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Abstract

Context: Nonconventional extraction methods, such as microwave, supercritical fluid, and ultrasonic, are known to be veritable
means of producing solvent-free high-quality essential oils. Nonetheless, technical requirements for the utilization of these extrac-
tion technologies are often exorbitantly expensive, thereby limiting their utilization.
Evidence Acquisition: Although these emerging extraction technologies have been reported to be efficient at a laboratory scale,
their techno-economic analyses are necessary for proper upscaling. Scaling up nonconventional extraction has long been regarded
as a critical constraint in larger industrial applications with a relatively limited body of published literature on more specific techno-
economic analyses.
Results: Therefore, an essential oil extraction unit’s techno-economic feasibility should be carefully assessed before an acquisition
decision can be made for industrial upscaling. This review critically examined the implications of upscaling nonconventional ex-
traction techniques while taking into consideration their techno-economic benefits.
Conclusions: This study will undoubtedly assist researchers and industrial experts make an informed decision on the suitable
extraction methods while taking into account the essential oil yield, quality characteristics, energy consumption, and operating
costs.
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1. Context

Essential oils are utilized in a wide variety of consumer
products, such as dishwashers, detergents, hygiene prod-
ucts, skincare products, medicinal products, fragrances,
pantries, soft drinks, processed liquor, and pesticides (1).
They are generally known as volatile aromatic oils derived
from natural sources, such as leaves, exfoliates, twigs, flow-
ers, petals, and pods (2). Essential oils are commonly pro-
duced from different plant species, among which notably
are the aromatic plants varying in color and aroma (2).
Based on the type and quantity of bioactive components
in the oil, they have been frequently used as culinary fra-
grances. Furthermore, the quantity of essential oil from
various plants varies, which invariably determines their
prices in the international market (3). Antioxidant and

antibacterial properties have been discovered in essential
oils, making them valuable as natural additives in a vari-
ety of foods (1). They differ in their actions depending on
the source, bioactive characteristics, and extraction tech-
niques.

Numerous functional and therapeutic species of
plants possess volatile chemical components that are
often recovered as essential oils using a suitable extracting
solvent. It is important to know that essential oils are only
a minor part of a plant’s makeup, yet they offer distinc-
tive qualities useful in the culinary, pharmaceutical, and
cosmetic industries (4). Essential oils exhibit complex
molecular structures with a myriad of bioactive con-
stituents with hydrocarbons and oxygenated compounds
inclusive (5). Numerous systems are employed to extract
essential oils from various plant parts. Although these
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methods appear to be a simplistic process, the selection
of appropriate extraction conditions and the solvent is
very crucial to preserving the thermally sensitive volatile
constituents (6). Moreover, the stability and purity of
these essential oils are significant considerations when
deciding which extraction method to utilize, which is a
key issue to consider.

2. Evidence Acquisition

2.1. Overview of Extraction Techniques of Essential Oils

The composition of essential oil might differ greatly
depending on the utilized extraction techniques. Con-
ventional methods have been used for a variety of plant
species and agricultural waste products, namely hydrodis-
tillation, cold pressing, Soxhlet apparatus, and macera-
tion. However, conventional extraction procedures have
several drawbacks, including high costs, higher solvent
consumption, longer extraction times, higher energy con-
sumption, poorer degree of selectivity, and low-quality ex-
tracts (7, 8). Given the long extraction duration of most
conventional extraction techniques, the degradation of
bioactive components in the plant material is unavoidably
expected (9, 10). Extreme heat might induce changes in the
constituents of essential oils and eventual degradation of
volatile compounds during the steam distillation and hy-
drodistillation extraction process (11, 12). Moreover, a trace
amount of solvent and impurities is usually present in the
resultant extract when using the conventional extraction
method (13). Nevertheless, the use of advanced noncon-
ventional extraction methods helps in the production of
high-quality essential oils that are solvent-free. However,
the technical requirements for the utilization of modern
extraction technologies are often exorbitantly expensive,
thereby limiting their utilization.

The extraction method determined to a larger extent
operating cost, energy consumption, composition, degree
of product purity, and targeted bioactive compounds (3).
Microwave assisted extraction (MAE) is an example of a
nonconventional extraction method with countless scien-
tific investigations affirming its capacity to produce essen-
tial oils without contaminants. Microwave extraction is a
newer technology that integrates electromagnetic radia-
tion and multidirectional conventional solvent treatment
(14, 15). The rates of conduction and convection are incred-
ibly quick in seconds in MAE and are often disregarded and
believed to be negligible. This issue provides the prospect
of a reduced extraction time, minimized energy usage, re-
duced solvent usage, increased bioactive selectivity, and
better extraction rates (16, 17).

