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1 Introduction

It was originally conjectured by Maldacena in 1997 that the geometry of anti-de Sitter space
(AdS) gravity in five dimensions has a physical equivalence with conformal field theory
(CFT) living in four dimensions [1]. High energy theorists recognized this correspondence as
a holographic duality which connects gravitational theories as the long-range limit of string
theory and strongly coupled quantum manybody systems described by the boundary CFT
in one lower dimension [2–4]. This holographic principle is most famously exemplified by the
gravitational theory living in the AdS bulk dual to a gauge field theory on the boundary,
and it is therefore called by the high energy community AdS/CFT correspondence or
gauge/gravity duality in the sense above [5–9]. Plenty of new theories and applications
were put forward thereafter, bridging the gap between AdS as well as other generalized
models of gravity and condensed matter physics as well as quantum information, known
as AdS/CMT and AdS/QI respectively.

Starting off with GKPW relation [2, 8, 10, 11], one could make an identification of
the partition functions on the two sides, which is reduced to Z[J ] ∼ e−Sg at large N limit
and t’ Hooft limit g2

YMN � 1, where Z[J ] is the generating functional of the CFT with
a source J and Sg is the gravitational action. Then with the assumption of a bulk field
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φ as a perturbation on the background spacetime, which has a dual field operator O, the
equality and the formulation of path integration together yield a substitutive formula for
the correlation functions of the dual operators [2, 8, 10, 11]: Gn(x) = 〈O(x1) · · ·O(xn)〉 =
δnSg [φ|∂=φ0]

δφ0(x1)···δφ0(xn) |φ0=0, where φ takes the value of φ0 on the boundary. According to this
holographic rationale, the computations in the field theory are successfully translated to
the language of gravity.

Two decades later, studies of quantum many-body chaotic systems [12–14]1 demon-
strated that the two-point functions of energy density display non-unique behavior around
some special points in momentum space by using out-of-time ordered correlation functions
(OTOCs). A brief physical picture of chaos is that classically it explains the macroscopic
phenomena in the microscopic view, and naturally that quantum chaos is expected to play
a similar role, deeply related to transport and hydrodynamics [13–18]. The non-uniqueness
of the correlation functions was expected to be universal for maximally chaotic systems,
which, in holography, can be regarded as finite-temperature systems with a gravitational
dual coupled to matter [13, 14, 19, 20]. Precisely speaking, the correlation functions were
detected to be not uniquely defined in that a pole and a zero would intersect at those
points, hence denominated as the “pole-skipping” phenomenon.

Computations in gravity reincarnated such kind of pole-skipping with boundary opera-
tors chosen to be the scalar operator, U(1) current and energy-momentum tensor, etc. [19–
26]. To date, all results have confirmed the existence of these special points, while the
exact locations of the points are diverse in the momentum space, e.g., the Matsubara fre-
quencies for scalar are [19, 24] ωn = −2niπT, n = 1, 2, · · · where T is the temperature of
the background spacetime. And there has been evidence for the physical relation between
pole-skipping and quantum chaos, transport, and hydrodynamics, e.g., pole-skipping in
hyperbolic black holes in [21], and pole-skipping of the sound channel with spontaneous
symmetry breaking in translation in [25]. We also note that recently, a generic holographic
configuration has been formally considered in [26] by defining a “weight” to categorize the
matter fields, which confirmed the leading order point ω = −2iπT .

It would be natural and heuristic to probe the pole-skipping properties of generalized
models of Maxwell U(1) symmetry, in which the holographic 1-form symmetry was firstly
discussed in [27] in terms of magnetohydrodynamics. For one thing, gauge symmetry is a
type of unphysical symmetry, relating different representations of the same physical state
in QFT [28, 29]. Whereas gauge symmetry will be explicitly broken simply if a quadratic
mass term is included in the Maxwell action. To restore the gauge symmetry, one has
to consider auxiliary fields, which have been incorporated in the theories of spontaneous
symmetry breaking, massive Yang-Mills model, and Higgs-Kibble model, etc. [30, 31]. For
another thing, as a focal point in holographic electromagnetic duality, there exist higher-
form theories coupled to gravity which correspond to the same boundary CFT as the
Maxwell bulk theory in certain dimensions if the boundary conditions are appropriately
chosen [32, 33]. And to match with the realistic world, plenty of applications of form models
have been developed for condensed matter physics, e.g. the holographic CPN−1 model and

