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Abstract 

Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in 
the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of 
all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy 
of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic 
ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the 
complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-
coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly 
function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, 
metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the 
TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/
mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally 
highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
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Introduction
Renal cell carcinoma (RCC) is one of the most lethal uro-
genital malignancies with an increasing morbidity and 
mortality in the world [1]. According to the global cancer 
statistics report, RCC is the ninth most frequently diag-
nosed cancer in men, which has approximately 432,000 

new cases and 180,000 deaths in 2020 [2]. The major 
histological subtype of RCC is clear cell RCC (ccRCC), 
which accounts for about 75% of all RCC cases, fol-
lowed by papillary RCC (pRCC) and chromophobe 
RCC (chRCC) (representing ~ 15–20% and ~ 5% of RCC, 
respectively) [3]. Due to the high rate of recurrence or 
metastasis and difficulties in the early diagnosis, it is con-
ceivable that the prognosis of patients with ccRCC is still 
very poor. Until now, radical nephrectomy remains the 
best treatment and crucial intervention for local ccRCC. 
However, up to one-third of patients are initially diag-
nosed with metastatic ccRCC, at which point they are no 
longer suitable for surgical treatment [4, 5]. Moreover, 
roughly 20 to 30% of patients will relapse within 2 years 
after radical nephrectomy, and almost all of them are 
extremely resistant to both chemotherapeutics and radia-
tion therapy [4, 6]. During the last few decades, owing to 
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the rapid development of targeted and immunological 
drugs, the therapeutic options for ccRCC patients have 
been greatly expanded. Unfortunately, the efficacy of 
these treatments for patients with advanced or metastatic 
ccRCC is still very limited, which mainly attributes to the 
complexity and heterogeneity of tumor microenviron-
ment (TME). Therefore, it is extremely urgent to under-
stand the molecular mechanism in the tumorigenesis 
and progression of ccRCC, especially its dynamic TME, 
which may be helpful to discover novel effective bio-
markers and therapeutic targets of ccRCC.

The carcinogenesis of ccRCC is a complicated biologi-
cal process, which is closely associated with gene muta-
tion, genome instability, and epigenetic disorder [7]. 
Some important genes are well known to participate in 
the occurrence and development of ccRCC, for instance, 
the von Hippel-Lindau (VHL) gene. It has been demon-
strated that VHL is mutated in ccRCC, and its mutation 
leads to an activation of hypoxia-inducible factor (HIF), 
thereby inducing the expression alteration of angiogenic 
factors including vascular endothelial growth factor 
(VEGF) and platelet-derived growth factor (PDGF) [8]. 
Moreover, VHL mutation also activates the mammalian 
target of rapamycin (mTOR) signaling pathway, which 
in turn upregulates HIF and angiogenesis, subsequently 
accelerating the progression of ccRCC [9]. Consequently, 
drugs directly target VEGF/VEGF receptor (VEGFR), 
PDGF/PDGF receptor (PDGFR), and the mTOR pathway 
have been dramatically developed [9]. Nevertheless, there 
are no credible diagnostic and prognostic biomarkers for 
ccRCC that have yet been applied into clinical practice. 
In recent years, the epigenetics of ccRCC, including non-
coding RNAs (ncRNAs), have greatly attracted the atten-
tion of researchers. A large amount of ncRNAs are found 
to be aberrantly expressed in diverse tumors, indicating 
ncRNAs play critical roles in tumorigenesis and develop-
ment [10–12]. Thus, further identifying and understand-
ing the function of ncRNAs may contribute to the early 
diagnosis and treatment of ccRCC.

NcRNAs can be classified into long ncRNAs (lncR-
NAs) and small ncRNAs (sncRNAs) based on their 
length [13]. As for lncRNAs, there are more than 200 
nucleotides in their molecular sequences, but they are 
not responsible for protein-coding [14]. LncRNAs have 
been found to be localized both in the nuclear and cyto-
plasmic compartments. Studies have demonstrated that 
lncRNAs can influence many cellular processes depend-
ing on their location. In the nucleus, lncRNAs can regu-
late gene expression by recruiting chromatin-modifying 
complexes, or by changing the spatial conformation of 
chromosomes [15]. Moreover, they can also influence 
the efficiency of transcriptional factors or pre-mRNA 
spliceosomes to modulate mRNA expression. In the 

cytoplasm, lncRNAs can regulate transcription by influ-
encing mRNA stability, mRNA translation, or miRNA 
binding [14]. Additionally, few lncRNAs can also be 
translated into biological active small peptides [16]. In 
contrast to lncRNAs, sncRNAs are a series of RNAs with 
about 19 to 25 nucleotides in length. MicroRNAs (miR-
NAs) are one subclass of sncRNAs, which are small sin-
gle-stranded RNA molecules and exert their functions 
exclusively at the post-transcriptional level [13]. MiRNAs 
can induce the transcriptional silence of target genes by 
binding to their 3’untranslated region (3’UTR) sequences 
[17]. More importantly, a growing body of studies have 
discovered that miRNAs have a close interaction with 
lncRNAs. LncRNAs can act as sponges to interact with 
miRNAs, and also have an effect on their production and 
degradation, eventually leading to the alteration of tar-
get genes [18]. In addition, both lncRNAs and miRNAs 
are known to be involved in cell proliferation, apoptosis, 
metastasis, and tumor microenvironment (TME) [19, 
20]. Therefore, regulation of aberrant lncRNAs and miR-
NAs may alleviate the initiation and development of vari-
ous tumors. Although the current knowledge of lncRNAs 
and miRNAs is still inadequate, an increasing number 
of studies have emphasized their indispensable role in 
tumorigenesis. In this review, we aim to summarize the 
latest advances regarding lncRNA/miRNA/mRNA axis 
in the pathogenesis of ccRCC, then discuss how lncRNA/
miRNA/mRNA axis regulate TME, and finally highlight 
their potential application as novel biomarkers and thera-
peutic targets for ccRCC.

The regulatory mode between lncRNA and miRNA
Based on the previous reports, the interaction between 
lncRNA and miRNA can be summarized as four regula-
tory modes, namely sponges for miRNA, production of 
miRNA, degradation of lncRNA, and competition with 
miRNA for target genes (Fig. 1). To be specific, lncRNAs 
can act as miRNA sponges, which directly target miR-
NAs to suppress the combination between miRNAs and 
their target genes, subsequently leading to the expression 
changes of target genes. Up to now, most studies have 
been predominantly focused on this regulatory mode, 
which can be defined as lncRNA/miRNA/mRNA axis 
[21, 22]. In addition to serving as miRNA sponges, lncR-
NAs are also responsible for the biogenesis of miRNAs 
because some nucleotides in the lncRNA sequences were 
the same as miRNAs. In this process, lncRNAs can be 
cleaved into miRNAs by Dicer and/or Drosha, then alter 
the transcriptional expression of downstream genes [23]. 
In contrast, miRNAs also can induce the degradation of 
lncRNAs through binding with lncRNAs, and eventu-
ally repress the mRNA expression of downstream genes 
[24]. Additionally, lncRNAs can directly interact with 



Page 3 of 22Zhang et al. Cancer Cell International           (2023) 23:16 	

the target genes of miRNAs, which restrain the bind-
ing between miRNAs and their target genes, and finally 
affect the activity of miRNAs [25, 26].

Biological role of lncRNA/miRNA/mRNA axis in ccRCC​
LncRNA/miRNA/mRNA axis plays a vital role in the ini-
tiation and development of different carcinomas, such 
as ccRCC. Studies have shown that some oncogenic 
miRNAs are upregulated in ccRCC, while some tumor 
suppressor miRNAs are downregulated. In that case, 
lncRNAs combine with oncogenic miRNAs will result 
in tumor inhibition, and those interact with suppressor 
miRNAs will influence the tumor in reverse.