Furthermore, in recent times, more investigation into
essential oil has increasingly shown the capacity of super-
critical fluid in extracting pure essential oil from plant-
based natural products (18). The absence of highly harm-
ful solvents in supercritical extraction demonstrates its
environmental friendliness. Ultrasonic assisted extrac-
tion (UAE) is another perspective extraction technique
that is gaining attention due to its numerous advantages
(19). The UAE is an extraction technology developed to
overcome the limitations of conventional extraction tech-
niques. Compared to traditional extraction technologies,
UAE achieves higher selectivity, high oil recovery (yield),
low energy consumption and reduced emissions, low (or
no) solvent requirement, reduced extraction time, and su-
perior essential oil qualities (20). Additionally, when com-
pared to other extraction techniques for essential oil recov-
eries, such as supercritical fluid extraction (SFE) and MAE,
UAE is a simple, efficient, and inexpensive technology (19).
In theory, UAE achieves its high effectiveness in essential oil
extraction through the acoustic cavitation effect, which is
introduced by the passage of ultrasonic waves and, in turn,
causes cell disruptions and mass and heat transfer (21). Ta-
ble 1 shows a list of current studies on essential oils extrac-
tion using nonconventional techniques.

2.2. Upscaling Extraction Process of Essential Oils

The implementation of upscaling methodologies and
the consideration of suitable parameter settings are crit-
ical for any extraction technique to meet increasing sus-
tainable industrial requirements (39). Scaling up extrac-
tion techniques is not an easy process and is not as sim-
ple as raising the number of solvents and the quantity of
plant material; it is an approach that is more scientific and
analytical (40). Additionally, the terms “upscaling”, “labo-
ratory scale”, and “pilot scale” have been used for a wide
variety of extraction capacities; therefore, upscaling lev-
els should be interpreted with caution. In recent studies,
the factors, such as instrumentation, batch/flow process,
kinetics, economics, and energy usage, are a few of the nu-
merous variables that have been explored while scaling up
extraction technologies from the laboratory to the indus-
trial size (41). For every scale-up operation to succeed or
fail, the factors, such as energy consumption, design of
extraction system (instrumentation), and parameter set-
tings, should be considered. Depending on the extraction
method, the energy utilization methods change. For exam-
ple, in SFE, the solvent pump and separator heaters use a
considerable amount of energy (42).

Moreover, the overall extraction duration and energy
consumption might be affected by the dissipation factor
of the solvent used in MAE, which determines how much
heat is generated (43). In addition, Belwal et al. (42) noted
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Table 1. Modern Essential Oil Extraction Techniques from Different Plant Sources

Samples Parts of Plant Extraction Methods References

Cinnamon bark Bark Ultrasonic pretreatment (19)

Cinnamon Bark Ultrasonic-enhanced subcritical water extraction (19)

Sargassum fusiforme Leaves Ultrasonic-assisted extraction (21)

Clove buds Buds In situ microwave-assisted extraction (22)

Pinus pumila (Pall.) Fresh needles Solvent-free microwave-assisted extraction (23)

Asarumheterotropoides var.mandshuricum Roots and rhizomes Microwave-assisted steam distillation (24)

Industrial hemp (Cannabis sativa L.) Leaves Optimized microwave-assisted extraction (25)

Coriander seeds Seeds Microwave-assisted hydrodistillation extraction (26)

Cumin (Cuminumcyminum L.) Seeds Three-stage microwave extraction (27)

Mace (Myristicaearillus) Seeds Microwave-assisted hydrodistillation (28)

Tangerine Peel Supercritical extraction (29)

Torch ginger [Etlingeraelatior (Jack) R.M. Smith] Buds with stalks Optimized supercritical CO2 extraction (30)

Patchouli Leaf Optimized supercritical CO2 extraction (18)

Pogostemoncablin Stem and leaves Optimized supercritical CO2 extraction (31)

Algerian Argan (Argania spinosa L.) Seeds Optimized supercritical CO2 extraction (32)

Turmeric Root Optimized supercritical CO2 extraction (33)

Pistacialentiscus Berries Optimized ultrasonic extraction (34)

Salvia sp. Solid waste residues Ultrasonic extraction (35)

Tiger nut (Cyperusesculentus L.) Nut Microwave-ultrasonic assisted aqueous enzymatic method (36)

Artemisia argyi Leaves Aqueous enzyme-ultrasonic pretreatment (37)

Maesopsiseminii Seeds Optimized ultrasonic-assisted extraction (38)

that UAE on its own promotes energy efficiency, resulting
in lower overall operating costs for high-quality extracts.
In part, this is since the UAE line comprises preparation, ex-
traction, separation, concentration, and drying units. The
essential oil extraction unit operations are typically less ex-
pensive, except for the solid-liquid separation units and
dryers, which tend to be more energy-consuming than the
rest (42).

