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Abstract In-memory computing (IMC) quantized neural network (QNN)
accelerators are extensively used to improve energy-efficiency. However,
ternary neural network (TNN) accelerators with bitwise operations in non-
volatile memory are lacked. In addition, specific accelerators are gener-
ally used for a single algorithm with limited applications. In this report, a
multiply-and-accumulate (MAC) circuit based on ternary spin-torque trans-
fer magnetic random access memory (STT-MRAM) is proposed, which
allows writing, reading, and multiplying operations in memory and accu-
mulations near memory. The design is a promising scheme to implement
hybrid binary and ternary neural network accelerators.

Keywords: in-memory computing, STT-MRAM, multiply-and-
accumulate, ternary neural networks, binary neural networks
Classification: Circuits and modules

1. Introduction

Convolutional neural networks (CNNs) are developing
rapidly and applied widely in computer vision [1, 2, 3, 4, 5,
6, 7, 8]. For CNNs, massive real-valued weight parameters
and high-precision operations demand enormous memory
and computation resources, and result in high power con-
sumption and latency. The training and prediction tasks are
limited for real-time or energy-critical applications in em-
bedded systems. As we know, MAC operations cause the
most computing overhead. To address this problem, many
technologies of algorithms and hardware have been devel-
oped.

At the algorithm level, QNNs are presented in the past
[9,10, 11,12, 13, 14, 15]. Typically, binary weight networks
(BWN5s) and ternary weight networks (TWNs) constrain the
weights to be binary —a, @ and ternary —a, 0, @, respec-
tively. In this way, the MAC operations are converted to
only additions, which consume less computing and memory
resources. Further, the binary neural networks (BNNs) and
ternary neural networks (TNNs) constrain both weights and
activations to binary —1, 1 and ternary —1, 0, 1 respectively.
As a result, the MAC operations are composed of only bit-
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wise logic (i.e. XOR and AND) and bit-count operations
and further lower the overhead of memory and computing.
Besides, ternary-binary networks (TBN) provide an optimal
tradeoff between memory and efficiency.

At the hardware level, due to high energy and latency
for traditional GPU and FPGA based computing, emerg-
ing IMC technology based on SRAMs, ReRAMs, and
MRAMs were introduced to improve the energy and la-
tency [16, 17, 18, 19, 20, 21, 22]. STT-MRAM is a non-
volatile device with high density and near-zero leakage.
STT-MRAM based MAC can perform a range of arith-
metic, logic, and vector operations for general purpose or
binary/ternary CNNs [23, 24, 25, 26, 27, 28]. The multilevel
cell MLC) STT-MRAM was used for bitwise operations of
BNN. However, it increased the process and operation com-
plexity. Nonvolatile logic gates storing weights were used
for TNN. However, the input was volatile, which implied
extra cost of data read and transfer. The schemes of operat-
ing both activations and weights in the memory is a possible
way of improving the enery-efficiency. Besides, specific
functions make current MAC circuits only suitable for sin-
gle algorithm. Mutiple functions can make MAC circuits
more flexible and suitable for different algorithms. As we
know, for aformentioned low-bit width neural networks, the
research of hybrid binary and teranry MAC circuits with
bitwise operations in memory are lacked, which implies the
necessity of exploration.

In this paper, an MAC circuit architectrue based on ternary
STT-MRAMs is proposed. The circuit allows novel writing,
reading and hybrid binary and ternary mutiplicaitons. Our
design offers a uniform and promising MAC circuit which
can be simutaneously used for BNN, TBN and TNN.

2. Ternary STT-MRAM-based MAC architecture

An architecure of ternary STT-MRAM-based MAC are pro-
posed in Fig. 1. The orange part is the array composed of
ternary memory cells. Rows are addressed by an enhanced
decocoder with input of Addr; and Addr; and the wordline
(WL) select signals. The write, read and multiply opera-
tions are controled by a controler. When read or multiply
are enabled, the global reference circuit generates reference
voltages V..rs, and the ternary MTJ MAC array output sens-
ing voltages such as V; and V; [29]. Next, the sensing and
reference voltages are input to the read/multiply sensing cir-
cuit to get the results. For accumulations, the multiply results
are input to a specialized ternary accumulators enabled by
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CLK edge signals near the memory array. Relavent circuit
details are introduced in the following paragraphs.

