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An explicit and absolutely stable FDTD method for electromagnetic analysis

Faxiang Chen' and Kang Li'- ¥

Abstract In this letter, an explicit and absolutely stable finite-difference
time-domain (FDTD) algorithm is designed for electromagnetic analysis.
The algorithm works through a structure composed of several vectors and
matrices acting on these vectors. Excitation source is linearly approximated
inatime interval, fields in the computation domain are expressed by a vector,
and these matrices are derived based on the FDTD method. The proposed
algorithm solves electromagnetic problems in an explicit way, its time step
size is beyond the Courant-Friedrich-Levy (CFL) stability condition and
the computation efficiency of the proposed method is also higher than
the conventional FDTD method. Two numerical examples are tested and
validate that the proposed algorithm can solve electromagnetic problems
correctly and also improves calculation efficiency.
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1. Introduction

The finite-difference time-domain (FDTD) method is a pop-
ular algorithm for solving electromagnetic problems [1, 2].
The explicit algorithm is free of solving matrix equations,
while it is limited by the Courant-Friedrich-Levy (CFL) sta-
bility condition and inefficient for numerical problem with
fine structures in that high temporal resolution means heavy
burden of operation time. In recent years, various meth-
ods have been proposed such as the hybrid implicit-explicit
(HIE) FDTD method [3, 4], magnetically-mixed Newmark-
Leapfrog (MNL) FDTD method [5, 6, 7, 8], weakly condi-
tionally stable (WCS) FDTD method [9, 10], FDTD method
with filtering scheme [11, 12], Crank-Nicolson (CN) FDTD
method [13, 14, 15], alternating-direction-implicit (ADI)
FDTD method [16, 17, 18, 19], locally-one-dimensional
(LOD) FDTD method [20, 21, 22, 23] and the Weighted-
Laguerre-Polynomial (WLP) FDTD method [24, 25, 26, 27].
Among the methods above, the method in [11, 12] is an ex-
plicit and unconditionally stable FDTD method by filtering
part of high frequency components to extend the time step
size. At each time step, Fourier transform is executed for
the whole fields in the calculation domain. Recently, au-
thors in [28, 29, 30] also developed an explicit and uncon-
ditionally stable method. The method firstly selects a work
time step and expresses the FDTD solution into a matrix
form. Then the method executes eigenvalue decomposition
for the matrix, groups the eigenvectors into stable modes
and unstable modes based on Nyquist theorem, and expands
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fields in a subspace composed of the stable modes and fi-
nally solves fields in the new stable subspace explicitly. As
far as we can see, except these two method, other methods
[3,5,9, 13, 16, 20, 24] all take implicit difference schemes
and need to solve matrix equations. On the whole, a method
that works as an explicit and absolutely stable method still
seems to be rare.

It can be seen that the existing explicit and absolutely sta-
ble methods in [11, 12, 28, 29, 30] are moderately complex
and relatively difficult to implement [31]. As a result, an
explicit and absolutely stable method with relatively sim-
ple implementation may be of value. In the present let-
ter, an explicit and absolutely stable FDTD method with
simple implementation is proposed. The proposed method
works through a structure composed of vectors and matrices
that act on these vectors and are derived from the FDTD
method without complicated matrix operations. The pro-
posed method can select time step freely, improves compu-
tation efficiency and is also accurate when time step chooses
large values.

2. Formulation

In simple, lossless and isotropic media, the general govern-
ing equations can be written as
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The conventional FDTD solution is
Hn+l — Hn _ gv X En+% (3)
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In Eq.(3) and Eq. (4), the spatial derivatives are approxi-
mated by central finite difference. When the fields in Eq. (3)
and Eq. (4) are numerically expressed, H"*! in Eq. (4) are
replaced with those in Eq. (3) and a different update equation
linking fields at past time step with fields at current time step
directly is acquired. For simplicity, only Ey and Hy, in this
form are presented.
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Eq. (5), Eq. (6), Eq. (3) and Eq. (4) show a clear and direct
relationship between fields at current time step and fields at
previous time step. As a result, the solution of the FDTD
method can be arranged into a matrix form as

Fl = gF™ + g1 (7

In Eq. (7) F™*! represents vector (E"*% H"™! )T that cov-
ers all electric and magnetic fields at current time step, F"
represents these fields at the previous time step, a represents
the matrix derived from the coefficients of numerical spa-
tial derivatives and media parameters in Eq. (3) and Eq. (4).

T
S"+1 presents vector (%J"Jrl 0) covering current terms

at different points.
From Eq. (7) we can get an equation

k
Fn+k — aan + ZakfiSnJri (8)
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In the time interval from the (n + 1)th time step to the
(n + k)th time step, the current is approximated linearly and
is expressed as
k—i i—1
Sn+l + Sn+k )
k-1 k-1 ©)
Then replacing the current at different time step in Eq. (8)
with its new representation in Eq. (9), we get

Sn+i —

Fn+k — Clan
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Fig.1 Flowchart of the proposed method.
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Merging similar terms, Eq. (10) can be written as
Fn+k — aan + lSn+1 + rSn+k (11)

The [ and r in Eq. (11) are matrices by merging similar terms
in Eq. (10).
The proposed method now can be written as

Fk = pFm 4 15" 4 stk (12)

In Eq. (12) matrix b equals matrix a*.

