E L ectronics
E X press

IEICE Electronics Express, Vol.19, No.1, 1-6

|LETTER

Optimized fast data migration for hybrid DRAM/STT-MRAM main

memory

Chenji Liu" >3, Lan Chen" %39, Xiaoran Hao' 3, and Mao Ni'->

Abstract In order to reduce the main memory energy of the IoT terminal,
STT-MRAM is used to replace DRAM to save refresh energy. However, the
write performance of STT-MRAM cells is worse than that of DRAM. Our
previous work proposed a hybrid DRAM/STT-MRAM main memory and
fast data migration to reduce the adverse effects of poor write performance
of STT-MRAM cells with negligible performance overhead. This article
optimizes the migration algorithm and experiment scheme: 1. Reduce the
storage overhead of the algorithm. 2. Realize the continuous work of the
algorithm. 3. Consider the impact of system standby time on main memory
energy. The results show that compared with our previous work, the storage
overhead of the algorithm is reduced 99.8%. When the system standby time
is zero, the energy of the hybrid main memory (including the energy of the
algorithm) is reduced by 4% on average compared to DRAM. The longer
the system standby time, the more energy saving.

Keywords: STT-MRAM, hybrid main memory, migration, energy saving
Classification: Integrated circuits

1. Introduction

With the development of Internet of Things (IoTs) technol-
ogy, the number of IoT terminal devices has grown expo-
nentially. Battery-powered terminals require a low-energy
main memory. As one of the new non-volatile memories
(NVMs), STT-MRAM has many advantages [1]. Compared
with other new NVMs, it has the fastest access speed and the
strongest endurance. Compared with DRAM, it has no leak-
age current and does not need refresh. Now, the key task for
STT-MRAM to replace DRAM is to expand it to higher den-
sities. In addition, the write performance of STT-MRAM
cells needs to be improved [2]. In theory, STT-MRAM
can be continuously scaled to below 10-nm. However, this
ideal behavior will encounter many challenges in mass pro-
duction, requiring continuous innovation in manufacturing
technology [3].

For standalone STT-MRAM, commercial products have
been continuously launched [4, 5, 6], and the current max-
imum capacity is 1 Gb [7], which can meet the memory
capacity requirements of some IoT terminals. A lightweight

! Institute of Microelectronics of Chinese Academy of Sciences,
Beijing 100029, China

2 University of Chinese Academy of Sciences, Beijing 100049,
China

3 Beijing Key Laboratory of Three-dimensional and Nanome-
ter Integrated Circuit Design Automation Technology, Beijing
100049, China

%) chenlan@ime.ac.cn

DOI: 10.1587/elex.18.20210493
Received November 21, 2021
Accepted November 25, 2021
Publicized December 6, 2021
Copyedited January 10, 2022

neural network as a complex application, its weight param-
eter is about 10MB [8]. If the adverse effects of poor
write performance of STT-MRAM can be controlled, STT-
MRAM will be a good choice for terminal low-energy main
memory. Our previous work proposed a hybrid DRAM/STT-
MRAM main memory and fast data migration to reduce the
adverse effects of poor STT-MRAM write performance, with
negligible performance overhead [9]. This article further
optimizes the migration algorithm and experiment scheme.
Optimize the structure of the miss table and the selection
of DRAM migration blocks to reduce the storage overhead
of the algorithm. Realize the replacement mechanism of
migraton table to ensure the continuous work of the algo-
rithm. When calculating the main memory energy, consider
different system standby times to get closer to the real scene.

The rest of this article is organized as follows. Section 2
introduces related work. Section 3 introduces the optimized
migration algorithm. Section 4 describes the experimen-
tal setup. Section 5 discusses the experimental results and
Section 6 summarizes the article.

