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Abstract: The isolation of mixed music signals is beneficial to the extraction and identification of music signal 

features and to enhance music signal quality. This paper briefly introduced the mathematical model for separating 

blind source from mixed music signals and the traditional Independent Component Analysis (ICA) algorithm. 

The separation algorithm was optimized by the complex neural network. The traditional and optimized ICA 

algorithms were simulated in MATLAB software. It was found that the time-domain waveform of the signal 

isolated by the improved ICA-based separation algorithm was closer to the source signal. The similarity 

coefficient matrix, signal-to-interference ratio, performance index, and iteration time of the improved ICA-based 

algorithm was 








9989.00022.0

0011.09999.0
, 62.3, 0.0011, and 0.87 s, respectively, which were all superior to the traditional 

ICA algorithm. The novelty of this paper is setting the initial iterative matrix of the ICA algorithm with the 

complex neural network. 

Keywords: Blind source separation; Complex neural network; Independent component analysis; Mixed music signal, 

Numerical filter, Short-time Fourier transform 
 

1. Introduction 

Sound signal recognition has more and more applications in everyday life, but the sound signals 

collected in real life are often mixed signals [1]. When performing instrument identification, melody 

extraction, and score transcription on music signals, the signals collected by sensors contain not only real 

source music signals but also signals of other components (noise or unwanted components) [2], especially 

noise, which can cause interference to the analysis and recognition of music signals. Therefore, before the 

formal analysis of music signals, different components need to be separated according to the demand, for 

example, separating the noise signal from music signals [3]. In practice, however, the music signal 

collected by the sensor is already mixed with noise, and the characteristics of both the source and noise 

signals are unknown. In such a case, the method to extract or restore the original signal by relying merely 

on the observed mixed signal is blind source separation. Kitamura et al. [4] proposed a statistical model to 

achieve high-quality blind source separation and verified the effectiveness of the model by experimental 

evaluation. Yang et al. [5] extracted human voice by combining a generalized short-time Fourier transform 

(STFT)-based technology with a filter bank. The experiment found that the method outperformed other 

methods. Muoz-Montoro et al. [6] used a multichannel non-negative matrix factorization (MNMF) system 

in source separation and verified its validity by experiments. This paper briefly introduced the 

mathematical model for blind source separation of mixed music signals and the traditional Independent 

Component Analysis (ICA) algorithm. The separation algorithm was optimized by the complex neural 
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network. Simulation experiments were conducted in MATLAB software for both the traditional and 

improved ICA-based algorithms. 

2. Blind Source Separation Algorithm for Music Signals 

2.1. Mathematical Model 

The purpose of blind source separation is to restore the mixed signals superimposed by multiple 

signals into the original signals that cannot be directly observed. Reasons for calling it a “blind source” are 

as follows. On the one hand, the original signal and other signals are superimposed so that they cannot be 

observed directly, and on the other hand, the superposition manner of the original signal and other 

signals is unknown [7]. The simplest way of separating mixed signals is to subtract the useless signal, but 

in the blind source separation, the difficulty lies in a priori information lacking, i.e., the relevant 

characteristic information of the useless signal. The mathematical model of the linear mixed signal [8] is: 
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where x  is the set of observed signals, s  stands for the set of independent source signals, and H  is 

the hybrid matrix. When matrix W  is the inverse matrix of hybrid matrix H , then xWs = , i.e., the set of 

source signals can be obtained by multiplying the observed hybrid signal set by matrix W  [9]. 

2.2. ICA-based Blind Source Separation Algorithm Improved by a Complex Neural Network 

It is seen from the above mathematical model of linear mixed signals that the focus of blind source 

separation for mixed music signals is to find matrix W . The most commonly used method is ICA, which 

estimates matrix W  according to the statistical characteristics of mixed signals. The steps are as follows. 

① Equalization [10] and whitening preprocessing are performed on the observed music mixed 

signals. 

② The initial matrix is set as pW , where 0=p . 

③ The iterative calculation formula of matrix W  is: 
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where )(E  is the mathematical expectation, )(g  is the nonlinear function, )(g  is the first-order 

derivative of )(g ,   is the weight, and 1

pW  
and 2

pW  are intermediate variables that transfer values [11]. 

④ Step ③ is repeated until pW  converges to stability or the number of iterations reaches the set 

number. pW  obtained after iteration is the desired matrix W . 