3. STT-MT] device

An MTJ is mainly composed of two ferromagnetic films
and a thin oxide barrier as shown in Fig. 2. For parallel (P)
or anti-parallel (AP) magnetizaiton orientation, MTJs have
resistances of Rp or Rqp, which are correlated by tunnel
magnetic resistance ratio (TMR) = (Rqap — Rp)/Rp. Based
on STT effect, current beyond threshold values (Ic) can
switch the magnetization of free layer. In this situation,
current flowing into or out of the fix layer can switch the
MT]J to AP and P states, respectively when the duration is
beyond threshold switching time [30].

4. Ternary STT-MRAM cell

Conventionally, for BNNs the activation and weights are
binarized as —1 and 1, which are programed as 0 and 1
correponding to high and low resistance states in the mem-
ory. Meanwhile, for TNN they are ternarized as —1, 1 and 0,
which are programed as 01, 10 and 00 coresponding to high-
low, low-high and high-high resistance states. In this work,
unprecedentedly, —1, 1 and 0 are programed as 00, 11 and
01 correspoding to low-low (P-P), high-high (AP-AP) and
low-high (P-AP) resistance states of dual MTJs, as shown
in Fig. 2. This method encodes ternary memory to different
resistances, making the read and multiply simple.

In our design, a ternary memory cell consists of dual serial
ITIMT]J sub-cells as shown in Fig. 3. Different with other
reported works, the electrodes of free layer instead of fix
layer of MTJs are connected to NMOS source/drain, which
can strengthen the currents to switch the MTJ from P to AP
states. For this scheme, the left and right sub-cells have
a symmetric line of BL, which makes —1 and 1 writable
within one step when BL, SL1, SL2 have proper voltages.
The write, read and multiply circuits are introduced in the
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following parts.
5. Ternary STT-MRAM write circuit

Due to that a ternary value is encoded to two binary bits,
the write of ternary values can be decomposed to operations
of binary 0 and 1. The write circuits are presented in Fig. 3
with a peripheral circuit as shown in Fig. 4. There are four
selections of writing.
1. No write
When WE = I,W = 0. whatever Input is, Enl =
1,En2 = 1 according to the logic shown in Fig.4. In
this case, the transistors PO, P1, P2, P3, N4, N5 and
N6 are turned off according to the circuits in Fig. 3.
As a result, the current pathway between sub-cells and
power/ground are cut off and the write is forbiddened.
2. Write —1
When WE = O,WE = 1. If Input = 0, Enl = 0 and
En2 = 1. In this case, the transistors PO, P1, P3, N1,
N4, N5, N6 are turned on and P2, NO, N3 are turned
off. Then, both SL1 and SL2 are high and BL is low.
Once WL,,; and WL, are set to be high, there will
be current flowing from side free layers to middle fix
layers, which sets MTJs to be 00.
3. Write 1
When WE = O,WE = 1. If Input = 1, Enl = 1 and
En2 = 0. In this case, the transistors PO, P2, NO, N3,
N4, N5, N6 are turned on and P1, P3, N1 are turned
off. Then, BL is high and SL1, SL2 are both low.
Once WL,,; and WL,,, are set to be high, there will
be currents flowing from middle fix layers to side free
layers, which sets MTJs to be 11.
4. Write 0
When WE = 0,WE = 1. Ternary 0 can be written by
two-step writing of binary O and 1. (1) When Input =
0, similar to the case of writing of —1, both SL1 and
SL2 are high and BL is low. Once WL,,; and WL,
are set to be high and low respectively, the first MTJ is



set to be binary 0 and the second MTJ keeps its state.
(2) When Input = 1, similar to the case of writing of
1, BL is high and SL1, SL2 are both low. Once W L,,;;
and WL,,, are set to be low and high respectively, the
first MTJ keeps binary 0 and the second one is set to be
binary 1. As a result, ternary O is written successfully
with encoding of O1.