2. Related work

Research on new NVM/DRAM hybrid main memory began
to appear in 2009, mainly PCM and DRAM. There are two
types of organization: hierarchical and parallel. For hier-
archical organization, Qureshi et al. [10] proposed a main
memory consisting of PCM coupled with a small DRAM
buffer. Lee et al. [11] proposed a novel write-only DRAM
cache for PCM. Park et al. [12] addressed the power manage-
ment of DRAM cache and PCM. Yoon et al. [13] proposed
a new caching policy for DRAM/PCM hybrid memory. For
parallel organization, Dhiman et al. [14] proposed PDRAM,
a novel energy efficient main memory architecture and ar-
chitecture and system policies. Zhang et al. [15] presented a
hybrid PRAM/DRAM memory architecture and exploit an
OS-level paging scheme. Ramos et al. [16] proposed a new
hybrid design that features a hardware-driven page place-
ment policy. The above managements of parallel hybrid
main memory requires the participation of the OS, which
involves the division of software and hardware. It is not
suitable for embedded systems, especially when the embed-
ded system does not use virtual memory.

STT-MRAM has been widely studied as an on-chip cache
[17, 18, 19, 20], and few studies have used it as a main mem-
ory. Mezaetal. [21] showed that reducing the size of the row
buffer can greatly reduce the dynamic energy of the NVM

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

mailto:chenlan@ime.ac.cn

main memory. Kultursay et al. [22] showed that the energy
and performance of STT-RAM without any optimization
cannot compete with DRAM. Partial write and row buffer
write bypass can significantly improve the performance and
energy of STT-RAM main memory. Wang et al. [23] solved
performance issues caused by small MRAM page size. The
above circuit-level optimization within the MRAM can be
combined with the architecture-level optimization proposed
in this article. Asifuzzaman et al. [24, 25] investigated the
feasibility of using STT-MRAM in high performance com-
puting systems and real-time embedded systems. However,
the timing parameters of MRAM come from estimates, and
publicly reliable timing parameters are unavailable [26]. We
proposed a hybrid DRAM/STT-MRAM main memory and
fast data migration [9].

3. Optimized migration algorithm

Standalone STT-MRAM adopts DDRx interface design,
which can directly replace DRAM. The structure of the STT-
MRAM chip is similar to that of DRAM, and each bank in
the chip has a row buffer. When the row buffer hits, read
or write the row buffer. When the row buffer misses, the
opened page is first precharged back to the array, and then
the page to be accessed is activated into the row buffer. Only
precharge and activation are related to the array. Therefore,
reducing the adverse effects of poor STT-MRAM cell per-
formance requires reducing the number of precharges and
activations. In other words, the number of MRAM row
buffer misses needs to be reduced. We propose fast data
migration, which migrates frequently missed MRAM data
to DRAM. The structure of the hybrid memory is shown in
Fig. 1.

3.1 Miss table

As shown in Fig. 1, a miss table needs to be implemented in
the MRAM sub-controller to record the number of MRAM
row buffer misses caused by different pages. If the miss
table records misses caused by all pages, the size of the miss
table is 512 KB (the number of pages is 512K, and the width
is set to 1 byte). Considering the cost and area overhead,
it is not suitable for implementation in an on-chip memory
controller. In this article, the miss table only records the
most recent MRAM row buffer misses. The depth of the
miss table is set to 64 and the width is increased by 19-bit to
record the address of the missed page. When the miss table
is full, LRU is used to replace the least recently accessed
entry in the table. This structure is reasonable, because the
program usually only accesses part of the memory pages,
and pages that missed a long time ago do not need to be
retained. The workflow of the miss table is shown in Fig. 2.

3.2 Migration table

In order to achieve correct access after migration, a migra-
tion table needs to be implemented in the hybrid memory
controller to record the address of the migration block, as
shown in Fig. 1. In our previous work, once the migration
table overflows, the algorithm will be disabled. If the pro-
gram continues to access MRAM and causes a large number

IEICE Electronics Express, Vol.19, No.1, 1-6

128MB DRAM 128MB MRAM

—

Page Adr | i

iss Numb
Miss Table 0X00000 o005
DRAM Sub-controller 0X00001 ox02
0X00002 0x03
1 bits. 22 bits

Vaiia_| Wigrated Blook Adsr MRAM Sub-controller
T 0000000 Migration Table

1 0x000002
1 0X000003
1 0X000004

Hybird Memory Controller

Mermory request data

Fig. 1 The structure of the hybrid memory.