1[12] was the first to discover the pole-skipping phenomenon in the hydrodynamic sound mode.
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the study of holographic quantum Hall systems [34–36]. Higher-form symmetry also plays
a key role in the study of generalized global symmetry, and is technically used in the setup
of string theory and plasma physics, cf. [27, 37–40].

These applications motivate us to investigate the form symmetry in holography, in
which some underlying physical phenomena, e.g. the pole-skipping, deserve attention. We
consider the form models to be as simple as possible with no extra fields coupled because we
expect that with these basic models the pole-skipping properties of even more complicated
configurations could be unveiled.

Meanwhile, analytic computation reveals that the 2-form bulk field has a dimension-
dependent boundary divergence, which can be renormalized with the double-trace
method [38, 39]. In particular, the 2-form bulk ansatz is solvable in AdSd+2 spacetime con-
sidering the SOd+1 symmetry, whereas the analytic solutioin is difficult to find in AdS black
hole background spacetime [39]. Fortunately, the pole-skipping properties seem detectable
in the latter case: it has long been believed that the pole-skipping points of the holographic
correlators can be determined at least in the previous ordinary examples [19, 20, 23], even
oftentimes without knowing the exact bulk solution. Then a subsequent question is how the
redefined boundary behavior with the double-trace coupling would affect the pole-skipping
properties in the divergent cases.

This study aims to provide glimpses into the pole-skipping phenomenon of the U(1)-
related models. This paper is organized as follows. In section 2, we first quickly review
the electromagnetic duality in holography and demonstrate the pole-skipping of the scalar
correlator, i.e., the simplest model. In section 3 to 5, we discuss the U(1) models configured
as 1-form, 2-form, and generic p-form with/without a field mass, respectively. In section 6,
we further examine the pole-skipping properties by studying the role of the field mass and
the form number, and explore the connection to the theory of electromagnetic duality, and
make a summary of this paper.

2 Preliminaries

Before the discussion of U(1) models, we first introduce the background spacetime geometry
considered for this work, and briefly review the concept of electromagnetic duality and the
pole-skipping phenomenon.

2.1 Spacetime configuration

We consider the asymptotic AdSd+2 black hole spacetime with a planar horizon. The geom-
etry is a solution of Einstein’s equation with a negative cosmological constant Λ = −d(d+
1)/2, whose metric takes the form in Eddington-Finkelstein coordinates (v, r, x, y, · · · ):

ds2 = −r2f(r)dv2 + dvdr + drdv + h(r)(dx2 + dy2 + · · · ), (2.1)

where we have set the AdS radius L = 1, following the convention of [19]. We assume the
asymptotic behavior on the horizon r = r0 and at infinity r →∞:

f(r0) = 0, f ′(r0) = 4πT/r2
0,

f(r →∞) ∼ 1, h(r →∞) ∼ r2, Z(r →∞) ∼ 1,
(2.2)
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where T denotes the black hole temperature, Z(φ(r)), assumed to be a radial function,
denotes the dilatonic coupling arising from dimensional reduction, and the prime sign
denotes the derivative of r. We will leave the bulk behavior of the functions unspecified in
most cases corresponding to different couplings of matter fields, and will focus on the AdS
configuration to evaluate higher order pole-skipping points for brevity.

2.2 Electromagnetic duality

Next, we present a physical picture of electromagnetic duality in asymptotic AdS, referring
to [33].

A generic p-form field P propagating in AdSd+2 behaves on the boundary as2

P (r →∞) = α(p) + β(p) r2p−d−1 + · · · , (2.3)

where we have chosen the gauge condition Pr··· = 0. Both α and β are constants of r,
while α inherits the dynamical gauge symmetry α→ α+ dλ and β obeys the conservation
law d ∗ β = 0, where ∗ denotes the (d + 1)-dimensional Hodge star. We carry out a more
complete discussion on the theory of p-form in section 5.1, with the field components and
spacetime coordinates specified.