Another factor that is of special importance is the type
of instrumentation or design of the extraction units. Cur-
rently, numerous firms around the globe provide a wide
variety of technologies, from the science laboratory to pi-
lot and industrial sizes, for modern essential oil extraction
processes. In contrast, serial manufacturing is used for
small laboratory and high-capacity pilot equipment, often
having extractors units up to 15 liters in throughput (42).
Higher-capacity pilot and industrial extraction units are
usually manufactured according to customized designs to
meet the demands of the end-users. As an extra validation
of the accuracy of upscale system design, the pilot-scale
evaluation might be incorporated once laboratory investi-
gations have been completed (42).

A large number of analytical and empirical results can
be utilized to eliminate the necessity of costly and time-
consuming experiments and pre-testing processes, which
are often expensive and complex. In addition, parameter
settings or extraction criteria are important factors that

determine the success or failure of any scale-up operation
(44). In numerous instances, the experts have explored
varieties of quality characteristics and parameter settings
that could be associated with a range of natural product
resources to obtain high-quality essential oils. The effec-
tiveness of scale-up operations is determined by a vari-
ety of variables utilized in the extraction techniques (45,
46). For example, in the MAE of essential oils, the param-
eters, such as dielectric property/solvent type, energy den-
sity, microwave power level, sample particle size, and mi-
crowave irradiation time, affect the basic electromagnetic
mechanism of upscaling the microwave technologies to a
larger extent (47).

Additionally, most studies on the SFE of essential oils
examined the influence of temperature, pressure, fluid
flow rate, sample size, modifiers, and fractionation on ex-
traction yield. In addition to improving essential oil yield,
the appropriate adjustment of these parameters can re-
duce sample losses, save time and operating cost, and en-
sure high-quality essential oils (48). Scale-up in UAE is
substantially influenced by the factors, such as ultrasonic
density, vessel shape, batch/flow mode temperature, ul-
trasound duration, sample-solvent ratio, and ultrasonic
power, as reported by Marhamati et al. (49).

Ultimately, the scaling up principle requires ensuring
that the extract’s economic and quality standards are satis-
fied. Although lab-scale extractions use small amounts of
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sample/extracting solvent and have comparatively shorter
extraction durations, pilot or industrial scale extractions
necessitate careful technological and economic analysis,
as discussed in the next section of this review.

3. Results

3.1. Techno-economical Analysis of Essential Oil Production

The techno-economic analysis should be evaluated in
any extraction facility, as it is the key to deciding on
the potential large-scale production of essential oil. The
approach proposed by Douglas (50) uses flow sheeting
and input-output data as a valuable tool for simplifying
the conceptual design of any essential oil extraction pro-
cess. This approach has been used by techno-economic ex-
perts to estimate the profitability of modern technologies
for numerous unit operations (51). The techno-economic
study includes extractor flow sheets, equipment sizing,
price of equipment units, and profitability analysis (52).
In addition to Turton et al.’s (51) cost of manufacture tech-
nique, industrial units’ economic viability for essential oil
extraction from natural products can also be determined
using this strategy. Industrial process simulators, such as
the SuperPro Designer® (version 8.5), have been used to
assess the total cost of production, taking into account
the operating expenses, operative labor, utility expenses,
waste disposal, and materials procurement (53-55). It is
important to know that nonconventional reactors have
higher running costs than conventional reactors when es-
timating capital investment costs. This issue is partly due
to the need for fewer extraction steps than traditional
methods, resulting in a tenfold reduction in pollution, as
reported by Belwal et al. (42). On the other hand, nontra-
ditional extraction technologies promote energy savings
and lower the cost of producing high-quality essential oils
industrially. It also requires a multistep procedure since it
needs additional auxiliary equipment for processing and
purification, making it more costly to operate.