.
(Access page address)
S

T~

— ~
Yes———__ Row buffer hits? > No

Read or write the row Record the page in the miss
buffer. table,

_— B

o ~—
Yes———<_ Miss table hits? > No
. o
~—

The miss number of the — Miss table is full? ~S——,
page +1 M —

- No
Yes ~

I P

LRU replacement; Record the page in the idle;
The miss number of the The miss number of the
page=1. page=1.

Yo]
Memory access and data
ry Memcry access without data
migration are performed in

Crale] migration

s number =
< threshold- 17/

Fig.2 The workflow of the miss table.

of row buffer misses, the performance of hybrid main mem-
ory will be greatly reduced. This article implements the
replacement mechanism of the migration table. After the
MRAM block is migrated to DRAM, a counter is used to
record the number of times it has been accessed. When the
migration table is full, considering the time locality of the
program, the least recently accessed MRAM block will be
migrated back to MRAM. The workflow of the migration
table is shown in Fig. 3. The time cost of migrating back is
tested in the following experiment.

3.3 DRAM migration block

In addition to the miss table, the migration table also intro-
duces storage overhead. In our previous work, the selection
of the DRAM migration block is moved up from the end
block. One migration requires two migration table entries to
record the actual addresses of the MRAM migration block
and the DRAM migration block respectively. In this article,
the capacity ratio of DRAM and MRAM in hybrid main
memory is 1:1, and the two migrated blocks need to have
the same offset address in DRAM and MRAM, as shown in
Fig. 1. Therefore, only one entry is required for a migration,
and the entry only needs to record the same offset address.
When accessing the block located at the offset address in
DRAM or MRAM, just go to the opposite memory to access
it. In this way, the migration table of the same capacity can
record more migrations while the program is running, which
can better reduce the number of MRAM row buffer misses.

(' Memoryrequest |
/

The block to be accessed has
been migrated.

__—Access address—_
e _27l=tb1?
Yes T No Yes

| | I

Access MRAM block, but the
block actually in DRAM

Access DRAM block, but the
block actually in MRAM

‘ Access MRAM block ‘ ‘ Access DRAM block ‘

<ZData migration occurs? ==

T e
Yes Yes

Two migration blocks are
migrated back and the valid
=0.

Record the new migration in
the migration table.

I

’—(Zjagratmn table is fully>—
Yes ~— No

| |

Record in the idle and the
valid =1.

LRU replacement and the
valid =1.

Fig. 3 The workflow of the migration table.

4. Experimental setup

We built a hybrid DRAM/STT-MRAM main memory using
Micron 1 Gb x8 DDR3 SDRAM [27] and Everspin 256 Mb
x8 DDR3 STT-MRAM [28] verilog models. We modi-
fied the capacity of the DRAM model to 256 Mb. The
model configuration and parameters are shown in Table 1.
The technology nodes of the DRAM and STT-MRAM mod-
els are 2x-nm and 40-nm respectively, making the results
more friendly to DRAM. We have implemented three main
memory structures: 256 MB pure DRAM, 256 MB hybrid
memory composed of 128§ MB DRAM and 128 MB STT-
MRAM, and 256 MB pure STT-MRAM. Each main mem-
ory structure contains two ranks. In the hybrid memory,
rankO is composed of four 256 Mb DRAMs in parallel, and
rank1 is composed of four 256 Mb STT-MRAMs in parallel.
The system configuration is shown in Table II.

The experiment is divided into three parts:

1. Test the effect of the optimization:

(a) Miss table size reduction. Compare the number
of MRAM row buffer misses under different miss
table depths (depth=512K, 64, 32, 16, 8).

(b) Migration table replacement mechanism. Com-
pare the number of MRAM row buffer misses
under the replacement mechanism and the dis-
able mechanism (migration table depth=512, 256,
128, 64).

2. Test the memory performance and energy:

(a) The memory access time and energy when the
program is running, and the total execution time
of the program.