Role in promoting tumor progression
Previous studies have demonstrated that lncRNA/
miRNA/mRNA axis is critical in the progression of 
ccRCC, which can facilitate cell proliferation, migra-
tion, invasion, cell cycle and inhibit apoptosis (Fig.  2). 
Xie et  al. have illustrated that lncRNA PVT1 could 
promote ccRCC cell proliferation by directly targeting 
miR-328-3p, then induce the expression of family with 
sequence similarity 193 member B (FAM193B), and acti-
vate the PI3K/AKT and MAPK/ERK signal pathways 
[27]. PI3K/AKT and MAPK/ERK pathways are crucial for 

cell proliferation, metastasis, and angiogenesis, and they 
have been found to be dysregulated in ccRCC [28]. On 
the other hand, Chen et  al. have discovered that PVT1 
was remarkably upregulated in ccRCC tissues based on 
the high-throughput analysis, and its upregulation was 
closely associated with the lower overall survival (OS) 
rate of ccRCC patients [29]. Furthermore, PVT1 also 
functioned as a competing endogenous RNA (ceRNA) 
of miR-145-5p to increase the expression of T-box tran-
scription factor 15 (TBX15) in ccRCC cells [30]. TBX15 
expression is positively related to the poor prognosis 
of ccRCC patients, who have a shorter OS and disease-
free survival (DFS) [30]. Overexpression of PVT1 could 
promote the migration and invasion of ccRCC cells via 
inhibiting miR-16-5p [31].

LncRNA MALAT1 expression is markedly increased 
in ccRCC tissues than that in the normal controls, and 
its high expression promotes ccRCC cell proliferation 
and invasion by sponging miR-200s, thereby inducing 
the expression of zinc finger E-box-binding homeobox 2 
(ZEB2) [10]. ZEB2 acts as a DNA-binding transcrip-
tional repressor, which is elevated in ccRCC and nega-
tively correlated with the tumor metastasis and prognosis 
[32]. Chen et al. have reported that ZEB2 could be regu-
lated by miR-30a-5p and miR-206, which influenced the 

Fig. 1  The regulatory mode between lncRNA and miRNA. a LncRNA acts as a sponge for miRNA, which prohibits the binding between miRNA and 
its targets. b LncRNA can be digested to produce miRNA and influence the transcriptional expression of downstream genes. c MiRNA can induce 
the degradation of lncRNA via binding to lncRNAs, and eventually suppress the mRNA levels of target genes. d LncRNA can competitively interact 
with the target genes of miRNA
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proliferation, migration and invasion of ccRCC cells [33, 
34]. Notably, the high level of MALAT1 is also associated 
with the worse prognosis of ccRCC patients [35]. Besides, 
MALAT1 could competitively sponge miR-194-5p to 
activate activin A receptor type 2B (ACVR2B), which 
resulted in the increase of cell proliferation and suppres-
sion of apoptosis [36]. The promoting effect of ACVR2B 
on ccRCC progression is dependent on the activation 
of activin A, which can be activated by the dimeriza-
tion of activin receptor types I and II [36]. Additionally, 
silencing of MALAT1 in ccRCC cells could enhance 
the sensitivity to sunitinib by modulating miR-362-3p/
Ras-GTPase-activating SH3-domain-binding protein 1 
(G3BP1) axis [37]. G3BP1 is important for the progres-
sion and metastasis of ccRCC, which can facilitate cell 
proliferation, migration and invasion by regulating IL-6/
G3BP1/STAT3 signaling pathway [38]. Furthermore, 
lncRNA DARS-AS1 can upregulate the level of aspartyl-
tRNA synthetase (DARS) through sequestering miR-
194-5p, then contribute to the malignant progression of 
ccRCC [39]. Zhu et al. have found that lncRNA GIHCG 
could sponge miR-499a-5p to boost the expression of 
X-linked inhibitor of apoptosis protein (XIAP), thereby 
promoting the proliferation, migration and cell cycle of 
ccRCC cells and inhibiting apoptosis [40]. In addition, 
high expression of lncRNA LINC00511 could accelerate 

ccRCC cell proliferation and inhibit cell cycle arrest 
at G0-G1 by modulating miR-625/Cyclin D1 signaling 
[41]. A recent study demonstrated that lncRNA FTX is 
abnormally upregulated in ccRCC, which promotes the 
viability, migration and invasion of ccRCC by sponging 
miR-4429 to induce the expression of ubiquitin-mediated 
proteolysis genes (UBE2C) [42]. To conclude, numer-
ous lncRNAs have a positive effect on the progression of 
ccRCC through regulating different miRNA/mRNA axis 
(Table 1).

Role in inhibiting tumor progression
Several studies have revealed that lncRNAs severed as a 
suppressive factor for the development of ccRCC (Fig. 2). 
Ye et al. reported that lncRNA LET was downregulated in 
ccRCC tissues and cells, which mediated the tumor sup-
pression by directly binding with miR-373-3p to reduce 
the levels of dickkopf-1 (DKK1) and tissue inhibitor of 
metalloproteinase-2 (TIMP2) [122]. Overexpression 
of LET could repress cell cycle and induce apoptosis of 
ccRCC cells in  vitro, and inhibit ccRCC tumor growth 
in vivo [122]. DKK1 is a member of the dickkopf family, 
which can inhibit Wnt signaling and regulate immune 
cells in the tumor microenvironment [123]. Wnt signal 
pathway plays a crucial role in embryonic development 
and regulates nephrogenesis in mesenchymal cells [124]. 

Fig. 2  Role of lncRNA/miRNA/mRNA axis in the progression of ccRCC. LncRNA/miRNA/mRNA axis plays an important role in promoting or 
inhibiting the progression of ccRCC, which has an effect on cell proliferation, metastasis, apoptosis, cell cycle and drug resistance
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Table 1  Role of lncRNA/miRNA/mRNA axis in promoting ccRCC progression

LncRNA MiRNA Gene Biological behavior of ccRCC​ Types of ccRCC tissues and cell 
lines

Refs.

PVT1 miR-328-3p,
miR-145-5p,
miR-16-5p,
miR-200s

FAM193B,
TBX15,
BMI1,
ZEB1,
ZEB2

Proliferation, migration, invasion, 
apoptosis, cell cycle, EMTa

Tissues: 210 NTb

Cells: 769-P, UMRC6, RCCJF, A498, 
ACHN, 786-O, OS-RC-2, Caki-1, HEK-
293T, HK-2

[27, 30, 31, 43]

HILAR miR-613,
miR-206,
miR-1-1-3p

Jagged1,
CXCR4

Proliferation, migration, invasion, 
EMT

Cells: ACHN, Caki-1, SN12-PM6 [44]

TUG1 miR-299-3p,
miR-9,
miR-31-5p,
miR-196a

VEGFR,
YAP,
FLOT1,
AKT,
ERK,
JNK

Proliferation, migration, invasion, 
apoptosis, autophagy, EMT

Tissues: 99 NT
Cells: ACHN, OS-RC-2, 786-O, 769-P, 
A498, A704, HEK-293, HK-2

[45–48]

ITGB2-AS1 miR-328-5p HMGA1 Proliferation, apoptosis Tissues: 33 NT
Cells: OS-RC-2, SW839, A498, SN12-
PM6, Caki-1, HK-2

[49]

LUCAT1 miR-495-3p,
miR-375

SATB1,
YAP1

Proliferation, migration, invasion Tissues: 126 NT
Cells: 786-O, Caki-1, A498, 769-P, 
ACHN, HK-2

[50, 51]

MEG8 miR-495-3p G3BP1 Proliferation, migration, invasion Tissues: 62 NT
Cells: A498, Caki-1,786-O, 769-P, 
ACHN

[52]

RP11-436H11.5 miR-335-5p BCL-W Proliferation, invasion Tissues: 20 NT
Cells: A498, 786-O, OS-RC-2

[53]

PCED1B-AS1 miR-484 ZEB1 Proliferation, migration, EMT Tissues: 40 NT
Cells: 786-O, A498, ACHN, Caki-1, 
HK-2

[54]