The traditional ICA algorithm utilizes the time-frequency signal characteristics but does not utilize 

the phase information of the music signal. To further upgrade the ICA algorithm [12], this paper takes 

advantage of the fact that the complex domain can better describe the music signal and the neural 

network can better approximate the real separation matrix to estimate the initial separation matrix using 

the complex neural network. Then, the ICA-based blind source separation algorithm uses this initial 

separation matrix for iterative computation [13]. Figure 1 shows the process of ICA-based blind source 

separation improved by the complex neural network. 

① The mixed music signal is pre-processed by equalization and whitening. The time-frequency 

signal characteristics of the mixed music signal are obtained using STFT [14] and converted into data 

block ),( tkx  ( k  is the frequency point and t  is the time point), as shown in Figure 2. Frames are used as 
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time points in this paper, and there are b  frames. ),( tkx  represents the complex value of the mixed signal 

at frequency point k  and time t . Each frequency point corresponds to a separation matrix, then one data 

block contains k  separation matrices. 

 
Figure 1. The process of ICA-based blind source separation improved by the complex neural network 
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Figure 2. Time-frequency data blocks of the mixed music signal 

② The data blocks of the mixed music signal are input into the complex neural network and 

calculated in the hidden layer with the following formula: 
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where tz  is the output result under time t , tx  is the input under time t , th  is the hidden node vector 

under time t , ω  is the weight matrix of the hidden node vector, v  is the weight matrix of the input, and 

b  is the bias term. If it is in the training phase, the calculated separation matrix is compared with the 

actual separation matrix of the data block labels to obtain its loss. If the loss exceeds the threshold [15], the 

weights in the hidden layer are reversely adjusted based on the loss, i.e., ω  and v , and the separation 

matrix is recalculated until the loss converges and stabilizes in the range of the set threshold [16]. If in the 

use phase, the separation matrix is obtained by calculating according to equation (3). 

③ The separation matrix calculated by the complex neural network is adopted as the initial matrix 

for the ICA iterative calculation, and the steps are consistent with the previous section and will not be 

repeated here. 

④ After minimum smoothing treatment, the inverse Fourier transform is performed on the 

separation matrix obtained from the ICA iterative calculation to get the numerical filter [17]. 

⑤ The mixed music signal is filtered through the numerical filter of the separation matrix to obtain 

the blind source-separated music signal. 

3. Simulation Experiments 

3.1. Experimental Setup 

Before conducting experiments on the blind source separation algorithm, the corresponding data set 

was prepared first, and the mixed music signals used for testing in this study were collected in a 

recording room. The scene arrangement in the recording room [18] is shown in Figure 3. The room had a 

size of 3 m × 5 m. Two source signals were set on the left side of the room, and the distance between the 

two source signals was 1 m; three microphones were set on the right for collecting the music signals 

mixed by the two source signals, the distance between the microphones was 1 m, and the source signals 

were 3 m away from the microphones. The music signals played by the source signals were all mono. The 

sampling frequency of the microphones was 16 kHz, and the collection time was 1 s each time. Three 
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mixed signals collected by the three microphones each time were set as a group, and 10000 groups of 

mixed music signals were collected. Among the 10000 groups, 7000 groups were used as training data, 

and 3000 groups were used as test data. Observation signals of the three microphones at one time of 

sampling are shown in Figure 4. 

 
Figure 3. Experimental scene arrangement for mixed music signal acquisition 

 
Figure 4. Observation signals of the three microphones at one time of sampling 

To verify the performance of the complex neural network-improved ICA algorithm, it was compared 

with the traditional ICA algorithm. The traditional ICA algorithm used the statistical features of the mixed 

music signal observed by the microphone to iterate the separation matrix. The improved ICA algorithm 

used a complex neural network to initially estimate the separation matrix and then iterated on the 

estimated separation matrix to obtain the final separation matrix to separate the mixed signals. The 

complex neural network was trained with the training data before it was formally used, and its relevant 

parameters are as follows. Subframe windowing was performed on the collected mixed signals using the 

Hamming window [19] according to time, and the length of the Hamming window was 4096 sampling 

points. The inter-frame overlap rate was 75%, the Relu function was used in the in hidden layer, the 

learning step length was 0.1, and the maximum number of iterations was 2000. 

3.2. Evaluation Criteria 

The similarity coefficient [20] in the similarity coefficient matrix is calculated: 
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where iy  is the i -th signal after the blind source separation, js  represents the j -th source signal 

before mixing, n  refers to the number of signal paths (two source signals are used in this paper, then 

there are two signal paths before mixing and two signal paths after separation), and jir ,  
is the similarity 

coefficient of iy  and js  (the closer the value is to 1, the more similar they are). When the similarity 

coefficient matrix and the unit matrix are closer, the separation effect of the algorithm is better. 