6. Ternary STT-MRAM read circuit

The read circuit is presented in Fig. 5. The basic princile is
comparing the resistances of cells with the reference ones
and converted the relationship into two-bit binary values for
ternay encoding. To achieve this goal, we use a current mir-
ror to generate the same magnitude of current to pass through
the resistances to ground and comparing the voltage drop of
the resistances. The selection of reference resistances is
the key step. The total resistances of two serial MTJs are
Ry = Rp + RP’ Ry = RAp + RAP’ Ry = Rp + RAP corre-
sponding to —1, 1, 0, respectively. The reference resistances
are set as Rrefl = Rap + RAP/2 and Rref2 =Rp + RAP/2-
If TMR > 100%, Roo < Rref2 < Rot < Rrert < Ry1. Then,
the voltage drop Voo < Viera < Vo1 < Vrer1 < Vi1 and the
ternary memory value can be correctly read out as dual bits
of A and B as shown in Fig.5. The read operations are
run by setting RE to be 0, WL,,;; and WL,,» to be 1 simu-
taneously. Then, the read current flows along the path of
SL1-BL-SL2-NO-gnd.
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7. Ternary STT-MRAM multiply circuit

The multiply circuits are presented in Fig. 6. Like the read,
the multiply operations compare the resistances of cells with
the reference ones and converted the relationship into two-bit
binary values. The multiply circuits share the same current
mirror with the read ones and get the voltage drops from the
resistances. The selection of reference resistances is also the
key step.

The multiplication between ternary (—1,0, 1) and (1,0, 1)
can be classified to six cases, inluding (—1) x (-=1),(=1) x
0,(-1) x 1,0 x 0,0 x 1,1 x 1. Rsense = (Rmrs,, |l
Rmrti,,) + (Ruts,, | Rmrs,,)-  Specifically, Ry -1 =
(Rp || Rp) + (Rp || Rp), R-1,0 = (Rp || Rp) + (Rp || Rap),
Roii = (Rp |l Rap) + (Rp || Rar), Roo = (Rp |
Rp) + (Rap || Rar), Ro,1 = (Rp || Rap) + (Rap || Rap),
Ri,1 = (Rap || Rap) + (Rap || Rap). Four reference resis-
tances are set to be R..r3 = (Rp || Rp) + (Rp || Rap/2),
Rreps = (Rap || Rap) + (Rap |l Rap/2), Rrers = (Rap ||
Rp) + (Rap || Rap/2) and Ryep6 = (Rp || Rap) + (Rp |
Rap/2). If TMR > 100%, the resistances conform to
the relationship R_; 1 < Ryef3 < R_10 < Ryeps <
R—l,l < RrefS < R(),() < RQ,I < Rref4 < Rl,l: There-
fore, V_1-1 < Vieps < Voi,0 < Vieps < Voi,1 < Vieps <
Vo,0 < Vo1 < Viepsa < Vi1. Using the comparing cir-
cuits the intermediate outputs C, D, E, F can be obtained
as shown in Fig.6. Then, the two bits of multiply result
are Outl and Out2, where Outl=CD and Ou2=EF only us-
ing NAND operations. The multiply circuit can be used in
bitwise operatins for binary-binary, ternary-binary, binary-
ternary and ternary-teranry values row by row. The multi-
ply operations are performed by setting RE to be low and
WL, WLy, WL, WLy to be high simutateously to turn
on the transistors PO-P5 and NO-N4. The multiply current
flows along the path of SL1-BL-SL2-NO-gnd, which is sim-
ilar to the read operations.