(b) The memory energy when the system standby
time is 1 ms, 10ms, and 100 ms. The proces-
sor waits for the specified time before starting to
fetch instructions.

3. Test the overhead of the algorithm, including storage
overhead, performance overhead and energy overhead.

IEICE Electronics Express, Vol.19, No.1, 1-6

Table I The model configuration and parameters (256 Mb, 667 MHz).

Configuration DRAM MRAM
Bank 4 8

Row 8K 64K
Column 1K 64

Page size 1KB 64B
Parameters

ACTIVE to READ or WRITE delay (tRCD) 15ns 95ns
PRECHARGE time (tRP) 15ns 66 ns
READ latency (RL) 10cycle 10 cycle
WRITE latency (WL) Tcycle 7cycle
Write recovery time (tWR) 15ns 15ns
Average time between REFRESH (tREFI) 7.8 us N/A
REFRESH time (tRFC) 110ns N/A
One bank active-precharge current (IDDO) 65 mA 220mA
Burst read operating current (IDD4R) 125mA 135mA
Burst write operating current (IDD4W) 125 mA 165 mA
Burst refresh current (IDD5B) 165mA N/A

Table I Hardware simulation platform configuration.

Processor 667 MHz, riscv, sequential execution

1/D caches Private, 32 KB/4KB, 2-way, 32B block, LRU
write-back

Memory controller DRAM controller, Hybrid memory controller,
MRAM controller

Main memory DRAM memory, Hybrid memory,
MRAM memory

B non-migration B miss table depth = 512K (non-overflow)

miss table depth = 64 miss table depth = 32
B miss table depth = 16 M miss table depth=8

120%

100% =
80% B
60% ‘ B
0% - | | |
20% I _ |
\ [\
o Al | | - NN | 1 |

cnn_layer filter matrxmul convolution stringsearch

Normalized miss number

Q
2

Fi

g.4 The impact of miss table size on MRAM row buffer misses.

5. Experimental results

5.1 The effect of the optimization
Fig. 4 shows the impact of miss table size on MRAM row
buffer misses. It can be seen that for cnn_layer and convolu-
tion, as the depth of the miss table decreases, the miss table
overflows and the number of misses increases. However,
compared with non-migration, the number of misses is still
effectively reduced. For other programs, the miss table does
not overflow, so the number of misses remains unchanged.
Therefore, the optimized miss table structure can greatly re-
duce storage overhead without affecting the migration effect.
In addition, it can be seen that the migration algorithm has
different effects for different programs. For convolution, the
effectis poor. The greater the number of misses and the more
concentrated the miss distribution, the better the migration
effect.

Fig. 5 shows the impact of the migration table replace-

cnn_layer
W disable mechansim M replacement mechanism

9.0E+03
8.0E+03
7.0E+03
6.0E+03
5.0E+03

4.0E403
3.0403
208403
1.0E403
0.0E400
512 256 128 64

The migration table depth

Miss number

Fig.5 The impact of the migration table replacement mechanism on
MRAM row buffer misses.

ment mechanism on MRAM row buffer misses. When the
depth of the migration table is 512, the migration table does
not overflow, and the number of misses under the two mech-
anisms is the same. As the depth of the migration table
decreases, the table overflows. When the depth is 256 and
64, the number of misses under the replacement mechanism
is reduced by 8% and 38% compared with that under the
disabled mechanism. When the depth is 128, the number
of misses is close. This is related to the program’s access
to MRAM after the migration table overflows. The more
misses, the more effective the replacement mechanism. Mi-
grating back will bring additional reads and writes to DRAM
and MRAM. But in general, the reduction in the number of
MRAM row buffer misses caused by the replacement mech-
anism can completely offset this overhead.