The boundary solution is required to be fixed with some boundary condition. By
convention, two types of boundary conditions are considered:

α(p) = fixed, Dirichlet (regular) B.C.,
or β(p) = fixed, Neumann (alternate) B.C.,

(2.4)

or generically a mixed boundary condition. Given a certain boundary condition, the fixed
term α(or β) is regarded as the source of the boundary current operator J while the
dynamical d.o.f. of the boundary CFT are contained in the other term β(or α), giving
rise to the global (or dynamical) U(1) symmetry for the field theory. According to the
GKPW relation, one can check this argument with the substitutive formula imposed on
the one-point function:〈

J (p)
〉

= δStot
δα(p) ∝ β

(p), Dirichlet (regular) B.C.,〈
J (p)

〉
= δStot
δβ(p) ∝ α

(p), Neumann (alternate) B.C.,
(2.5)

where a boundary counter term needs to be chosen appropriately and added to the total
action Stot.

The dual (d− p)-form field ∗P behaves likewise on the boundary as

∗ P (r →∞) = α̃(d−p) + β̃(d−p) rd−2p−1 + · · · , (2.6)

with a different set of constants α̃ and β̃ at the first two leading orders. The boundary
condition can be chosen in the same manner as eq. (2.4).

2In [33], the boundary spacetime is assumed to be AdSd+1. Please note this number difference from our
convention for a close check. And the dual field of P is denoted as the whole symbol ∗P for simplicity in
the following.
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Electromagnetic duality relates the dual fields with a concise equality, i.e.,

d ∗ P = ∗ dP. (2.7)

This relation yields a proportionality of the boundary terms of the dual fields, i.e.,

β̃(d−p) ∝ ∗dα(p+1), dα̃(d+1−p) ∝ ∗β(p). (2.8)

Therefore, the Dirichlet (regular) boundary condition for one field is translated to Neu-
mann (alternative) boundary condition for its dual through electromagnetic duality. A less
abstract example of 1-form/2-form duality in d = 3 is also analyzed in [33], for further
reading.

2.3 Pole-skipping of scalar

Now we come back to a minimally coupled free scalar, or 0-form, propagating in asymptotic
AdS with the spacetime metric in the form of eq. (2.1). The scalar model has been studied
extensively in various literature as a typical example of the gravitational theory coupled
with matter, and hereby we only present a minimal content of the story with an emphasis
on finding the pole-skipping points, following [19].

The bulk action with a massive scalar field ϕ is

S[g, ϕ] =
∫

dd+2x
√
−g

(
R− 2Λ− 1

2
(
∂2ϕ+m2ϕ2

))
. (2.9)

By taking the functional derivatives of the field, one obtains EOM3

(∇2 −m2)ϕ =
( 1√
−g

∂M
(√
−g∂M

)
−m2

)
ϕ = 0. (2.10)

We assume that the wave vector k of the field lies in x direction considering the rotational
spatial symmetry, and that the field has a plane-wave expansion

ϕ(r, v, x) =
∫

d2k e−iωv+ikxφ(r, ω, k). (2.11)

Then in momentum space the EOM reduces to(
hd/2(r2fφ′ − iωφ)

)′ − iωhd/2φ′ − hd/2−1(k2 +m2h)φ = 0, (2.12)

where the prime sign denotes the derivative of r. The boundary solution is at leading order

φ(r →∞) = φA(ω, k)r∆−d−1 + φB(ω, k)r−∆, (2.13)

where ∆ is the larger root of ∆(∆−d−1) = m2, which is also the conformal dimensioin of
the dual operator O. Therefore, with the standard procedure, the (retarded) holographic
correlator of dual operators is evaluated as

GRO,O(ω, k) ∝ φB(ω, k)
φA(ω, k) . (2.14)

3In this paper, we use Greek letters for bulk indices, and will use Latin letters for boundary indices or
some bulk cases when the radial index r is ruled out.
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Requiring the asymptotic behavior in eq. (2.2) and imposing the ansatz of field expansion
near the horizon