A flowchart of the proposed explicit and absolutely stable
FDTD method is shown in Fig. 1.
Wave equation is also a popular governing equation and
is used in this letter. It is expressed as
PE 1 _,  14J
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The FDTD method in Eq. (13) is
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Again the central finite difference scheme is applied to spa-
tial derivatives in Eq. (14), and an equivalent description of
Eq. (14) can be written as

et =2e" — "t e + ! (15)

where vector e"*!, " and e"! represents all electric
fields in computation domain at the (n + 1)th, nth and
(n — 1)th time step, matrix C is derived from the coeffi-
cients of numerical spatial derivatives and media parameters
in Eq. (14), and vector j n+l stands for the excitation current

- % (J’”% — gz ) Then a different expression of Eq. (18)
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The Eq. (16) can be expressed as a more meaning expression
of



Mn+l — Tlxln + Wn+1 (17)

It is evident that the form of Eq.(17) is just the same
as that of Eq.(7), so all the rest procedures can be
completed in a similar way. In Eq.(17), u™!' =
(e ' T =(2+C ~1;1 0),u" = (" )
and wt! = Ar (=12 4 jn1/2 O)T/S.

From Eq. (17) we can get
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In the time interval from the (n+ 1)t/ time step to the (n+k)th
time step, the current term is also expressed as

k—i i—1
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Replacing the current term at different time step in Eq. (18)
with its new representation in Eq. (19) and merging similar
terms, the proposed method using wave equation as gov-
erning equation can be acquired and it is put as the form
of

n+i n+l1

n+k (19)

WK = TRy ¢ Lwt 4+ RwHK (20)
We can also write it as a concise form of
WK = By + Lw™t! + Rwtk (21)

In Eq.(21) matrix B is equal to matrix T%. L and R are
matrices by merging similar terms in Eq. (18) after inserting
Eq. (19) into Eq. (18). The time step size of the proposed
algorithm is k (arbitrary value) times that of the FDTD
method, as fields at nth time step are transferred to (n + k)th
time step in one iteration.

It can be seen from the process of constructing the pro-
posed method that the required operations are simple mul-
tiplications among matrices and vectors and the the process
is also very direct and simple to finish.

3. Numerical stability analysis

Firstly the von Neumann method is used to analyse the sta-
bility condition. Applying plane wave

E'(x,y,2) = E"exp (j (kxx + kyy + k;2)) (22)

H'(x,y,z) = H exp (j (kxx + kyy + k;2))  (23)
is revised as to the FDTD solution of Eq. (3) and

B3 = pred oy Bly g (24)
E

and inserting Eq. (3) into Eq.(24), a matrix equation de-
scribing Eq. (3) and Eq. (24) is

Uttt = Myt (25)
Un+l - (En+3/2 Hn+l)T and Un+l - (En+l/2 Hn)T
in Eq.(25) are vectors both with six field components.
MatrixMis derived from the coefficients of numerical spa-
tial derivative and media parameters in Eq. (3) and Eq. (24),
and can be understood by referring to Eq. (5) and Eq. (6).
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In this situation, numerical spatial derivative in an arbitrary
direction is
D¢ =2jsin(ky;Ax/2)] AL (26)

where ¢ = x, y, z. To maintain the stability, the amplitudes
of eigenvalues of matrix Mshould be not bigger than unity.
The eigenvalues of matrix M are

A=d=1 7)
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where g = Ar At (D2 + D2 + D?).
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When g + 4 > 0, the amplitudes of eigenvalues of matrix
M in Eq. (25) will be not bigger than unity. That is to say

|A(M)] =1 (30)

when

cAt < 1/\[1/AX + 1/Ay? + 1/A22 31

Eq. (31) is the CFL stability condition.
The proposed method in frequency domain can be written
as
Un+k — Mk Un (32)

For clarity, we write Eq. (32) into a different expression as
Utk = mun (33)

where matrix m equals to M*. Time step in this method is
AT.
Clearly, as m = M k_ the values of

|4 (m)| =1 (34)

when
AT = kAt 35)

We also discuss the stability of the proposed method in
time domain. Eq. (7) can be written as

F™l = qF" (36)

It is just the expression of the FDTD method in a matrix
form. According to [32], to keep the stability of the FDTD
method expressed in Eq. (36), the time step has to satisfy the
CFL stability condition. That is to say, the amplitudes of
eigenvalues of matrix a

l(a)] <1 (37

is revised as when Eq. (31) is satisfied.
The proposed method in this letter is

Fk = ppn (38)

In Eq. (38), the time step is k times that of A¢, and matrix b
equals matrix a*, so eigenvalues of b are k times that of a
accordingly. Evidently, the eigenvalues of matrix b

Ab) <1 (39)

is revised as when Eq. (35) is satisfied.
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Fig.2 Transient E at r point.