CRNDE miR-136-5p N-Cadherin,
Vimentin

Proliferation, migration, invasion, 
EMT

Tissues: 45 NT
Cells: A498, ACHN

[55]

DARS-AS1 miR-194-5p DARS Proliferation, apoptosis Tissues: 70 NT
Cells: ClearCa-1, HH332, Caki-1, 
KMRC-2, KN-41, HK-2

[39]

LINC01094 miR-224-5p,
miR-184

CHSY1,
SLC2A3

Proliferation, migration, EMT Tissues: 56 NT
Cells: ACHN, 769-P, Caki-1, 786-O, 
HK-2

[56, 57]

LINC02747 miR-608 TFE3 Proliferation Tissues: 70 NT
Cells: 786-O, ACHN, Caki-1, Caki-2

[58]

LINC00973 miR-7109-3p Siglec-15 Immune escape Tissues: 100 NT
Cells: 786-O, 769-P, A704, A498, 
ACNH, Caki-1, Caki-2, RCC4, HK-2

[59]

LINC01426 miR-423-5p FOXM1 Proliferation, migration Cells: A498, ACHN, Caki-1, 786-O, 
HEK-293T, HK-2

[60]

LINC00511 miR-625 CCND1 Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 49 NT
Cells: A498, 786-O, ACHN, Caki-2, 
HK-2

[41]

HOXA11‐AS miR-146b-5p MMP16 Proliferation, invasion, apoptosis, 
EMT

Tissues: 52 NT
Cells: ACHN, 786-O, A498, OS-RC-2, 
HK-2

[61]

CDKN2B-AS1 miR-141 Cyclin D1,
Cyclin D2

Proliferation, migration, invasion, 
apoptosis

Cells: RPTEC, ACHN, Caki-1 [62]

DNAJC3-AS1 miR-27a-3p PRDM14 Proliferation, migration, invasion, 
apoptosis

Tissues: 30 NT
Cells: 769-P, ACHN, Caki-1, 786-O, 
HK-2

[63]

FGD5-AS1 miR-5590-3p ERK/AKT Proliferation, migration, invasion, 
EMT

Tissues: 28 NT
Cells: 786-O, ACHN, SN12-PM6, HK-2

[64]

HCG18 miR-152-3p RAB14 Proliferation, migration, invasion Tissues: 32 NT
Cells: Caki-1, 786-O, 769-P, ACHN, 
HK-2

[65]
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Table 1  (continued)

LncRNA MiRNA Gene Biological behavior of ccRCC​ Types of ccRCC tissues and cell 
lines

Refs.

SNHG12 miR-200c-5p,
miR-30a-3p,
miR-129-5p

COL11A1, RUNX2,
WNT2,
IGF-1R,
MDM4

Proliferation, invasion, apoptosis, 
cell cycle

Tissues: 148 NT
Cells: OS-RC-2, 786-O, Caki-1, Caki-2, 
A498, ACHN, 769-P, HK-2

[66–68]

SNHG5 miR-205-5p,
miR-363-3p

ZEB1,
Twist

Proliferation, migration, invasion, 
apoptosis, EMT

Tissues: 20 NT
Cells: ACHN, 786-O, A498, SN12-PM6, 
SW13, Caki-1, HK-2

[69, 70]

PCAT1 miR-656,
miR-539

YAP Proliferation, migration, invasion Tissues: 85 NT
Cells: 786-O, Caki-2, 769-P, OS-RC-2, 
ACHN, HK-2

[71]

H19 miR-29a-3p E2F1 Proliferation, migration, invasion Tissues: 30 NT
Cell: 786-O

[72]

NNT-AS1 miR-137 Y-box Proliferation, migration and invasion Tissues: 40 NT
Cells: 786-O, OS-RC-2, A498, Caki-1, 
HEK-293T

[73]

HCP5 miR-214-3p,
miR-140-5p

MAPK1,
IGF1R

Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 142 NT
Cells: 786-O, Caki-1, Caki-2, ACHN, 
A498, 769-P, OS-RC-2, HEK-293T, 
HK-2

[74, 75]

MIR4435-2HG miR-513a-5p KLF6 Proliferation, migration, invasion Tissues: 40 NT
Cells: 786-O, 769-P, Caki-1, Caki-2, 
ACHN, A498, HK-2, HEK-293T

[76]

PCGEM1 miR-433-3p FGF2 Proliferation, migration, apoptosis Tissues: 47 NT
Cells: OS-RC-2, ACHN, A498, 786-O

[77]

MALAT1 miR-200s,
miR-194-5p,
miR‐203,
miR-205,
miR-429,
miR-182-5p,
miR-1271-5p

ZEB2,
ACVR2B, BIRC5,
KIAA1324

Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 531 NT
Cells: 786-O, ACHN, SN12-PM6, 
OS-RC-2, Caki-2, Caki-1, A498, HK-2

[10, 36, 78–82]

RCAT1 miR-214-5p E2F2 Proliferation, migration, invasion Tissues: 52 NT
Cells: ACHN, 786-O, 769-P, Caki-1, 
A498, HK-2

[83]

MSC‐AS1 miR-3924 WNT5A Proliferation, migration Tissues: 27NT
Cells: 786-O, 769-P, A498, Caki-1, 
HK-2

[84]

ROR miR-206 VEGF Proliferation, migration and invasion Tissues: 36 NT
Cells: Caki-1, Caki-2, HK-2

[85]

ZFAS1 miR-10a SKA1 Proliferation, migration and invasion Tissues: 20 NT
Cells: 786-O, Caki-1, ACHN, HEK-293T, 
HK-2

[86]

SNHG3 miR-139-5p,
miR-10b-5p

TOP2A; BIRC5 Proliferation, migration, invasion Tissues: 70 NT
Cells: A498, ACHN, Caki-1, 786-O, 
HK-2

[87, 88]

SNHG17 miR-328-3p H2AX Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 84 NT
Cells: 786-O, ACHN, Caki-1, 769-P, 
HK-2

[89]

UCA1 miR-495,
miR-182-5p

EZH2,
DLL4

Proliferation, migration, cell cycle Tissues: 130 NT
Cells: 786-O, ACHN, Caki-1, Caki-2, 
HEK-293T, HK-2

[90, 91]

LOXL1-AS1 miR-589-5p CBX5 Proliferation, migration Tissues: 60 NT
Cells: 786-O, A498, 769-P, HEK-293

[92]

HIF1A-AS2 miR-130a-5p ERBB2 Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 42 NT
Cells: ACHN, OSRC-2, 786-O, Caki-1, 
HK-2

[93]

HOTTIP miR-615-3p IGF-2 Proliferation, migration, invasion, 
apoptosis, cell cycle

Tissues: 57 NT
Cells: A498, 786-O, Caki-1, Caki-2, 
ACHN, HK-2, HEK-293T

[94]
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Table 1  (continued)

LncRNA MiRNA Gene Biological behavior of ccRCC​ Types of ccRCC tissues and cell 
lines

Refs.