5.2 The memory performance and energy

Fig. 6 shows the normalized memory access time. It can
be seen that, compared with DRAM, the access time of hy-
brid memory increases by 1% on average, while the access
time of MRAM increases by 32% on average. This is be-
cause MRAM has higher activation and precharge delays
and more activation and precharge operations (the capacity
of the MRAM row buffer is one-sixteenth of the DRAM
row buffer, which is easier to miss). For matrxmul and
convolution, the access time of MRAM does not increase
compared with DRAM. This is because the program gen-
erates fewer activations and precharges, and DRAM refresh
will increase the access time of the DRAM. However, the
access time of hybrid memory is always comparable to that
of DRAM, because the migration algorithm can effectively
control the precharge and activation times of MRAM, and
the time overhead of migration is negligible. Fig.7 shows
the normalized program execution time. It can be seen that
the program execution time is less sensitive to the increased
delay of MRAM. Compared with DRAM, the program ex-
ecution time of hybrid memory does not increase, and the
average increase of MRAM is 8%.

Fig. 8 shows the normalized memory energy. It can be
seen that compared with DRAM, the energy of hybrid mem-
ory is reduced by 15% on average, while the energy of
MRAM becomes 3.38 times on average. This is because
the activation-precharge energy of the MRAM is too high,
which completely exceeds the saved refresh energy. In hy-
brid memory, the migration algorithm can well control the

IEICE Electronics Express, Vol.19, No.1, 1-6

W 256MB DRAM M 128MB DRAM+128 VB MRAM M 256MB MRAM

w
o

~
«

N
=1

1.32

1.01
II II I II II | 1IOOI

cnn_layer filter matrxmul convolution stringsearch Average

Normalized memory access time
= =
o ”

=3
@

o
=)

Fig. 6 Memory access time normalized to DRAM.

B 256MB DRAM B 128MB DRAM+128MB MRAM M 256MB MRAM
1.60

1.40

1.20 1.08
1 00,

1.00
0.60
0.40
0.20
0.00

cnn_layer filter

Normalized program execution time
(=1
=23
(=1

matmxmul convolution stringsearch Average

Fig.7 Program execution time normalized to DRAM.

B 256MB DRAM B 128MB DRAM+128MB MRAM M 256MB MRAM
8.00

7.00
6.00
5.00
4.00 o | 338
3.00
2.00

1.00 I -
iR Eefl EnB

0.00

Normalized memory energy

1.00

0.85
in .. In}

onn_layer fliter matmxmul convolution stringsearch Average

Fig. 8 Memory energy normalized to DRAM.

activation-precharge energy, and refresh energy is reduced
by half. However, for stringsearch, the energy of MRAM
is the lowest. For cnn_layer, the energy of hybrid mem-
ory cannot be reduced. This is related to the ratio of re-
fresh energy to total memory energy. The higher the ra-
tio, the more energy MRAM saves. Fig.9 shows the ratio
of memory sub-energy to total memory energy in DRAM.
Memory energy can be divided into read energy, write en-
ergy, activation-precharge energy and refresh energy [29].
It can be seen that for stringsearch, Eref accounts for 96%,
and Eact-pre accounts for 2%. The refresh energy saved
by the MRAM completely covers the increased activation-
precharge energy. For cnn_layer, Eref accounts for 30%, and
worse, Eact-pre accounts for 46%. The refresh energy saved
by the hybrid memory cannot keep up with the increased
activation-precharge energy. In addition, for convolution,
its Eref accounts for 86%, and Eact-pre accounts for 5%.
The hybrid memory energy dropped by only 11% (as shown

256MB DRAM

M read energy (Erd) B write energy (Ewr)
activation-precharge energy (Eact-pre) ™ refresh energy (Eref)

120%
100%

20% 30%

] 64%

60% 27%

5
46% i

40%

23%
%
20% . | 5% 2,1 2%
ﬁ ﬂ i) 5% 3% 1%
0% (S 1%

cnn_layer fliter matrxmul convolution stringsearch

Fig. 9 The ratio of memory sub energy to total memory energy.

B 256MB DRAM M 128MB DRAM+128MB MRAM B 256MB MRAM
4.00

3.38
3.50

290
3.00
2.50
2,00 159

1.50
1.00 1.00 1.00 1.00

0.85 0.80
1.00
i 0.54

\ il [] = 0.34
050 o)
U n |

0.00
0ms 1ms 10ms 100 ms

Fig. 10 Average memory energy under different system standby times.

in Fig. 8). This is because the migration algorithm does not
work well for convolution (as shown in Fig. 4).

