in very small effect sizes of individual entities (SNPs/genes).

An extreme example is the omnigenic model (Boyle et al, 2017), which posits that nearly all genes have

functional relevance to the GWAS trait. Such complexity coupled with various challenges in interpreting

the GWAS data, for example, linkage disequilibrium, could result in a high number of false positives—

genes with significant p-values that are not related to the trait—or a gene score distribution with an unusual

shape that is not well fit by the semi-parametric models in local FDR methods. These complications could

yield an inaccurate estimate of the size of the altered subnetwork, which, in turn, would be detrimental to

the performance of NetMix2.

An inaccurate estimate of the altered subnetwork size would also affect our evaluation of ranking methods,

which we evaluated using the same number of highly ranked genes as the size of the estimated altered

subnetwork. Finally, it is possible that SNPs associated with some diseases affect multiple biological processes

in distinct subnetworks, and that a single altered subnetwork is too restrictive to describe the genetic signal.

There are several directions for future work. The first direction is to extend NetMix2 to identify multiple

altered subnetworks simultaneously. This can be done by running NetMix2 iteratively, or by modifying the

integer program to output multiple solutions. However, solving the corresponding model selection pro-

cedure to choose the number and sizes of altered subnetworks without overfitting is a difficult problem. At

the same time, allowing for multiple altered subnetworks may simplify the parameter selection for the

propagation family, allowing for larger minimum edge densities in the similarity graph.

A second direction is to extend NetMix2 with an appropriate permutation test to evaluate the statistical

significance of the altered subnetwork(s). Third, we observed that our parameter selection procedure for the

minimum edge density parameter was sometimes sub-optimal, for example, in the GWAS evaluations,

using a different minimum edge density would sometimes identify a larger number of reference genes.

Developing a more biologically relevant parameter selection is an important future direction.

Finally, although we evaluated several network methods and simple baselines, there are numerous other

network methods that could be included in these benchmarks. However, there are few gold standards to

perform such a comprehensive evaluation as the reference disease gene sets remain relatively limited and

potentially biased by their sources. Thus, a useful extension would be deriving a reliable evaluation scheme

for network methods that accounts for various sources of bias including the ascertainment bias in current

interaction networks and disease gene sets.
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Köhler S, Bauer S, Horn D, et al. Walking the interactome for prioritization of candidate disease genes. Am J Human

Genet 2008;82(4):949–958.

Lamparter D, Marbach D, Rueedi R, et al. Fast and rigorous computation of gene and pathway scores from SNP-based

summary statistics. PLoS Comput Biol 2016;12(1):e1004714.

Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types.

Nature 2014;505(7484):495–501.

Lazareva O, Baumbach J, List M, et al. On the limits of active module identification. Brief Bioinform

2021;22(5).

Lee I, Blom UM, Wang PI, et al. Prioritizing candidate disease genes by network-based boosting of genome-wide

association data. Genome Res 2011;21(7):1109–1121.

Leiserson MD, Eldridge JV, Ramachandran S, et al. Network analysis of GWAS data. Curr Opin Genet Dev

2013;23(6):602–610.

Leiserson MDM, Vandin F, Wu H-T, et al. Pan-cancer network analysis identifies combinations of rare somatic

mutations across pathways and protein complexes. Nat Genet 2015;47(2):106–114.

Levi H, Elkon R, Shamir R. DOMINO: A network-based active module identification algorithm with reduced rate of

false calls. Mol Syst Biol 2021;17(1):e9593.

Liu Y, Brossard M, Roqueiro D, et al. SigMod: An exact and efficient method to identify a strongly interconnected

disease-associated module in a gene network. Bioinformatics 2017;33(10):1536–1544.

Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational

drug repositioning from heterogeneous information. Nat Commun 2017;8(1):573.

McLachlan GJ, Bean RW, Jones LB-T. A simple implementation of a normal mixture approach to differential gene

expression in multiclass microarrays. Bioinformatics 2006;22(13):1608–1615.

Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete human in-

teractome. Science 2015;347(6224):1257601–1257601.

Mitra K, Carvunis A-R, Ramesh SK, et al. Integrative approaches for finding modular structure in biological networks.

Nat Rev Genet 2013;14(10):719–732.

modENCODE Consortium, Roy S, Ernst J, et al. Identification of functional elements and regulatory circuits by

Drosophila ModENCODE. Science 2010;330(6012):1787–1797.

Nabieva E, Jim K, Agarwal A, et al. Whole-proteome prediction of protein function via graph-theoretic analysis of

interaction maps. Bioinformatics 2005;21:i302–i310.

Nakka P, Raphael BJ, Ramachandran S. Gene and network analysis of common variants reveals novel associations in

multiple complex diseases. Genetics 2016;204(2):783–798.

Nibbe RK, Koyutürk M, Chance MR. An integrative-omics approach to identify functional sub-networks in human

colorectal cancer. PLoS Comput Biol 2010;6(1):e1000639.

NETMIX2 1321

D
ow

nl
oa

de
d 

by
 1

03
.4

3.
16

2.
16

0 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

17
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Nikolayeva I, Pla OG, Schwikowski B. Network module identification–a widespread theoretical bias and best practices.

Methods 2018;132:19–25.

Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report.

Stanford InfoLab: Stanford, CA, USA; 1999.

Pan W, Lin J, Le CT. A mixture model approach to detecting differentially expressed genes with microarray data. Funct

Integr Genom 2003;3(3):117–124.

Paull EO, Carlin DE, Niepel M, et al. Discovering causal pathways linking genomic events to transcriptional states

using tied diffusion through interacting events (TieDIE). Bioinformatics 2013;29(21):2757–2764.
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