Each extraction technique has its own set of bene-
fits and drawbacks. Essential oil production from diverse
plant sources has been previously evaluated from a tech-
nological and economic perspective. There are certain re-
search gaps to address in terms of the comprehensive cost
analysis of essential oil production, designed for indus-
trial purposes (56). Understanding the operation mech-
anism of different processing technologies is fundamen-
tal to deciding the expenses and market capitalization of
essential oil production; however, the yield of oil-bearing
plants and quality and the purity of their oil might have a
major influence on the market price (3). The industrial vi-
ability of essential oils produced from various plant mate-
rial sources using different technologies has been carried

out to determine the involved technical and economic pa-
rameters (3). The process simulators, such as Aspen Plus
and Superpro Designer software, have been reported for
the base case designs and upscaling of proposed processes.
Preliminary process designs have been proposed using dif-
ferent plant configurations and operation modes (i.e., con-
tinuous, semi-continuous, or batch) (3). Generally, a typi-
cal plant for essential oil production is dependent on the
technology of extraction integrated with other adjoining
equipment (57).

The techno-economic analyses of essential oil produc-
tion from Rosmarinus officinalis leaves, Foeniculum vulgareL
seeds, Pimpinella anisumL. seeds, Origanum vulgare, and Ros-
marinus officinalis (56), Cymbopogon winteriana and Cymbo-
pogon citrus (57), and Eucalyptus citriodoraleaves (58) have
been documented. A typical simplified flow sheet for the
extraction of essential oil using SFE technology consists of
a plant material grinder, fluid pump, heat exchanger, de-
pressurization vessel, dryer, and extraction vessel (59). Fre-
quently, technical parameters relating to the extraction of
essential oils and some other adjoining equipment that
is used for the building of the process flow-sheet are ob-
tained from optimum laboratory data. The material and
energy requirements of each process equipment and en-
tire process are obtained and subsequently used for equip-
ment sizing and specifications.

The process of economic analysis of essential oil pro-
duction from plant materials involves the determination
of production costs (i.e., total annual operating and capital
investment costs) and profitability parameters (e.g., pay-
back time, return on investment, and internal rate of re-
turns) of the production process (3, 56, 57). It is a sum of
the direct fixed capital costs (i.e., total plant direct and in-
direct costs and additional expenses), working capital, and
start-up/validation expenses. Materials, facilities, labor ex-
penditures, and laboratory quality control and quality as-
surance charges make up the total yearly operating ex-
penses. A thorough techno-economic analysis of essential
oil extraction from three plant samples (i.e., Rosmarinus of-
ficinalis, Foeniculum vulgare, and Pimpinella anisum) utiliz-
ing SFE and steam distillation technologies indicated that
SFE is more economically sustainable than steam distilla-
tion production technologies in lower energy consump-
tion and higher essential oil yield (59). On the other hand,
the expenses of essential oil extraction are determined by
the plant material (i.e., total oil extractible) and the sophis-
tication of the involved technique.

Although extensive techno-economic analyses of es-
sential oil production from plant materials have been doc-
umented for numerous extraction technologies, such as
supercritical fluid and solvent, steam, and water distilla-
tion, other novel technologies, such as microwave and UAE,
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have no or limited documentation. Likewise, the economic
and technical feasibility information about the process in-
tegration of novel technologies’ pretreatment steps (e.g.,
ultrasound-assisted hydrodistillation) for the production
of essential oils from plant materials has not been well
evaluated and documented. Although these emerging
technologies have been reported to be efficient at the labo-
ratory scale, their techno-economic analyses are necessary
for the proper scaling up and industrial feasibility.

4. Conclusions

Essential oils are volatile hydrophobic concentrated
liquids that are usually derived from natural sources, such
as leaves, exfoliates, twigs, flowers, petals, and pods. They
are widely used for different medicinal and therapeutic ap-
plications due to their bioactive constituents. The qual-
ity or quantity characteristics of essential oil differ greatly
depending on the utilized extraction techniques. Indus-
trial demands have led to a continual quest for a novel
method of extracting high-quality essential oil from nat-
ural sources at reduced costs. Numerous studies have
shown the need to assess essential oil quality, production
costs, and energy efficiency and examine the close rela-
tionship between essential oil supplies and the availabil-
ity of different natural product sources. It is important to
know that the quality of essential oils, operating costs, and
energy consumption are significant considerations when
selecting a suitable extraction method. This review criti-
cally examined the implications of upscaling nonconven-
tional extraction methods while taking into consideration
their techno-economic benefits. This study will undoubt-
edly assist researchers and industrial experts make an in-
formed decision on the suitable extraction methods with
maximum yield and quality characteristics.
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