LINC00641 miR-340-5p c-Myc, CyclinD1, MMP-2 Proliferation and invasion Tissues: 48 NT
Cells: GRC-1, 786-O, SN12-PM6, 
A498, ACHN, HK-2

[95]

SNHG1 miR-129-3p,
miR-137
miR-103a

STAT3,
PD-L1
HMGA2

Proliferation, migration, invasion, cell 
cycle, apoptosis, EMT

Tissues: 60 NT
Cells: ACHN, A498, 786-O, Caki-1, 
HK-2

[96–98]

LINC01133 miR-30b-5p Rab-3D Proliferation, migration, invasion Tissues: 34 NT
Cells: ACHN, A498, 786-O, SN12-PM6, 
HK-2

[99]

HOTAIR miR-217,
miR-138,
miR-200c,
miR-204,
miR-124,
miR-203,
miR-141

HIF-1α,
AXL,
EZH2,
VIM,
ZEB1,
ADAM9, CCND2, VEGFA,
ZEB2,
ST8SIA4;

Proliferation, migration, invasion, 
apoptosis, cell cycle, EMT

Tissues: 54 NT
Cells: ACHN, 786-O, 769-P, A498, 
Caki-1, HK-2

[100–104]

SBF2-AS1 miR-338-3p ETS1 Proliferation, migration, invasion, 
apoptosis, autophagy

Tissues: 46 NT
Cells: Caki-1, UT14, UT16, UT33a, 
768-O, HK-2

[105]

MIAT miR-29c LOXL2 Proliferation, migration, invasion Tissues: 45 NT
Cells: Caki-1, ACHN, 786-O, HK-2

[106]

ARAP1-AS1 miR-361-3p PGF Proliferation, migration, apoptosis Tissues: 16 NT
Cells: HK-2, Caki-1, A498

[107]

MIR155HG miR-155-5p,
miR-155-3p

MMP2, MMP9 Proliferation, migration, invasion Cells: HKC-5, LoMet-ccRCC, 786-O, 
A498, Caki-1, HK-2

[108]

DUXAP8 miR-126 CED-9 Proliferation, invasion Cells: A498, 786-O [109]

SNHG16 miR-1303-p STARD9 Proliferation, apoptosis Tissues: 45 NT
Cells: A498, 786-O, Caki-1, OSRC-2, 
HK-2

[110]

DLX6-AS1 miR-26a PTEN Proliferation, apoptosis Tissues: 52 NT
Cells: A498, ACHN, Caki-1, Caki-2, 
786-O, G401, HK-2

[111]

EMBP1 miR-9-5p KLF4, NANOG, CCNE2 Proliferation, migration, invasion, 
EMT

Tissues: 65 NT
Cells: ACHN, Caki-1, HK-2

[112]

LINC02738 miR-20b SOX4 Proliferation, invasion, apoptosis Tissues: 50 NT
Cells: ACHN, 786-O, OS-RC-2, Caki-2, 
HK-2

[113]

GAPLINC miR-135b-5p CSF1 Proliferation, migration Cells: A498, OSRC-2, ACHN, 786-O, 
Caki-1, HK-2

[114]

SNHG4 miR-204-5p RUNX2 Proliferation, migration, invasion, 
apoptosis

Tissues: 99 NT
Cells: Caki-1, Caki-2, ACHN, 786-O, 
769-P, HK-2

[115]

TTN-AS1 miR-195 Cyclin D1 Proliferation, cell cycle Tissues: 145 NT
Cells: ACHN, 786-O, SN12-PM6, HK-2

[116]

ZFPM2-AS1 miR-130a-3p ESCO2 Proliferation, migration, invasion, 
apoptosis

Tissues: 60 NT
Cells: 786-O, KETR3, G401, HK-2

[117]

SLC16A1-AS1 miR-143-3p SLC7A11 Proliferation, migration, invasion Cells: 786-O, A498, Caki-1, HK-2 [118]

DLEU2 miR-30a-5p ZEB2 Proliferation, invasion Tissues: 40 NT
Cells: ACHN, Caki-1, 769-P, 786-O, 
HK-2

[33]

LINC01232 miR-204-5p RAB22A Proliferation, migration, invasion Tissues: 122 NT
Cells: Caki-1, A498, KN-41, 786-O, 
ClearCa-1, HK-2

[119]

GIHCG miR-499a-5p XIAP Proliferation, migration, apoptosis, 
cell cycle

Cells: HK-2, Caki-1, 786-O, A498, 
SN12C-PM6

[40]

CYTOR miR-136-5p MAT2B Proliferation, invasion, apoptosis Cells: 786-O, Caki-1 [120]
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TIMP2 is a member of the TIMP family, which is a natu-
ral inhibitor of the matrix metalloproteinases and directly 
suppresses tumor metastasis by degrading extracellular 
matrix and basal membrane [125]. Moreover, TIMP2 is 
downregulated in ccRCC and inhibits the proliferation, 
migration and invasion of ccRCC cells [126].

LncRNA TCL6 level has been found to be decreased 
in ccRCC tissues, which inhibited ccRCC metasta-
sis via interacting with miR-155 to influence Src/Akt 
pathway [12]. The Src/Akt pathway participates in the 
carcinogenesis and development of ccRCC, whose acti-
vation contributes to the malignant phenotypes and 
tumor progression of ccRCC [127]. Zeng et al. reported 
that lncRNA 00312 was remarkably downregulated in 
ccRCC tissues and cell lines compared to the normal 
controls, which was significantly correlated with the 
unfavorable prognosis, including tumor size, patho-
logical grade and tumor-node-metastasis (TNM) stage 

[128]. Additionally, lncRNA 00312 could also act as 
a sponge of miR-34a-5p to modulate argininosucci-
nate synthetase 1 (ASS1) expression, thereby promot-
ing cell apoptosis and alleviating the development of 
ccRCC [128]. LncRNA NBAT1 has been confirmed 
that it was significantly decreased in ccRCC cells, 
which could suppress cell proliferation and metastasis 
through NBAT1/miR-346/glycogen synthase kinase-3β 
(GSK-3β) axis [11]. Moreover, miR-346 increase or 
GSK-3β silencing in ccRCC cells could reverse NBAT1-
mediated inhibitory effect on cell proliferation, migra-
tion, and invasion [11]. The binding of lncRNA GAS5 to 
miR-21 upregulates the expression of sex-determining 
region Y-box protein 5 (SOX5), which in turn increases 
the sorafenib sensitivity of ccRCC [129]. Thus, in the 
lncRNA/miRNA/mRNA axis, lncRNAs bind to onco-
genic miRNAs act as suppressors for ccRCC progres-
sion (Table 2).

Table 1  (continued)

LncRNA MiRNA Gene Biological behavior of ccRCC​ Types of ccRCC tissues and cell 
lines

Refs.

CASC19 miR-532 ETS1 Proliferation, migration, apoptosis Tissues: 51 NT
Cells: Caki-1, A498,786-O

[121]

FTX miR-4429 UBE2C Proliferation, migration, invasion, 
cell cycle

Tissues: 51 NT
Cells: A498, A704, SN12C, 769-P

[42]

a Epithelial-Mesenchymal Transition
b Paired tumor and adjacent tissues

Table 2  Role of lncRNA/miRNA/mRNA axis in inhibiting ccRCC progression

a Paired tumor and adjacent tissues
b Epithelial-Mesenchymal Transition

LncRNA MiRNA Gene Biological behavior of ccRCC​ Samples Refs.

LET miR-373-3p DKK1, TIMP2 Proliferation, apoptosis, cell cycle Tissues: 16 NTa Cells: Caki-1, 786-O, 769-P, 
HEK-293T

[122]

TCL6 miR-155 Src Proliferation, migration, invasion, apopto-
sis, cell cycle, EMTb

Cells: Caki-1, 786-O, HK-2 [12]

LncRNA 00312 miR-34a-5p ASS1 Proliferation, invasion, apoptosis Tissues: 47 NT Cells: A498, ACHN, 786-O, 
769-P, HK-2

[128]

NBAT1 miR-346 GSK-3β Proliferation, migration, invasion Cells: 786-O, ACHN, Caki-1, Caki-2, HK-2 [11]

PENG miR-15b PDZK1 Proliferation Tissues: 90 NT Cells: ACHN, 769-P, HEK-293 [130]

MEG3 miR-7 RASL11B Proliferation, migration, invasion, cell cycle, 
apoptosis

Tissues: 72 NT Cells: A498, 786-O, HK-2 [131]

LINC01939 miR-154 Notch Proliferation, migration, apoptosis Tissues: 18 NT Cells: ACHN, Caki-1 [132]

ENTPD3-AS1 miR-155-5p HIF-1α Proliferation, migration Tissues: 105 NT Cells: 786-O, A498, 769-P, 
ACHN, OS-RC-2

[133]

XIST miR-106b-5p P21 Proliferation, cell cycle Tissues: 50 NT Cells: ACHN, Caki-1, Caki-2, 
786-O, HK-2

[134]

ASB16-AS1 miR-185-5p, miR-214-3p LARP1 Proliferation, migration, invasion Tissues: 42 NT Cells: A498, 786-O, 769-P, 
Caki-1, OS-RC-2, ACHN, HEK-293T, HK-2

[135]

COL18A1-AS1 miR-1286 KLF12 Proliferation, migration, invasion Tissues: 50 NT Cells: ACHN, A498, Caki-1, 
OS-RC-2, 786-O, HK-2

[136]
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Clinical significance of lncRNAs and miRNAs
To date, effective biomarkers for the early diagnosis and 
prognosis of ccRCC are still scarce in the clinic. Biomark-
ers, especially in the serum, have attracted great attention 
for predicting the initiation and development of ccRCC, 
because they are easy to obtain and assess. Therefore, 
identification of valuable biomarkers may resolve the dif-
ficulties in diagnosis and therapy for ccRCC.