Fig. 10 shows the average memory energy under differ-
ent system standby times. It can be seen that as the system
standby time increases, hybrid memory is more and more
energy-efficient than DRAM. When the system standby time
is 100 ms, the energy of MRAM is the lowest. This is be-
cause when the system is in standby, only DRAM consumes
refresh energy. Compared with DRAM, refresh energy of
hybrid memory is halved, while MRAM has no refresh en-
ergy at all. The longer the system standby time, the greater
the advantage of MRAM. It should be noted that in the 1:1
hybrid memory, the energy reduction ratio of the hybrid
memory can only be infinitely close to 50%.

5.3 The overhead of the algorithm

The storage overhead of the algorithm mainly comes from
the migration table and the miss table. These two tables are
constructed as fully associative LRU replacement caches.
The block size is 1 byte. The size of the migration table is
about 1 KB, and the size of the miss table is about 0.2 KB.
Compared with our previous work (the size of the migration
table is about 2 KB and the size of the miss table is 512 KB),
the storage overhead of the algorithm is reduced by 99.8%.
Table III is the estimated performance and energy of the
migration table and miss table using CACTI 7.0 [30].

The performance overhead of the algorithm is very small,
which is the contribution of the fast data migration pro-
posed in our previous article [9]. Normally, only one clock
(tCK=1.5ns) is added to the critical path of memory access
to query the migration table to determine whether the block
to be accessed is migrated. When the MRAM is accessed

IEICE Electronics Express, Vol.19, No.1, 1-6

Table III The estimated results from CACTI 7.0 (22-nm).

Parameters migration table miss table
Access time 0.46ns 0.14ns
Read energy per access 0.26 pJ 0.14pJ
Write energy per access 1.19pJ 0.23pJ

Leakage power 2.42mW 0.32mW

B 256MB DRAM
W 128MB DRAM+128MB MRAM
128MB DRAM+128MB MRAM-+algorithm energy overhead

1.00
1.00 0.93

0.85 0.80 0.83
0.80] 067

| | | =
0.60 ‘ ’ ‘ ‘ L]
. HB \ |
| []

] | | _

0.00

@

'

o

0ms 1ms 10 ms

Fig. 11 The impact of algorithm energy overhead under different system
standby times.

and the row buffer misses, a delay of two clocks will be added
to read and write the miss table. When the migration occurs,
the migration process and the registration of the migration
table after the migration is completed, are executed in par-
allel with the memory access. The delay of the algorithm is
already included in the memory access time (Fig. 6).

The energy overhead of the algorithm mainly comes from
the leakage current energy of the migration table and the
miss table. The miss table is read and written only when
the MRAM row buffer misses, and the migration table is
written only when a migration occurs. Although the migra-
tion table is read every time the memory is accessed, it is
very small compared with the leakage current energy that
has always existed. The additional DRAM and MRAM read
and write energy caused by the migration has been included
in the memory energy (Fig. 8). Fig. 11 shows the impact of
algorithm energy overhead under different system standby
times. After adding algorithm energy, the energy of hybrid
memory is reduced by 4% on average than DRAM (system
standby time = 0 ms). In the future, we will try to implement
a table based on embedded STT-MRAM instead of SRAM
to solve the problem of large leakage current.

6. Conclusion

This article first reduces the storage overhead of the migra-
tion algorithm without affecting the migration effect. Then
the continuous work of the algorithm is realized, which can
better control the number of MRAM row buffer misses. Af-
ter considering the overhead of the algorithm, hybrid mem-
ory can still reduce memory energy without affecting system
performance. And as the system standby time increases, the
energy saved by the hybrid memory is increasing. Therefore,
compared with DRAM, hybrid memory is more suitable for
battery-powered IoT terminals, especially in scenarios with
a long standby time, such as smart homes and smart agri-
culture.