φ(r) = (r − r0)λ(φ(0) + φ(1)(r − r0) + φ(2)(r − r0)2 + · · · ), (2.15)

one can expand eq. (2.12) in powers of r − r0 obeying the in-falling boundary condition

(2.12) ≡ S = S0 + S1(r − r0) + S2(r − r0)2 + · · · = 0, (2.16)

and solve the equations of the coefficients order by order. The lowest order equation is
simply

λ(iω − 2πTλ) = 0,

=⇒λ1 = 0, λ2 = iω

2πT .
(2.17)

Obviously, with generic ω, λ1 corresponds to a unique in-falling solution and λ2 cor-
responds to an out-going solution. The two solutions degenerate when ω = −2niπT, n =
1, 2, · · · , rendering the field expansion non-unique. For a close check, one would find the
second-lowest order equation with λ = λ1 to be

M11φ
(0) + (4πT − 2iω)hφ(1) = 0, (2.18)

where h is evaluated on the horizon r = r0 andM11 = −(k2 +m2h+ iωdh′/2). Generically,
φ(1) can be uniquely determined with φ(0) set free, and likewise higher-order coefficients
can be determined by iteration. The equation becomes singular when ω = −2iπT , with
the second term vanishing. This is fine, however, when M11 6= 0 and therefore φ(0) must
vanish, leaving φ(1) to be a free parameter and higher-order coefficients can be fixed thereon.
Nonetheless, both φ(0) and φ(1) are free when M11 = 0 and consequently the undetermined
solution has extra d.o.f. . Therefore, the first-order special points are claimed to be found!at

ω = −2iπT, M11 = 0 ⇒ k2 = −m2h− πTdh′, (2.19)

where h is evaluated at r = r0. Higher-order special points can be found by solving Sn = 0
iteratively. A nice trick is to rewrite these equations into a matrix form M · Φ = 0 with
Φ = [φ(0), φ(1), φ(2), · · · ]T and corresponding coefficients in M . One can check that the
conditions Mn,n+1 = 0, detM [n] = 0 yield the special points at ω = −2niπT, n = 1, 2, · · ·
and some 2n values of k, where M [n] denotes the first n rows and columns of M . Here we
only show the result at the second order with the background spacetime restricted to be
AdS:

ω = −i(1 + d)r0, k2 =
(
−(d+ d2 +m2)±

√
(1 + d)(d+ d2 + 2m2)

)
r0

2, (2.20)

where we have used the metric functions f(r) = 1 − ( r0r )d+1, h(r) = r2 in eq. (2.1). We
will present the higher order analytics in more detail in section 5.

At these points, a pole and a zero would intersect: slightly move away from the special
point to ω → ω+ εδω, k → k+ εδk and one would find from eq. (2.18) that the coefficients
of the series expansion are related, with a dependence on the slope δω/δk. We interpret
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these special points found with near-horizon analysis as the pole-skipping points of the
boundary correlator. Such an interpretation makes sense in that there is no boundary
divergence for the bulk scalar, cf. eq. (2.13), and therefore unambiguously, the correlator
can be obtained from the on-shell solution, cf. eq. (2.14), which depend on the near-horizon
boundary condition and consequently on the slope δω/δk.

With all the discussion above, we are well-prepared to move on to the U(1) models in
the following sections.

3 1-form

To begin with, we evaluate the pole-skipping points of 1-form gauge currents by near-
horizon analysis. In subsection 3.1, we briefly review the analytic results of the longitudinal
mode in [19, 20], and the transverse mode in [20]. In subsection 3.2, we generalize the
dual bulk field with a non-zero mass and present two equivalent methods of finding the
corresponding pole-skipping points, referring to [41, 42].