Recent studies have indicated that lncRNAs are poten-
tial diagnostic and prognostic biomarkers for ccRCC 
(Table  3). He et  al. reported that lncRNA GIHCG was 
markedly upregulated in the tissues and serums of 
ccRCC patients when compared to the healthy con-
trol group (AUC = 0.886, 95% CI: 0.812–0.959), with 
a sensitivity and specificity of 80.7% and 84.8%, respec-
tively. Moreover, the high level of GIHCG in serum was 
positively correlated with the advanced TNM stages 
(P = 0.028), Fuhrman grades (P = 0.032), and a worse OS 
(P = 0.038) [137]. A recent study has demonstrated that 
the combination of five lncRNAs (LET, PVT1, PANDAR, 
PTENP1 and LINC00963) could discriminate ccRCC 
patients from normal controls, with a high specificity of 
88.9% and a sensitivity of 79.2%; this finding included 
71 ccRCC patients, 8 patients with benign renal tumors, 
and 62 healthy controls [138]. Tissue lncRNA OTUD6B-
AS1 was significantly downregulated in ccRCC patients 
and exhibited obvious discrimination in the diagnosis 
(AUC = 0.792, 95% CI: 0.715–0.870) with a sensitivity 
of 77.3% and specificity of 81.4% [139]. The expression 
of lncRNA CADM1-AS1 was decreased in ccRCC tis-
sues, and its downregulation was positively related to the 
AJCC stage (P = 0.039) and lower survival rate of ccRCC 
patients (P < 0.05). Furthermore, a multivariate analysis 
found that CADM1-AS1 was an independent prognostic 
factor for OS (HR = 0.211, 95% CI: 0.088–0.504) [140]. 
In the metastatic ccRCC patients, lncRNA PGM5-AS1 
was reduced, and exerted as an independent prognostic 
predictor for OS (HR = 2.897, 95% CI: 1.275–4.387) and 
DFS (HR = 2.875, 95% CI: 1.185–4.462) [141]. LncRNA 
TCL6 levels in tissues were decreased in ccRCC, which 
were notably associated with the tumor stages, distant 
and lymphatic metastasis. Additionally, TCL6 is an inde-
pendent predictor for Fuhrman grade of ccRCC patients 
(HR = 4.05, 95% CI: 1.08–15.17) [142].

MiRNAs have also been reported as potential bio-
markers for diagnosis, prognosis, and therapy of ccRCC 
(Table 3). A systematic analysis has identified that there 
were 118 miRNAs that could be diagnostic biomarkers, 
28 miRNAs were prognostic biomarkers, and 80 miR-
NAs were therapeutic biomarkers [143]. Serum levels of 
miR-210 were particularly elevated in ccRCC patients, 
which could be a diagnostic biomarker for ccRCC with 
a sensitivity of 67.5%, and a specificity of 70% [144]. 

Moreover, a combination of serum miR-210 and miR-
378 could definitely enhance the discriminatory ability of 
ccRCC, with a sensitivity and specificity of 80% and 78%, 
respectively [145]. The expression level of serum miR-378 
was significantly upregulated in ccRCC patients with an 
AUC of 0.71, and its overexpression was positively cor-
related with DFS and clinical stage [145, 146]. Moreover, 
a combination of serum miR-378 and miR-451 increased 
the diagnostic efficiency (AUC = 0.86), and a sensitivity 
of 81% and specificity of 83% [146]. Tissue miR-21 lev-
els were associated with the histological classification of 
RCC, such as, ccRCC, pRCC, chRCC, and eosinophilia, 
which could be a diagnostic biomarker with a specificity 
of 90% (95% CI: 0.639–0.981) and sensitivity of 83% (95% 
CI: 0.535–0.976%) [147]. In addition, miR-34a and miR-
141 were obviously decreased in the serum samples of 
ccRCC patients, which might be a diagnostic biomarker 
for ccRCC with a sensitivity of 80.76% and 75%, and 
specificity of 80% and 73.33%, respectively [148]. Hence, 
lncRNAs combined with miRNAs might be a promising 
strategy for ccRCC diagnosis and prognosis.

Role in drug resistance
Radical nephrectomy and nephron-preserving surgery 
are the best therapeutic strategies for ccRCC patients at 
the early stage; however, approximately 30% of patients 
were initially diagnosed at the metastatic stage [4]. In 
that case, targeted drugs such as sunitinib, sorafenib, 
everolimus, are often recommended for their treatments 
[179]. Nevertheless, a large number of ccRCC patients 
are exclusively resistant to the targeted therapy, which 
leads to therapeutic failure and little clinical benefit. 
Although systemic treatment has been implemented in 
ccRCC patients, drug resistance is still the primary prob-
lem that needs to be overcome [180]. Many studies have 
proposed that lncRNA/miRNA/mRNA axis has a pivotal 
role in drug resistance of ccRCC (Table 4).

LncRNA ARSR was upregulated in ccRCC  cells and 
its high expression enhanced sunitinib resistance 
[183]. In this process, lncARSR functions as a ceRNA 
and sponges miR-34 and miR-449, then induces the 
expression of AXL and c-MET. LncRNA HOTAIR 
expression was markedly elevated in ccRCC suni-
tinib-resistant cells and increased Beclin1 expression 
by competing with miR-17-5p, thus enhancing suni-
tinib resistance [184]. Moreover, lncRNA MALAT1/
miR-362-3p and LINC00461/miR-942 axis have also 
been shown to enhance sunitinib resistance. The lev-
els of lncRNA SARCC were increased in sunitinib-
treated ccRCC cells, and high expression of SARCC 
enhanced the sensitivity of ccRCC cells to sunitinib 
[182]. Mechanistically, SARCC interacted with andro-
gen receptor (AR) and diminished its stability, thereby 
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Table 3  Potential lncRNAs and miRNAs biomarkers in ccRCC​

Samples NcRNAs Sensitivity (%) Specificity (%) Refs.

