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ABSTRACT

UNIFAN is an unsupervised cell type annotation tool for single-cell RNA sequencing data
(scRNA-seq). Given single-cell expression data as input, UNIFAN outputs cell clusters as
well as annotations for each cluster. The clustering process utilizes information on pathways
and biological processes and these are also used to annotate the resulting clusters. In this
software article, we focus on how to install UNIFAN and on the main steps involved in using
UNIFAN for cell type annotations.
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1. INTRODUCTION

One of the first steps when analyzing single-cell RNA sequencing (scRNA-seq) data is cell type

identification. In many cases wherein labeled data are not available, cell types are assigned by first

clustering the cells and then assigning cell types to clusters based on the differentially expressed genes.

Current methods cluster cells using only the provided expression data. Although this works well in some

cases, noise and dropouts can significantly impact the outcome, leading to results that do not completely align

with the correct cell type groupings.

To improve cell type identification, we developed an unsupervised cell type annotation method UNIFAN

(Unsupervised Single-cell Functional Annotation) (Li et al, 2002) to simultaneously cluster and annotate

cells using known gene sets. We showed that UNIFAN outperforms other methods for cell clustering and

that the annotations make it much easier to assign correct cell types to the resulting clusters.

Here we will briefly introduce our software package for UNIFAN. We also provide detailed instructions

and tutorials on our GitHub site (https://github.com/doraadong/UNIFAN).
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2. INSTALLATION

UNIFAN is written in Python using PyTorch (Paszke et al, 2017) and supporting both CPU or GPU.

First, install appropriate Pytorch version (‡1.9.0) at (https://pytorch.org/). Then, users can

install UNIFAN by using:

(pip install git+https://github.com/doraadong/UNIFAN.git).

3. UNIFAN FUNCTIONS

Users may import UNIFAN as a package and use it in their code. Hereunder we briefly describe the main

steps needed for training UNIFAN. Alternatively, users can use the command-line tools we provide to train

the model. See (https://github.com/doraadong/UNIFAN#Command-line).

3.1. Input and preprocessing

UNIFAN takes AnnData (Wolf et al, 2018) files containing scRNA-seq gene expression data as input.

Users can download the example Tabula Muris data https://figshare.com/ndownloader/
files/24351086 (The Tabula Muris Consortium, 2018) and run the provided getExample.py script to

preprocess the data using SCANPY (Wolf et al, 2018). In brief, given the count matrix, the script first filters

out low-quality cells and genes and then normalizes each cell to 1e4 total read counts.

It then log-transforms the values, scales them to 0 mean and unit variance and clips them such that the

maximum is 10. The script will also find the most variable genes selected using Seuratv3 (Stuart et al,

2019) implemented in SCANPY. The output from this script is processed gene expression data saved in

AnnData containing only cells from the specified tissue.

UNIFAN uses gene sets for cell type annotations. We provide a complied set of gene sets from MSigDB

(Subramanian et al, 2005) and Ernst et al (2007). Users can download these sets from our GitHub site.

3.2. Inferring gene set activity scores

Users need to set up a few variables before training. These include paths to the input/output and whether

GPU is being used. All hyperparameters have default values set up. We briefly discuss how these values are

selected in Section 4.

UNIFAN first infers the gene set activity scores for each single cell, using the gene expression values as

input. In this step, it trains the following autoencoder-based model using the given gene sets:

model_gene_set =autoencoder(decoding_network =’geneSet’,.)
UNIFAN will then infer the gene set activity scores for each cell using this trained model.

3.3. Models pretraining and initialization for clustering

In this step, UNIFAN first pretrains the following autoencoder model using the gene expression values as

input:

model_autoencoder =autoencoder(decoding_network =’gaussian’,.)
After pretraining, UNIFAN then infers the initial low-dimensional representation ze for each cell.

UNIFAN uses these low-dimensional representations to find the initial number of clusters and cell

groupings using Leiden clustering (Traag et al, 2019).

UNIFAN then pretrains the annotator (classifier) using the inferred gene set activity scores as input:

model_classifier =classifier(.).
If users prefer to also use the most variable genes selected during preprocessing (the default option),

these genes will also be used as input for the annotator. During pretraining, the annotator will treat the

initialized clusters as true labels.

3.4. Clustering

Finally, UNIFAN trains the pretrained annotator together with the pretrained autoencoder (‘‘model_

autoencoder’’). In each epoch, the annotator is trained by using the clustering results as the true labels for
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cells. The output from the annotator p(r) is in turn used to evaluate the annotator loss for the autoencoder.

The annotator is optimized using its own loss function, separately from the autoencoder.

model_annocluster=AnnoCluster(decoding_network =’gaussian’,.).
If ground truth cell labels are available, UNIFAN will evaluate the clustering performance using ad-

justed Rand index and Normalized Mutual Information as implemented in scikit-learn (Pedregosa et al,

2011).

3.5. Find the annotations for each cluster

The trained UNIFAN model is saved in annocluster_folder. Annotations for each cluster can be

retrieved from the annotator coefficients that are saved in classifier_state_dict. Since UNI-

FAN uses a logistic regression classifier for the annotator, the coefficients are saved in the field

‘‘decoder.predictor.0.weight.’’ For each cluster, we have a vector of coefficients with the

length equal to the feature size (for example, if using both gene set activity scores and the variable genes,

then it equals to the number of gene sets plus the number of variable genes).

Given the names of the gene sets and the variable genes, which are saved as a separate file in previous

steps (at input_r_names_path), users can look at the coefficients and find the highly weighted gene

sets or genes, which are selected by the annotator as the most predictive features for a particular cluster.

4. HYPERPARAMETER TUNING

We employ a heuristic approach to automatically select the values for the hyperparameter c during the

training process, without using the ground truth cell labels. Except for c, users may just use the default

values for the other hyperparameters. As we stated in Li et al (2022), we conducted a grid search to select

for the neural network configuration and some weighting hyperparameters for the loss functions using the

Tabula Muris data set.
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