It can be seen from Eq. (34) and Eq. (39) that magnitudes
of eigenvalues of system matrix are always not bigger than
unity whatever value k selects. As a result, the proposed
method overcomes the CFL stability condition in such a way
and becomes an absolutely stable FDTD method. So time
step AT that is k times of Ar in the proposed method can
choose arbitrary value.

The numerical dispersion relationship in the proposed
method is the same as that of the FDTD method, which can
be acquired by using Eq. (25) in Eq. (32) repeatedly and is
shown in

—4sin(wAt/2)* /A = (vD,)? + (vDy)* + (vD.)>  (40)

The case that selects wave equation as governing equation
can be interpreted in a similar way.

4. Numerical validation

Two numerical examples are solved to validate the proposed
algorithm.

In the first example, the radiation of an infinite surface
current in free space is simulated. The space has 200 cells
with the size of 1 um, the time step size in FDTD method
is 2 fs and 60 ns are simulated. In the proposed method
k = 200, 300 and 600 are used so the time step sizes are
0.4 ps, 0.6 ps and 1.2 ps respectively. We define CFLN as

W, and it is obviously that CFLN is equal to k
used in this letter. The region is excited by a sinusoidally
modulated Gaussian current at z = 10 which takes its profile
from [24] but is along the x direction. This is a 1D problem
and only one electric field component and one magnetic
field component exist. And the region is truncated by Mur’s
first-order absorbing boundary condition.

The running time of the FDTD method is 93.33 s, but the
proposed algorithm takes 21.81's, 44.05 s and 69.50 s when
k = 600, 300 and 200, which means the proposed method
realizes a noticeable improvement in calculation efficiency.
E, at point r(50) in two methods are recorded and results
from the proposed method when k& = 600 and 300 are shown
in Fig.2. It can be seen that the two solutions are in good
agreement. In this case, the memory for the simulations run
by the FDTD method and the proposed method is 0.38 M
and 6.06 M, respectively.

We define an error function as
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Fig.3 Transient E at p point (a) from 0 to 30 ns and (b) from 0 to 120 ns.
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Setting solution of the FDTD method as reference, we
make a comparison among the reference and solutions solved
by the proposed method when k changes. In detail, E, at
observing point are recorded and are used to measure the
accuracy of the proposed method. When & = 200, 300, and
600, the error is 0.0026, 0.0040 and 4.0765 x 107°. T is
10000 which is the iteration number of simulation run by
the proposed method when k£ = 600. It can be seen that the
error is relatively small when & gets different value.

In the second example, radiation of a infinite line current at
(10, 5) along the z direction in a 2D metal cavity is simulated.
In this TM case, the scalar wave equation of E, is selected
as governing equation for the proposed method. There are
both 20 cells along the x and y direction with the cell sizes
of 10 um and 0.01 m respectively. The FDTD method and
wave equation FDTD method both choose 20 fs as time step
and 120 ns are simulated. The proposed algorithm uses time
steps 600, 300 and 200 times that of the 20fs, that is to
say, 12ps, 6ps and 4ps. E; at p(5,5) in three methods
are recorded and results from the proposed method when
k = 600 and 300 are shown in Fig. 3. It can be seen from
Fig. 3 that they agree with each other very well. The FDTD
method takes 93.96 s, the wave equation FDTD method takes
66.18 s, while the proposed method costs 36.92 s,42.42 s and
54.62 s when k = 600, 300 and 200, which shows a higher
computation efficiency. In this case, the memory cost for



the conventional FDTD method and wave equation FDTD
method is 0.086 M and 0.086M, and the memory cost of the
proposed method is 17.14 M.

Setting solution of E, from the FDTD method as reference
and using the same error function form in Eq. (40), we make a
comparison to measure the accuracy of the proposed method.
When k& = 200, 300 and 600, the error is 0.0334, 0.0458 and
0.0171. Inthis case, T is 10000 which is the iteration number
of simulation run by the proposed method when k£ = 600.
And the error between the solution calculated by the wave
equation FDTD method and that by the proposed method
is 0.0333, 0.0457 and 0.0172 when k = 200, 300 and 600,
respectively. It can be seen that two groups of errors are
almost the same and stay in a stable and low level when k
changes.

All simulations are operated on Intel(R) core (TM) i3-
3220 CPU @3.30 GHZ with memory of 4G and Matlab
2018b is used for programming.

5. Conclusion

In this letter, an explicit and absolutely stable FDTD method
is proposed. The algorithm is derived from the FDTD
method and is an explicit method as there is no need of
solving matrix equations, while it is also an absolutely sta-
ble method as the time step in it can choose an arbitrary
value. Numerical results validate that the solutions solved
by the proposed method are in good agreement with those
calculated by the FDTD method and the computation ef-
ficiency of the proposed algorithm is also higher than the
FDTD method.
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