Tissue LncRNA APOC1P1 73.3 93.3 [149]

OTUD6B-AS1 77.3 81.4 [139]

ZNF180-2 90.0 55.9 [150]

FZD1-2 85.5 94.2 [151]

BMP2-2 85.5 100.0 [151]

SPAM1-6 83.6 94.2 [151]

ITPR2-3 90.9 96.2 [151]

CPN2-1 90.9 98.1 [151]

TTC34-3 98.1 96.4 [151]

ACACA-1 94.2 100.0 [151]

LCP2-2 98.1 89.1 [151]

FOXG1-2 96.2 89.1 [151]

RP3-368B9.1.1-1 86.5 94.5 [151]

SLC30A4-1 90.9 96.2 [151]

Fer1L4 73.2 95.5 [152]

miRNA Combination of miR-224-5p, miR-34b-3p and miR-182-5p 80.3 66.3 [153]

miRNA-135a-5p 45.5 81.1 [154]

miR-720 80.0 100.0 [155]

miR-129-3p 75.9 62.1 [156]

miR-182-5p 90.0 97.0 [81]

Combination of miR-21 and miR-194 80.0 97.5 [157]

miR-142-3p 62.0 56.0 [158]

miR-21 90.0 83.0 [147]

Combination of miR-10b, miR-139-5p, miR-130b and miR-199b 76.0 100.0 [159]

Serum LncRNA LET 70.8 59.3 [138]

LINC00887 71.1 89.9 [160]

PVT1 70.8 63.0 [138]

PANDAR 75.0 63.0 [138]

PTENP1 79.2 77.8 [138]

Linc00963 83.3 66.7 [138]

GIHCG 87.0 84.8 [137]

miRNA Combination of miR-378 and miR-210 80.0–83.8 57.1–78.0 [145, 161]

Combination of miR-10a-5p, miR-10b-5p and miR-223-3p 86.7 75.0 [162]

Combination of miR-21-5p, miR-150-5p, miR-145-5p and miR-146a-5p 90.8 93.8 [163]

Combination of miR-378 and miR-451 81.0 83.0 [146]

miR-1233 77.4–81.0 37.6–76.0 [164, 165]

miR-210 67.5–82.5 62.2–80.0 [144, 165–167]

miR-106a 78.1 75.0 [168]

miR-206 83.8 57.1 [161]

miR-34a 80.8 80.0 [148]

miR-141 75.0 73.3 [148]

Urine miRNA miR-15a 98.1 100.0 [169]

miR-30a-5p me 63.0 67.0 [170]

miR-210 57.8 80.0 [171]

miR-30c-5p 68.6 100.0 [172]

Combination of miR-122, miR-1271 and miR-15b 100.0 86.0 [173]

let-7 71.0 81.0 [174]

Combination of miR-122-5p, miR-1271-5p and miR-15b-5p 96.0 65.0 [175]
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inhibiting miR-143-3p transcription and downstream 
signal activation [182]. Additionally, SARCC also reg-
ulates AR/HIF-2α/c-Myc axis to promote cell prolif-
eration and ccRCC progression [188]. ccRCC cells with 
high lncRNA KIF9-AS1 expression enhanced sorafenib 
resistance by sponging miR-497-5p and activating 
transforming growth factor-β (TGF-β) signaling [22]. 
LncRNA GAS5 was downregulated in sorafenib-resist-
ant ccRCC cells, which could upregulate the expres-
sion of SOX5 by binding with miR-21 and weaken the 
sorafenib sensitivity [129].  SOX5 belongs to the SOX 
family, which contains more than 20 members and 
some are highly expressed in chemotherapy-resist-
ant cells [189]. Knockdown of lncRNA LINC02532 
increases radiosensitivity in ccRCC cells by regulating 
the miR-654-5p/Yin Yang-1(YY1) axis [185]. YY1 is a 
DNA/RNA binding transcription factor, and plays an 
important role in tumorigenesis and radiation resist-
ance [190]. Overexpression of lncRNA ADAMTS9-
AS2 in ccRCC cells reduced 5-fluorouracil resistance 
via sponging miR-27a-3p to upregulate forkhead box 
protein O1 (FOXO1) [21]. FOXO1 is a transcription 
factor for tumor suppressor, which is inactivated in 
tumor cells and acts as a target of the AR/ERβ pathway 
[191]. In ccRCC cells and tissues, the FOXO1 level was 

decreased, and overexpression of FOXO1 could induce 
cell cycle arrest and promote apoptosis. Additionally, 
FOXO1 expression is closely associated with the patho-
logical classification, tumor grade and tumor stage of 
ccRCC [192].

LncRNA/miRNA/mRNA axis in the tumor 
microenvironment of ccRCC​
To date, it is still difficult to eradicate the malignant 
tumors because they are located in the dynamic tumor 
microenvironment (TME), which can sustain the nutri-
ent demand of tumor cells and help them escape from 
the directly killing of immune cells. Hence, TME is vital 
for tumor formation, growth, angiogenesis, metastasis, 
and influences therapeutic efficacy of drugs [193]. There 
are many components in the TME, which can be divided 
into immune cells, non-immune cells, extracellular 
matrix (ECM) and signaling molecules (Fig. 3). As tumor 
cells have close communication with the surround-
ing TME, targeting the components in the TME is cur-
rently a research interest for tumor therapies. In recent 
years, numerous studies have revealed that lncRNA and 
miRNA network performs an important role in modulat-
ing the TME of ccRCC (Fig. 4).

Table 3  (continued)

Samples NcRNAs Sensitivity (%) Specificity (%) Refs.

Plasma miRNA miR-210 60.9 73.1 [176]

miR-221 71.4 65.0 [176]

miR-1233 39.1 92.6 [176]

miR-424-3p 75.0 81.8 [177]

miR-144-3p 87.1 83.0 [178]

Table 4  LncRNA/miRNA/mRNA axis in ccRCC drug resistance

LncRNA Therapy Mechanism Resistance Refs.

LINC00461 Sunitinib miR-942/SALL1, METAP1, DCAF11 Enhance [181]

SARCC​ Sunitinib miR-143-3p/AKT, MMP13, K-RAS, p-ERK Weaken [182]

ARSR Sunitinib miR-34/AXL, miR-449/c-MET Enhance [183]

HOTAIR Sunitinib miR-17-5p/Beclin1 Enhance [184]

ADAMTS9-AS2 Cisplatin and 5-Fluorouracil miR-27a-3p/FOXO1 Weaken [21]

MALAT1 Sunitinib miR-362-3p/G3BP1 Enhance [37]

LINC02532 Radiotherapy miR-654-5p/YY1 Enhance [185]

GAS5 Sorafenib miR-21/Sox5 Weaken [129]

KIF9-AS1 Sorafenib miR-497-5p/autophagy signaling Enhance [22]

PLK1S1 Sorafenib miR-653/CXCR5 Enhance [186]

NEAT1 Sorafenib miR-34a/c-Met Enhance [187]
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As a modulator of immune cells
Tumor immunotherapies aim to increase the responses 
of immune cells, which have already become a hotspot 
for recent studies. Immune escape is helpful for the 
growth and metastasis of tumor cells, and decreases the 
responses to immunotherapy, eventually leading to the 
poor prognosis of patients [194]. Immune cells in the 
TME consist of macrophages, neutrophils, dendritic 
cells, B cells, T cells and other immune cells [195]. Many 
studies have confirmed that immune cells are pivotal in 
the progression of ccRCC (Fig. 4) [59, 97, 100]. Siglec-15 
is an immunosuppressive molecule, which inhibits anti-
gen-specific T cell reactions in  vivo and in  vitro, and 
plays an important role in the TME [196]. One study 
reported that lncRNA LINC00973 was upregulated in 
Siglec-15 positive ccRCC, which could induce the expres-
sion of Siglec-15 by sponging miR-7109, then enhance 
the tumor immune suppression. Moreover, overexpres-
sion of Siglec-15 in ccRCC cells could significantly inhibit 
the secretion of IL-2 by Jurkat cells [59]. IL-2 deficiency 
led to a defect in the homeostasis of CD25+ CD4+ reg-
ulatory T cells and T lymphocytes, which was closely 
associated with the initiation of autoimmune diseases 
[197]. Tian et  al. have identified that lncRNA SNHG1 
was highly expressed in ccRCC, which could enhance 
the immune escape of ccRCC cells via binding with miR-
129‐3p increase the expression of STAT3 [97]. On the 

other hand, silencing of SNHG1 could increase the secre-
tion of immune-related factors, such as IFN-γ, TNF-α 
and IL-2. Moreover, knockdown of SNHG1 in ccRCC 
mice could substantially increase the infiltration of CD8+ 
T cells, and prolong the overall survival of ccRCC mice 
[97]. Similarly, lncARSR was upregulated in ccRCC and 
could promote M2 polarization of macrophages by acti-
vating the STAT3 signal pathway. Its high expression in 
ccRCC mice could elevate the levels of CD206 and Ki67 
[198]. Additionally, lncARSR acts as a ceRNA of miR34/
miR449, which could upregulate the expression of AXL 
and c-MET to facilitate the progression of ccRCC [183].