The calculation formula for signal-to-interference ratio (SIR) is: 
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where iy  and is  are the separated signal and the corresponding source signal. A larger SIR means a 

better separation effect. 

The performance index is calculated by the following formula: 
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where the global matrix is HWG = , ikg  is the element of the i -th row and k -th column, kig  is the 

element of the k -th row and i -th column, ij
j
gmax  is the largest absolute value in the i -th row in G , and 

ji
j
gmax  is the largest absolute value in the i -th column. Performance index PI  is a non-negative number; 

the smaller its value is, the better the separation is. 

3.3. Experimental Results 

Only the two source signals under the sampling in Figure 4 and the signals after separations by 

traditional ICA and improved ICA algorithms are shown in Figure 5 because of the limited space. The two 

signals separated by the traditional ICA had obvious interference compared with the source signals, 

resulting in a large gap between the time domain waveform of the separated and source signals, but the 

two signals separated by the complex neural network-improved ICA had less interference compared with 

the source signals. 

 
Figure 5. Source signals and the signals separated by traditional ICA and improved ICA algorithms 

Table 1. Similarity coefficient matrix, SIR, performance index and average iteration time of two algorithms 

 Traditional ICA-based separation Improved ICA-based separation 

Similarity coefficient matrix 










8897.00212.0

0111.08655.0

 










9989.00022.0

0011.09999.0

 
Average iteration time/s 1.89 0.87 

SIR 52.4 62.3 

Performance index 0.0043 0.0011 

In this paper, 3000 groups of mixed music signals were used as testing data for testing the non-

improved and improved ICA-based blind source separation algorithms. The similarity coefficient matrix 

was obtained after calculating based on every group of separated mixed music signals and the source 

signal, but it is impossible to show all the similarity coefficient matrices of the test set due to the limitation 

of space. Therefore, we finally chose the average value of the similarity coefficient matrices to measure the 

two separation algorithms. In addition, as the traditional ICA-based blind source separation algorithm did 

not rank the separated signals that are output when the mixed signals are separated, it may lead to a 

mismatch between the number of source signal paths and separated signal paths, i.e., the sorting of the 

separated signals obtained from different groups of test data was not uniform, which affected the 

calculation of the average value of the similarity coefficient matrices. As to the improved separation 

algorithm, the training set label had already included the sorting method during supervised training. 

Therefore, the improved separation algorithm did not need to worry about the ranking of the separation 

signals. Thus, in this paper, a uniform ranking of the separation signals was performed before calculating 
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the similarity coefficient matrix, and the average value and the average time taken for the iterative 

calculation are shown in Table 1. The average time required for iterative computation of the separation 

matrix was 1.89 s for the traditional ICA algorithm and 0.87 s for the improved ICA algorithm. It was 

found from the comparison of the average similarity coefficient matrix between the two separation 

algorithms that the similarity coefficient matrix of the improved ICA-based blind source separation 

algorithm was close to the unit matrix, every row and column had one and only one element closer to 1, 

and the other elements were closer to 0; the similarity coefficient matrix of the traditional ICA-based blind 

source separation algorithm had the same trend, but its approaching degree was not as high as the 

improved ICA blind source separation algorithm. In addition, the average SIR and performance index of 

the traditional ICA-based separation algorithm were 52.4 and 0.0043, while the average SIR and 

performance index of the improved ICA-based separation algorithm were 62.3 and 0.0011. It was found 

from the above experimental results that the similarity coefficient matrix, SIR, performance index, and the 

average iteration time all showed that the improved ICA-based blind source separation algorithm had a 

better mixed signal separation effect and higher separation efficiency. 

4. Conclusion 

The traditional blind source separation algorithm was improved by a complex neural network, and 

traditional and improved ICA-based blind source separation algorithm were simulated in MATLAB 

software. The obtained results are shown below. The time domain waveform of the signal separated by 

the traditional ICA-based separation algorithm was significantly different from the source signal, while 

the time domain waveform of the signal separated by the improved ICA-based separation algorithm was 

slightly different from the source signal. The similarity coefficient matrix of the improved ICA-based 

separation algorithm was closer to the unit matrix than the traditional algorithm. The SIR, performance 

index and average iteration time of the traditional ICA-based separation algorithm were 52.4, 0.0043 and 

1.89 s; the SIR, performance index and average iteration time of the improved ICA-based separation 

algorithm were 62.3, 0.0011 and 0.87 s. 
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