8. Enhanced address decoder

The address Addr; and Addr; are respectively input to two
independent decoders to make the ith and jth output wires
high and corresponding outputs are ORed to enable the rows
of ternary cell to be operated.Simultaneously, two WL select
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Fig. 6 Ternary STT-MRAM multiply circuit.



signals are used to set the sub-rows of 1TIMT]J to be in one
of four states including (Enabled, Unenabled), (Unenabled,
Enabled), (Enabled, Enabled) and (Unenabled, Unenabled).
The four states can meet the requirements of writing, read-
ing, multiplying and no operation.

9. Ternary accumulator

For a MAC operation, the outputs from row-by-row multiply
should be added or counted to get the accumulation result.
Mathematically, —1 = [(-=1)+(-=1)]/2,0 = [(-1)+ 1]/2,1 =
(1+1)/2. According to the aforementioned encoding, when
binary O is input, 1 is subtracted. when binary 1 is input, 1
is added. After the counting is finished, one-bit right shift is
performed and the accumulation result is obtained.

10. Circuit simulation and evaluation

To verify the function of proposed circuits, transient sim-
ulation of ternary write, read, and multiply are perfomred.
We use the same MTJ models and similar parameters of
40nm MTIJ reported by Reference [30]. Rp = 3219Q,
Ic,p-ap) = T2 uA, Ic (ap-p) = 28 uA. The only differ-
ence is TMR(0) of 150% instead of 120%. Likewise, 40 nm
CMOS technology is used for hybrid MTJ/CMOS circuit
simulation. For the simulation as shown in Fig.7, V2, V3
and V4 indicate the times for reading —1, 1 and O respec-
tively after writing. The reading results are consistent with
stored values of the ternary cell. For the simulation as shown
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TableI Performance comparison.

Ternary architecture ~ Energy[fJ] Delay[ns] Areala.u.]
NV-LIM [24] 20.0 0.217 201.0
NV-Multiply 24.6 0.181 372
Comparators 6.7 (27.2%) - 68 (18.3%)

References 5.3 (21.5%) - 172 (46.2%)

in Fig. 8-Fig. 13, V1 indicates the time for multiplications
of six cases after writing. The simulated multiply results are
equel to the theoritical values of multiplying the two stored
values of two ternary cells. Therefore, the results of transient
simulation indicate the correct function of proposed write,
read and mutiply circuits.

The perfomance of ternary multiply circuits are listed in
Table I and are compared with the-state-of-the-art results
[24]. The simulated performance is based on the operation
of 1x1 to show the performance potential. The latency is
16.6% less than NV-LIM. The energy and area are 23% and
85.1% more than NV-LIM. As shown in the brackets of Ta-
ble I, refereces and comparators have great contributions to
the energy and area, which can be averaged and lowered due
to the sharing in MRAM arrays. The performance can be
further optimized by justifying the parameters such as Rp,
TMR and 7. [30]. Monte Carlo method is used to simu-
lating the write-multiply circiuts to learn the success rate
[31]. To be simple, every time we stochastically change the
crosss-sectional area of all the MTJs independently with a
variation which is defined as the ratio of standard deviation
and 40 nm-diameter area. Write-multiply operations are re-
peatedly performed for 100 times for each variations (0, 1%,
2%, 3%, 4%) and the write-multiply success rates are ob-
tained. The allowed variations for 100% success rate must
be less than 1% as shown in Fig. 14. Though sensitive to
MT]J variations, the circuit remains promising for QNNs due
to fault tolerance of neural networks [32].

11. Conclusion

In this work, a MAC circuit based on ternary STT-MRAMSs
is proposed. A novel encoding method and ternary memory
cells of 2T2MT]J configuraition are presented. The write,
read and multiply circuits are proposed and verified by sim-
ulation. Besides, the decoder and accumulator cicuits are
disscused. The proposed circuits offer promising nonvolatile

IEICE Electronics Express, Vol.19, No.20, 1-6
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Fig. 14 Write-multiply success rate depending on MT]J area variations.

IMC schemes suitable for BNN, TBN and TNN simultane-
ously.
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