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Abstract: Sign language (SL) recognition is intended to connect deaf people with the general population 

via a variety of perspectives, experiences, and skills that serve as a basis for the development of human-

computer interaction. Hand gesture-based SL recognition encompasses a wide range of human capabilities 

and perspectives. The efficiency of hand gesture performance is still challenging due to the complexity of 

varying levels of illumination, diversity, multiple aspects, self-identifying parts, different shapes, sizes, 

and complex backgrounds. In this context, we present an American Sign Language alphabet recognition 

system that translates sign gestures into text and creates a meaningful sentence from continuously 

performed gestures. We propose a segmentation technique for hand gestures and present a convolutional 

neural network (CNN) based on the fusion of features. The input image is captured directly from a video 

via a low-cost device such as a webcam and is pre-processed by a filtering and segmentation technique, for 

example the Otsu method. Following this, a CNN is used to extract the features, which are then fused in a 

fully connected layer. To classify and recognize the sign gestures, a well-known classifier such as Softmax 

is used. A dataset is proposed for this work that contains only static images of hand gestures, which were 

collected in a laboratory environment. An analysis of the results shows that our proposed system achieves 

better recognition accuracy than other state-of-the-art systems. 

Keywords: Convolutional neural network; Human-computer interaction; Hand gesture; Otsu method; Sign 

language 
 

1. Introduction 

Sign language (SL) involves movements of different parts of the body, for example the face and 

hands, which deaf and hearing-impaired people use to interact with hearing people. Hand gestures 

have particular importance in the recognition of SL, which has its own structure and grammar, and 

changes with the fluency of signing, involving the use of different types of movements such as 

static and dynamic. In this work, we use only static images for all American Sign Language (ASL) 

gestures, and present an ASL alphabet recognition system that recognizes the different hand 

gestures, assesses various approaches to the recognition of the signs and eventually interprets them 

into a meaningful sentence. We develop a sign dataset based solely on the shape and orientation of 

the hand, and movements of the face and head are not considered. Many researchers have 

contributed to the study of human-computer interaction with the aim of improving communication 

between deaf people and the general public. McKee et al. [1] developed a health literacy system for 
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ASL users to establish adequate health literacy connections between deaf ASL users and English 

speakers [1]. In [2], the authors described the importance of SL recognition with respect to hand and 

face signs. However, the recognition of sign gestures with varying levels of illumination and 

complex backgrounds remains a major concern. An ASL character recognition system was 

proposed in [3], although the authors considered only five ASL characters. Hand gesture-based 

recognition systems for isolated sign words were proposed in [4], in which feature fusion 

techniques were used to detect the sign words. In [5], the authors discussed the issue of SL 

recognition based on hand size and hand movement information via wearable devices. Glove-based 

gesture recognition requires the user to wear a data glove in order to generate gesture-related 

information, and this can be uncomfortable and unhygienic. In [6], a hidden Markov and depth 

sensor device-based classification system was proposed to learn the sign gestures. However, there 

is no clear explanation for fingertip detection in different aspects of light illumination. The 

fingerspelling alphabet of the ASL recognition system was presented in [7]. Here an SVM technique 

was used to classify the sign. However, it is unable to detect when the fingers overlap. In [8], the 

authors proposed preprocessing the HSV color space and applied hand gesture segmentation based 

on skin pixels. However, the proposed system is unable to reduce noise from the input image. 

Depth sensor-based ASL recognition was proposed [9]. This system was developed using 26 

characters and 10 numbers. However, leap motion has a large number of features, therefore, it is 

difficult to identify the effective features. 

In the present paper, a non-wearable device is used to collect input from 26 ASL alphabet 

gestures and to pre-process it using the proposed method. Feature fusion with a CNN is used to 

extract the features. Our system takes various features of the gesture image as input and executes a 

convolution process. The features are then analyzed for gesture classification.  

The rest of this paper is structured as follows: Section 2 briefly discusses the details of the 

image dataset, the pre-processing of input images, feature extraction, and the classification 

processes of the proposed system. Section 3 explains the experimental results and their 

implications. Section 4 summarizes this work and gives an outline of future work.  

2. Proposed System 

In this study, the proposed system is used to detect hand gestures and to interpret a 

meaningful word or sentence from a continuous performance of ASL gestures. The system consists 

of four main steps: data collection, segmentation, feature extraction, and finally classification. Fig. 1 

illustrates the proposed ASL alphabet recognition and sentence interpretation system. 