Acknowledgments

This work was supported by National Key R&D Program of
China (2019YFB2102400).

References

(1]

(2]

[3]

(4]

[3]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

[18]

[19]

S.W. Chung, et al.: “4Gbit density STT-MRAM using perpen-
dicular MTJ realized with compact cell structure,” 2016 IEEE
International Electron Devices Meeting (2017) (DOI: 10.1109/
iedm.2016.7838490).

S.lkegawa, et al.: “Magnetoresistive random access memory: present
and future,” IEEE Trans. Electron Devices 67 (2020) 1407 (DOI:
10.1109/ted.2020.2965403).

J.M. Slaughter, et al.: “High density ST-MRAM technology,”
2012 International Electron Devices Meeting (2012) (DOI: 10.1109/
iedm.2012.6479128).

N.D. Rizzo, et al.: “A fully functional 64 Mb DDR3 ST-MRAM built
on 90nm CMOS technology,” IEEE Trans. Magn. 49 (2013) 4441
(DOI: 10.1109/tmag.2013.2243133).

J.M. Slaughter, et al.: “Technology for reliable spin-torque MRAM
products,” 2016 IEEE International Electron Devices Meeting (2016)
(DOI: 10.1109/iedm.2016.7838467).

S. Aggarwal, et al.: “Demonstration of a reliable 1Gb stan-
dalone spin-transfer torque MRAM for industrial applications,” 2019
IEEE International Electron Devices Meeting (2019) (DOI: 10.1109/
iedm19573.2019.8993516).

“EMDA4E001G - 1Gb Spin-transfer Torque MRAM,” https://www.
everspin.com.

M. Sandler, et al.: “MobileNetV2: inverted residuals and linear
bottlenecks,” 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018) (DOI: 10.1109/cvpr.2018.00474).

C. Liu, et al.: “Fast cacheline-based data replacement for hybrid
DRAM and STT-MRAM main memory,” IEICE Electron. Express
17 (2020) 20200090 (DOI: 10.1587/elex.17.20200090).

M.K. Qureshi, ef al.: “Scalable high performance main memory sys-
tem using phase-change memory technology,” Computer Architecture
News 37 (2009) 24 (DOI: 10.1145/1555815.1555760).

H.G. Lee, et al.: “An energy- and performance-aware DRAM cache
architecture for hybrid DRAM/PCM main memory systems,” IEEE
Computer Society (2011) (DOI: 10.1109/iccd.2011.6081427).

H. Park, et al.: “Power management of hybrid DRAM/PRAM-based
main memory,” IEEE Design Automation Conference (2011) 59
(DOI: 10.1145/2024724.2024738).

H.B. Yoon, et al.: “Row buffer locality aware caching policies for hy-
brid memories,” 2012 IEEE 30th International Conference on Com-
puter Design (2012) (DOI: 10.1109/iccd.2012.6378661).

G. Dhiman, et al.: “PDRAM: a hybrid PRAM and DRAM main
memory system,” IEEE Design Automation Conference ACM (2009)
(DOI: 10.1145/1629911.1630086).

W. Zhang and L. Tao: “Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable memory ar-
chitectures,” IEEE International Conference on Parallel Architectures
& Compilation Techniques (2009) (DOI: 10.1109/pact.2009.30).
L.E. Ramos, et al.: “Page placement in hybrid memory systems,”
Proceedings of the 25th International Conference on Supercomputing
(2011) (DOI: 10.1145/1995896.1995911).

G. Sun, et al.: “A novel architecture of the 3D stacked MRAM
L2 cache for CMPs,” 2009 IEEE 15th International Symposium on
High Performance Computer Architecture (2009) (DOI: 10.1109/
hpca.2009.4798259).

M. Rasquinha, et al.: “An energy efficient cache design using spin
torque transfer (STT) RAM,” Proc. 16th ACM/IEEE International
Symposium on Low Power Electronics and Design - ISLPED’10
(2010) 389 (DOI: 10.1145/1840845.1840931).