As a modulator of non‑immune cells
Epithelial cells are one subtype of the non-immune cells 
in the TME, which are the most important components 
in the EMT process for tumor metastasis. In the EMT 
process, epithelial cells acquire the mesenchymal and 
fiber-like characteristics, then decrease their intracellu-
lar adhesion and increase their metastasis and invasion 
abilities, eventually transforming into mesenchymal cells 
to further facilitate tumor metastasis [199]. Studies have 
shown that lncRNA/miRNA/mRNA axis can influence 
the EMT process by regulating the epithelial cells (Fig. 4) 
[55, 62, 64]. Yang et al. have revealed that lncRNA FGD5-
AS1 was upregulated in metastatic ccRCC patients. High 
expression of FGD5-AS1 could promote the migration, 

Fig. 3  Schematic diagram of TME components. TME consists of immune cells, non-immune cells, extracellular matrix (ECM) and signaling 
molecules. a Immune cells in the TME are composed of macrophages, neutrophils, myeloid-derived suppressor cells (MDSCs), T-cells, B-cells, natural 
killer cells and dendritic cells. b Non-immune cells in the TME mainly include vascular epithelial cells, endothelial cells, fibroblasts, adipocytes, glial 
cells, stellate cells and smooth muscle cells. c ECM refers to the microenvironment supporting the survival and growth of tumor cells, which consists 
of collagen, elastin fibrils, proteinases, proteoglycans (PGs), glycoproteins, glycosaminoglycans (GAGs) and exosomes. d Signaling molecules in the 
TME include cytokines (e.g. IL2), growth factors (e.g. VEGF) and degradation and remodeling enzymes (e.g. MMPs)
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invasion and EMT process of ccRCC cells by absorbing 
miR-5590-3p, thereby activating the ERK/AKT signal-
ing pathway. Otherwise, silencing of FGD5-AS1 or miR-
5520-3p could lead to the increase of E-cadherin and 
decrease of Vimentin [64]. A recent study reported that 
lncRNA CDKN2B-AS1/miR-141 axis could inhibit the 
migration, invasion and EMT process of ccRCC cells 
via reducing the expression of Cyclin D1 and Cyclin D2 
[62]. Importantly, the downregulation of Cyclin D could 
promote the protein degradation of Ras-related C3 bot-
ulinum toxin substrate 1 (RAC1) and p-Paxillin. RAC1 
is a member of the Rho family of small G proteins, and 

its activation can influence many cellular processes, 
such as cytoskeleton reconstruction, cell adhesion and 
cell apoptosis [200]. Moreover, RAC1 is closely corre-
lated with tumor differentiation, stage and metastasis 
of ccRCC [201]. Paxillin is a multifunctional cytoskel-
etal protein that is involved in cell adhesion and highly 
phosphorylated in the tumor tissues and cells. It has been 
demonstrated that Paxillin plays an important role in 
tumor metastasis, which can recruit signaling molecules 
involved in cell movement and adhesion [202]. Addi-
tionally, lncRNA CRNDE expression was considerably 
elevated in the ccRCC tissues than that in the normal 

Fig. 4  LncRNA/miRNA/mRNA axis in the TME of ccRCC. LncRNA/miRNA/mRNA axis plays a vital role in regulating the TME of ccRCC, such as 
immune cells, non-immune cells, ECM, and signaling molecules; therefore, the alteration of this network has a significant effect on the initiation and 
progression of ccRCC​
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controls, which could promote tumor metastasis by 
sponging miR-136-5p to activate the EMT process [55].

As a modulator of ECM
ECM functions as a crucial factor in the crosstalk 
between tumor and TME. It is a complex system that is 
composed of many components, including exosomes, 
collagen, proteinases, glycoproteins, elastin fibrils, gly-
cosaminoglycans and proteoglycans [203]. Among the 
components in ECM, exosome is a direct signal transmis-
sion between tumor cells and TME, which is beneficial 
for tumor growth and metastasis. Studies have shown 
that tumor cells can coordinate different cell behaviors to 
escape the killing by secreting exosomes to ECM (Fig. 4) 
[44, 198, 204–206]. These secreted exosomes contain 
numerous information, such as nucleic acids (lncRNAs, 
miRNAs), growth factors, proteins and lipids, which can 
be transferred from the donor to the recipient cells [207]. 
Recently, many studies have focused on the identification 
of the differential lncRNAs and miRNAs in the exosomes, 
which may be potential important substances for under-
standing the mechanism of tumor immune escape.

Jagged1, a ligand of Notch, which can influence 
cell apoptosis through regulating the Notch signal-
ing pathway [208]. LncHILAR was down-regulated in 
ccRCC and transmitted by exosomes, whose function 
was a ceRNA for miR-613, miR-206 and miR-1-1-3p to 
enhance the expression of Jagged1. Under the hypoxic 
condition, lncHILAR transferred by exosomes could 
significantly enhance the invasive abilities of ccRCC 
cells [44]. LncARSR was highly expressed in ccRCC-
derived exosomes, which contributes to the secretion of 
cytokines, macrophage phagocytosis and angiogenesis 
[198]. Moreover, lncARSR acted as a ceRNA of miR34/
miR449, leading to the elevated expression of AXL and 
c-MET [183]. Jin et al. have found that lncRNA MALAT1 
in exosomes was an important medium for the com-
munication between ccRCC cells and ECM. Exosomes 
carrying MALAT1 could accelerate the cell viability, 
migration, invasion and EMT process by inhibiting the 
activation of transcription factor ETS1 and TFCP2L1 
[204]. Additionally, MALAT1 also exerted as a ceRNA 
by sponging miR-200  s, miR-194-5p and miR-362-3p 
to induce the expression of ZEB2, ACVR2B and G3BP1 
[10, 36, 37]. LncRNA HOTAIR could be released from 
the tumor cells via exosomes, then transmitted to the 
endothelial cells to promote tumor angiogenesis [205]. 
In ccRCC cells, HOTAIR could upregulate the expres-
sion of ST8 alpha-N-acetyl-neuraminidase alpha-2,8-si-
alyltransferase 4 (ST8SIA4) by binding with miR-124 
[103]. ST8SIA4 is a member of glycosyltransferase fam-
ily 29, which is involved in the synthesis of polysialic 
acid, a modulator of the adhesive properties of neural 

cell adhesion molecule [209]. In ccRCC cell lines and tis-
sues, ST8SIA4 was significantly upregulated, and its high 
expression could promote the proliferation and metasta-
sis of ccRCC cells in vitro and in vivo [103, 210]. A recent 
study has reported that lncRNA IGFL2-AS1 can be 
packaged into extracellular vesicles (EVs), thereby trans-
mitting the information of sunitinib resistance to other 
sunitinib-sensitive RCC cells [206]. Meanwhile, IGFL2-
AS1 also exerted its function as a tumor promoter by 
regulating miR-802/cAMP-regulated phosphoprotein 19 
(ARPP19) axis [211].