 
 Figure 1. Basic architecture of ASL alphabet recognition and sentence interpretation 

2.1. Description of the Image Dataset 

In order to create an image dataset, data were taken from a live camera, and hand gesture 

images were obtained from the region of interest (ROI) and used as input. In this approach, no 

accessories such as gloves or wearable devices are needed. The dataset contained 26 ASL gestures 

representing the alphabet, and the images had a resolution of 50 x 50 pixels. A total of 23,400 images 
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were collected for the 26 ASL gestures, with 900 images captured for each gesture. In this work, 

each image contained hands at different locations, and these images were obtained under different 

lighting conditions and against differing background environments. Fig. 2 shows examples of the 

images in the ASL dataset. 

 
Figure 2. Example of ASL dataset images from A to Z. 

2.2. Image Pre-processing  

In this system, an image of a static hand gesture was used as input, which was captured via a 

webcam. We captured these images from the region of interest (ROI) locations. The specific area of 

the frame expressed as the ROI is considered to identify hand gestures by which unnecessary areas 

of the video frame can be ignored. A Gaussian blurring technique was used to make the image 

smoother and to reduce the noise in the input. We then applied the Otsu method to pre-process the 

input image; this provides an intuitive way of automatically selecting a threshold based on the 

statistics of the image’s histogram, which acts as a form of image segmentation. However, the 

quality of thresholding is dependent on the selection of the threshold intensity, as the optimal 

threshold intensity is determined based on a histogram of the image. The proposed method reduces 

the intra-class intensity [10] and determines the marginal threshold using Equation (1). 

𝜎𝑤
2(𝑡) = 𝑞1(𝑡)𝜎1

2(𝑡) + 𝑞2(𝑡)𝜎2
2(𝑡) (1) 

where the class probabilities are 𝑞1 and 𝑞2, the threshold is t, and the weighted sum of the 

variance is 𝜎𝑤
2(𝑡). The probabilities of the class were calculated from the histogram. The smallest 

results of 𝜎𝑤
2(𝑡) is applied to the threshold. To calculate this value, we created a normalized 

histogram that defines P(i). This P(i) gives the percentage of intensity of the pixels i. In addition, we 

calculated weights, mean, and variances for each class. Table 1 represents the descriptions of 

calculation process of weights, means, and variances.  

Table 1. Calculation process of weights, means, and variances. 
Function Equations Description 

Weights 𝑞1(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=0 , 𝑞2(𝑡) = ∑ 𝑃(𝑖)𝐿−1

𝑡=𝑡+1    Left class intensity values 0 to t, right class intensity 

values t+1 to L-1. 

Means 𝜇1(𝑡) = ∑
𝑖∗𝑃(𝑖)

𝑞1(𝑡)
𝑡
𝑖=0 , 𝜇2(𝑡) = ∑

𝑖∗𝑃(𝑖)

𝑞2(𝑡)
𝐿−1
𝑡=𝑡+1  Probability and weight are used to measure mean. 

Variances 𝜎1
2(𝑡) = ∑ [𝑖 − 𝜇1(𝑡)]

2 𝑃(𝑖)

𝑞1(𝑡)
𝑡
𝑖=1 , 

 𝜎2
2(𝑡) = ∑ [𝑖 − 𝜇2(𝑡)]

2 𝑃(𝑖)

𝑞2(𝑡)
𝐿−1
𝑡=𝑡+1  

Weights and means are used to measure variances 

2.3. Feature Extraction and Classification  

The use of deep networks is remarkable in technological advances that can be used to classify 

images and to identify and distinguish different aspects of images [11]. It consists of one or more 

convoluted layers that are primarily used for image processing, classification, and other co-related 

data processing. In this perspective, feature extraction is used to obtain significant information by 

analyzing the input image via the proposed image processing technique. The extracted feature 

vectors are then fed to the classification process. However, these features must contain contextual 

information from the input, as this is used to categorize them from other gestures to specific 



AETiC 2020, Vol. 4, No. 4 23 

www.aetic.theiaer.org 

gestures. We use a convolutional neural network (CNN) to extract the properties of the hand 

gestures, as shown in Fig. 3. The feature is extracted step by its convolutional layers. Although 

feature data can be fed directly to deep convolutional networks for training and testing, we used 

filtered and segmented images as the input in this architecture. We used a kernel function to create 

a feature map and padding to prevent the features from shrinking, and max-pooling was also 

applied to reduce the size of the features and retain important information. In the proposed 

architecture, fusion of features occurs at the fully connected layer, producing the output of a 

Softmax classification. 

 
Figure 3. Proposed CNN architecture. 

3. Experimental Results and Analysis  

In this section, we evaluate our ASL recognition system based on our dataset1. Two types of 

tests were performed to evaluate the recognition and interpretation of sentences using the ASL 

alphabet. The training and test datasets contained hand gestures performed by the same individual, 

and different individuals performed real-time ASL alphabet recognition and sentence interpretation 

based on trained model.  