A. Jog, et al.: “Cache revive: architecting volatile STT-RAM
caches for enhanced performance in CMPs,” Proc. 49th Annual De-
sign Automation Conference on - DAC’12 (2012) (DOI: 10.1145/
2228360.2228406).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

IEICE Electronics Express, Vol.19, No.1, 1-6

M.H. Samavatian, et al.: “An efficient STT-RAM last level cache ar-
chitecture for GPUs,” 2014 51st ACM/EDAC/IEEE Design Automa-
tion Conference ACM (2014) (DOI: 10.1109/dac.2014.6881524).

E. Kultursay, et al.: “Evaluating STT-RAM as an energy-efficient
main memory alternative,” 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (2013) (DOI:
10.1109/ispass.2013.6557176).

J. Meza, et al.: “A case for small row buffers in non-volatile main
memories,” 2012 IEEE 30th International Conference on Computer
Design (2012) (DOI: 10.1109/iccd.2012.6378685).

J. Wang, et al.: “Enabling high-performance LPDDRx-compatible
MRAM,” Proc. 2014 International Symposium on Low Power Elec-
tronics and Design (2014) 339 (DOI: 10.1145/2627369.2627610).
K. Asifuzzaman, et al.: “Performance impact of a slower main
memory: a case study of STT-MRAM in HPC,” International
Symposium on Memory Systems ACM (2016) 40 (DOI: 10.1145/
2989081.2989082).

K. Asifuzzaman, et al.: “STT-MRAM for real-time embedded sys-
tems: performance and WCET implications,” International Sympo-
sium (2019) 195 (DOI: 10.1145/3357526.3357531).

K. Asifuzzaman, ef al.: “Enabling a reliable STT-MRAM main mem-
ory simulation,” International Symposium (2017) 283 (DOI: 10.1145/
3132402.3132416).

“1 Gb: x4, x8, x16 DDR3 SDRAM,” https://www.micron.com.
“EMD3D256M - 256 Mb Spin-transfer Torque MRAM,” https:/
WWW.everspin.com.

“TN-41-01: calculating memory system power for DDR3,” https://
Www.micron.com.

A.B. Kahng, et al.: “CACTI7: new tools for interconnect exploration
in innovative off-chip memories,” ACM Trans. Archit. Code Optim.
14 (2017) 1 (DOI: 10.1145/3085572).

https://doi.org/10.1109/iedm.2016.7838490
https://doi.org/10.1109/iedm.2016.7838490
https://doi.org/10.1109/ted.2020.2965403
https://doi.org/10.1109/ted.2020.2965403
https://doi.org/10.1109/iedm.2012.6479128
https://doi.org/10.1109/iedm.2012.6479128
https://doi.org/10.1109/tmag.2013.2243133
https://doi.org/10.1109/iedm.2016.7838467
https://doi.org/10.1109/iedm19573.2019.8993516
https://doi.org/10.1109/iedm19573.2019.8993516
https://www.everspin.com
https://www.everspin.com
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1587/elex.17.20200090
https://doi.org/10.1145/1555815.1555760
https://doi.org/10.1109/iccd.2011.6081427
https://doi.org/10.1145/2024724.2024738
https://doi.org/10.1109/iccd.2012.6378661
https://doi.org/10.1145/1629911.1630086
https://doi.org/10.1109/pact.2009.30
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1109/hpca.2009.4798259
https://doi.org/10.1109/hpca.2009.4798259
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1109/dac.2014.6881524
https://doi.org/10.1109/ispass.2013.6557176
https://doi.org/10.1109/ispass.2013.6557176
https://doi.org/10.1109/iccd.2012.6378685
https://doi.org/10.1145/2627369.2627610
https://doi.org/10.1145/2989081.2989082
https://doi.org/10.1145/2989081.2989082
https://doi.org/10.1145/3357526.3357531
https://doi.org/10.1145/3132402.3132416
https://doi.org/10.1145/3132402.3132416
https://www.micron.com
https://www.everspin.com
https://www.everspin.com
https://www.micron.com
https://www.micron.com
https://doi.org/10.1145/3085572