As a modulator of signaling molecules: growth factors
Growth factors are another subtype of transmitters in 
the crosstalk between tumor cells and TME. Tumor cells 
maintain their growth by absorbing the essential nutri-
tion from the surrounding blood vessels; thus, angio-
genesis is necessary for the initiation and progression of 
different tumors [212]. Angiogenic growth factors, such 
as VEGF, PDGF and fibroblast growth factor 2 (FGF2), 
interact with their receptors to activate the downstream 
signaling pathways to regulate angiogenesis [8]. It has 
been reported that lncRNAs and miRNAs have an inter-
action with multiple angiogenic growth factors, which 
can influence ccRCC angiogenesis by regulating their 
expressions (Fig. 4) [45, 77, 85, 94, 107]. VEGF was over-
expressed in ccRCC, which could stimulate the formation 
of blood vessels through the VHL-HIF pathway [213]. 
The high level of VEGF in the serum was negatively cor-
related with the tumor stage, pathological grade and 
overall survival of ccRCC patients [214]. LncRNA ROR 
was significantly up-regulated in ccRCC cells and tissues, 
which could promote cell proliferation, migration and 
angiogenesis by regulating miR-206/VEGF axis, thereby 
facilitating the progression of ccRCC [85]. LncRNA 
TUG1 was highly increased in ccRCC and acted as a 
ceRNA sponging miR-299-3p to induce the expression 
of VEGFA to promote tumor angiogenesis. Knockdown 
of TUG1 could inhibit the proliferation, migration and 
angiogenesis of ccRCC cells in  vitro, and similar results 
were obtained in ccRCC xenograft mice [45]. Placental 
growth factor (PGF) is a member of the VEGF subfam-
ily, which cooperates with VEGF to promote the for-
mation of blood vessels [215]. PGF amount was greatly 
increased in the serum samples of ccRCC patients, and 
its high level was notably related to the poor prognosis 
of ccRCC [216]. LncRNA ARAP1-AS1 could induce the 
expression of PGF by sponging miR-361-3p, and pro-
mote the proliferation, wound healing and invasion of 
ccRCC cells [107]. FGF2 is a hematopoietic growth fac-
tor that positively regulates the hematopoietic function 
of various cells, including stromal cells, hematopoietic 
progenitor cells and blood cells [217]. LncRNA PCGEM1 
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level was elevated in ccRCC cells, which could promote 
the proliferation and metastasis of ccRCC cells by bind-
ing with miR-433-3p to upregulate FGF2 [77]. Insulin-
like growth factor 2 (IGF-2) participates in the regulation 
of TME by enhancing the anti-inflammatory properties 
of macrophages. Also, IGF-2 regulates the angiogenesis 
of vascular endothelial cells, leading to the activation 
of fibroblasts [218]. LncRNA HOTTIP functioned as a 
ceRNA for miR-615-3p, which could boost the expression 
of IGF-2. Moreover, HOTTIP was significantly up-regu-
lated in ccRCC, and its elevated expression is negatively 
correlated with the OS and DFS of ccRCC patients [94].

As a modulator of signaling molecules: degradation 
and remodeling enzyme
Matrix metalloproteinases (MMPs) is a large family of 
zinc-binding proteins, which has been discovered by at 
least 26 members of this family. Members in the MMP 
family have the ability to degrade the extracellular matrix 
and basal membranes; therefore, the alteration of MMPs 
expression is closely associated with cell differentia-
tion, angiogenesis, extracellular matrix remodeling and 
metastasis. Studies have found that MMPs can be regu-
lated by various factors, such as hormones, growth fac-
tors, cytokines [219]. Currently, lncRNAs and miRNAs 
also have been demonstrated that they can regulate the 
expression of many MMP members, then influence the 
progression of different tumors (Fig. 4) [56, 61, 181]. For 
example, lncRNA HOXA11-AS could regulate MMP16 
by sponging miR-146b-5p, which could promote the pro-
liferation and invasion of ccRCC cells [61]. MMP16 is a 
membrane protein that is localized in fibroblasts, which is 
responsible for the degradation of various ECM compo-
nents and acceleration of the EMT process [220]. Moreo-
ver, HOXA11-AS was upregulated in ccRCC tissues and 
cells, and its high expression was positively correlated 
with the clinical stage, tumor stage and lymphatic metas-
tasis of ccRCC [61]. MMP2 and MMP7 were found to be 
increased in ccRCC, and were positively associated with 
tumor metastasis, pathological grade and clinical stage 
[221]. Jiang et al. have found that silencing of LINC01094 
in ccRCC cells could inhibit the expression of MMP2 
and MMP7, then prevent the EMT process [56]. Addi-
tionally, LINC01094 acted as a ceRNA of miR-224-5p to 
induce the expression of chondroitin sulfate synthase 1 
(CHSY1), which could enhance the malignant behavior 
of ccRCC cells. CHSY1 exerts the antagonistic ability for 
cell apoptosis, and promotes tumor progression by regu-
lating the NF-κB or caspase-3/7 signaling pathway [222]. 
MMP9 is an important component for the remodeling of 
extracellular matrix, which plays a critical role in tumor 
metastasis and progression [223]. It has been reported 
that MMP9 has an impact on the biological functions of 

monocytes and related differential cells, and its expres-
sion was elevated in ccRCC patients with high abundance 
of monocytes [224]. LINC00461 was highly expressed 
in ccRCC cells, and acted as a ceRNA for miRNA-942 
to influence the survival of ccRCC patients [181]. Nota-
bly, overexpression of miR-942 in metastatic ccRCC cells 
could promote the secretion of MMP9 and VEGF, which 
could enhance sunitinib resistance of endothelial cells 
[225].

Conclusions
Extensive evidence has revealed that lncRNAs and 
miRNAs are involved in the diagnosis, prognosis, and 
drug therapy of ccRCC. Understanding the interaction 
between lncRNA and miRNA network and TME ena-
bles us to deeply understand the initiation, development 
and drug resistance of ccRCC. Nevertheless, the role 
of lncRNA/miRNA/mRNA axis in the TME of ccRCC 
remains poorly understood. Hence, in this review, we 
mainly focus on the biological function of lncRNA/
miRNA/mRNA axis in the progression of ccRCC, then 
discuss how lncRNA/miRNA/mRNA axis regulate the 
immune cells, non-immune cells, ECM, growth factors, 
degradation and remodeling enzymes in TME, and finally 
highlight their potential application as novel biomarkers 
and therapeutic targets for ccRCC.

MiRNA can bind to the 3’UTR of target mRNAs, while 
lncRNA act as a sponge of miRNA to prevent the bind-
ing between miRNA and mRNA, which can be defined as 
lncRNA/miRNA/mRNA regulatory network. LncRNA/
miRNA/mRNA axis can regulate the gene expression and 
signal transduction, and play a critical role in transmit-
ting the information between tumor cells and the sur-
rounding TME, thereby influencing the progression of 
ccRCC. During the initiation and development of ccRCC, 
lncRNAs have a bidirectional regulatory function of 
tumor cells, which combine with oncogenic miRNAs will 
result in tumor inhibition, and interact with suppressive 
miRNAs will promote tumor progression. Since lncRNAs 
and miRNAs are stable in the serum, urine, tissues, and 
they can directly reflect the characteristics of tumor cells; 
therefore, lncRNAs and miRNAs can become diagnostic 
and predictive biomarkers of ccRCC. More importantly, 
lncRNA/miRNA/mRNA axis has a close interaction with 
the cellular and non-cellular components in the TME of 
ccRCC, which can influence the cell proliferation, apop-
tosis, migration, invasion, angiogenesis, EMT process, 
and immune responses. The interaction between the 
components in TME and lncRNA/miRNA/mRNA axis 
will significantly influence the survival, prognosis and 
drug sensitivity of ccRCC patients.

To date, most studies remain focus on the role of 
lncRNA/miRNA/mRNA axis in promoting or inhibiting 
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the progression of ccRCC, and little evidence regard-
ing the lncRNA/miRNA/mRNA axis in regulating the 
crosstalk between ccRCC cells and TME. Moreover, little 
information has been presented for the clinical applica-
tion of lncRNA/miRNA/mRNA axis in ccRCC. There-
fore, it is necessary to clarify the clinical significance of 
the lncRNA/miRNA/mRNA axis in the future. First, the 
delivery of lncRNAs or miRNAs to ccRCC cells needs to 
be explored to improve the efficacy of drug therapy. Sec-
ond, the regulation of lncRNAs or miRNAs to overcome 
the immune escape in ccRCC cells. Third, the evaluation 
of the doses and pharmacokinetics of lncRNA-based 
therapies. In conclusion, further studies of lncRNA/
miRNA/mRNA axis will provide more information and 
novel insights to understand the pathogenesis of ccRCC, 
which will help us better predict the diagnosis and prog-
nosis of ccRCC.
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