3.1. Hand Gesture Segmentation  

We segmented the hand gestures from the input image. To avoid the presence of unnecessary 

background and noise, the input image was filtered and the hand gesture images were segmented. 

These two types of images were used as input to the proposed model. Fig. 4 shows examples of 

segmented images from the image dataset. 

 
Figure 4. Examples of hand gesture segmentation of input images. 

3.2. ASL Recognition and Sentence Interpretation 

In order to recognize the ASL alphabet and interpret meaningful sentences, we evaluated the 

different hand gestures. The CNN was trained on the entire dataset, and the architecture was 

evaluated based on two different types of input data: (i) input data containing grayscale filtered 

                                                           
1 https://www.u-aizu.ac.jp/labs/is-pp/pplab/ASL_DATASET.zip 

https://www.u-aizu.ac.jp/labs/is-pp/pplab/ASL_DATASET.zip
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images; and (ii) input data containing images with grayscale segmentation. We used a built-in 

dataset containing 26 ASL gestures (letters of the alphabet) with a total of 23,400 images. We used 

70% of the images for training and 30% for testing, meaning that a total of 46,800 images (i.e. both 

filtered and segmented images) were used, with 32,760 used for training and 14,040 for testing. The 

average recognition accuracy of the ASL alphabet is illustrated in Fig. 5. The confusion matrix for 

the accuracy of recognition of ASL gestures is presented in Fig. 6. Some misrecognition occurred 

using this system due to the presence of similar shapes, as illustrated in Fig. 7. The highest accuracy 

was seen for the letter 'Y', and the lowest for ‘M’. Our system achieved an average of 96.59% 

recognition accuracy. Table 2 shows a comparison of the accuracy of our method with state-of-the-

art alternatives. We have achieved better accuracy in our method than the accuracy mentioned in 

[6], [12] and [13]. In 3D images of the hand, the thumbs are often interspersed with the other finger, 

and the number of training information can affect the accuracy of the classification [6, 12]. The 

reported accuracy of [6], [12], and [13] are 86.1%, 96.15%, and 94.2%, respectively. In this paper, we 

proposed segmentation techniques and introduced the fusion of features that enhance the validity 

of recognition. 

 
Figure 5. Recognition accuracy of the ASL alphabet  

 
Figure 6. Confusion matrix for the sign alphabet 
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Figure 7. Examples of similar shapes in the ASL alphabet 

Table 2. Dataset descriptions and comparison of recognition accuracy with other methods 

References Subjects Classification Method Number of 

gestures 

Total number of gestures Recognition 

Accuracy (%) 

Ref. [6] 12 Hidden Markov 

classification 

24 ASL 2880 (each gesture 10 times) 86.1 

Ref. [12] 40 HOG Feature and SVM 10 ASL 650 images for 10 classes 

(selected from database) 

96.15 

Ref. [13] 9 CNN 25 ASL 675 samples (each gesture 3 

times) 

94.2 

Proposed 

method 

3 CNN and Softmax 26 ASL 23,400 (each gesture 300 

times) 

96.59 

We also tested this system with different individuals in real time, in terms of recognizing the 

ASL alphabet and interpreting these continuous sign gestures to give meaningful sentences. Six 

respondents were asked to perform sign gestures at the ROI location. The user continued to 

perform gestures for creating sentences like 'MY UNCLE DIVORCE', 'SHE HAPPY BABY'. The 

system evaluated each gesture after pre-processing, feature extraction, and classification. We 

classified the performed gestures based on the trained model. Fig. 8 shows the average recognition 

accuracy for each user, and Fig. 9 presents an example of a sign gesture being performed 

continuously in real time. 

 
Figure 8. Average recognition accuracy for each of six users 
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Figure 9. Example of ASL alphabet recognition and sentence interpretation 

 4. Conclusion 

In this paper, we introduce a stable hand gesture system for ASL recognition that is able to 

detect hand positions, translate gestures into text and interpret meaningful sentences from 

continuously performed gestures. A dataset was created using a low-cost webcam and pre-

processed images. A Gaussian blurring technique was used to filter the images in the dataset and 

the Otsu method was applied to determine the standard threshold value for segmentation of the 

hand. The filtered and segmented images were then fed into the feature extraction process. A two-

channel CNN architecture was proposed to extract the features from the input images, and fusion 

of the features was implemented in the fully connected layer. A Softmax classifier was applied to 

classify the gestures. The experimental results show that the recognition accuracy for the ASL 

alphabet was 96.59%, i.e. better than other state-of-the-art systems. This system can also create 

meaningful sentences from the continuous performance of gestures. To improve our scheme in 

future work, we intend to collect more data on dynamic hand gestures and to enrich it with more 

signs/words. 
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