3.1 Massless 1-form (review)

The action term of a minimally-coupled 1-form field A is [19]

S[A] = −1
4

∫
dd+2x

√
−gZ(φ)F 2, (3.1)

where Z(φ) is the dilatonic coupling, and F = dA is the field strength, with components
FMN = ∂MAN − ∂NAM . For simplicity, we will assume the dilaton field φ to be non-
dynamical, i.e., dependent only on the radial coordinate r considering the static background
spacetime. The theory has U(1) gauge symmetry, i.e., AM → AM + ∂MΛ, ∀Λ. By taking
the functional derivatives, one obtains EOM

∂M
(√
−gZ(φ)FMN

)
= 0. (3.2)

We still assume that the wave vector k of the field lies in x direction and that the field
has a plane-wave expansion, i.e.,

A(r, v, x) =
∫

d2k e−iωv+ikxa(r, ω, k). (3.3)

We fix the gauge symmetry with condition Ar = 0. With the same asymptotic AdS
background spacetime setting as in eq. (2.1), we find a dimension-dependent mode decom-
position of 1-form components: for d = 2, the parity transformation y → −y yields the
longitudinal mode containing av, ax and the transverse mode containing ay; for d ≥ 3, the
spatial SO(d − 1) symmetry and the corresponding transformation rule yield the scalar
mode containing av, ax and the vector mode containing az where z denotes an arbitrary
spatial coordinate except x. Therefore, the results of decomposition in different spacetime
dimensions are highly consistent, although originating from different kinds of symmetry.
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For simplicity, we call the two modes to be longitudinal mode and transverse mode respec-
tively. EOM are simply evaluated as4

0 = k2av + kωax + iωhav
′ + ikr2fax

′,

0 =
(1

2dZh
′ + hZ ′

)
av
′ + ikZax

′ + hZav
′′,

0 =
(
Z(2k2 + i(d− 2)ωh′) + 2iωhZ ′

)
az − 2r2fhZa′′z

+
(
(2− d)r2fZh′ − 2h(Z(−2iω + 2rf + r2f ′) + r2fZ ′)

)
a′z.

(3.4)

Requiring the asymptotic behavior in eq. (2.2) and imposing the ansatz of field expansion

aµ(r) = (r − r0)λµ(a(0)
µ + a(1)

µ (r − r0) + a(2)
µ (r − r0)2 + · · · ), (3.5)

the decoupled EOM for the transverse mode can be analysed following the order-by-order
computation of the scalar model in section 2.3. As for the longitudinal mode, one could
either decouple the EOM or solve the set by expanding all the field components, or trans-
form the order-by-order equations into matrix equations and solve them as an eigenvalue
problem [20]. No matter what trick one employs, the gauge redundancy, distinct from the
example of scalar field, would leave a(0)

µ undetermined and the higher-order coefficients
shall depend on a(1)

µ by iteration. All in all, one can find the first-order special points for
the two modes at

ω = −2iπT, k2 = πT
(
(d− 2)h′ + 2hZ ′/Z

)
, for longitudinal mode,

ω = −2iπT, k2 = −πT
(
(d− 2)h′ + 2hZ ′/Z

)
, for transverse mode,

(3.6)

where h and Z are evaluated at r = r0.
Caveat: strictly speaking, the longitudinal mode has a “zeroth” order pole-skipping

point at ω = k = 0 while the transverse mode does not. One can check this subtlety
by first setting k = 0 in the first two equations of eq. (3.4) and then making a classified
discussion on the value of ω. That is, the exact leading-order point is mode-dependent.
These results are consistent with [19, 21]. Such kind of pole-skipping at the origin takes
place in the cases of higher forms as well, while k may be shifted to some non-zero values in
other configurations, e.g., [26]. We will mainly focus on the non-zero points in the following
sections concerning the fact that the (0, 0) point corresponds to the hydrodynamic limit
where the behavior of the holographic correlators can be probed by hydrodynamics [19].

We will present higher order analytics together in section 5.
One can check that similar to the case of the scalar field, there is no divergence in

the boundary solutions of 1-form. Therefore, these special points found with near-horizon
analysis are likewise the pole-skipping points of the boundary correlators of dual currents.
The same is true of the massive 1-form in the next subsection. One can also check that as
an alternative method, the special points of gauge invariants are the same as those we have

4To derive EOM in the form of field components from the covariant equation, the inverse metric must
be used to contract the covariant(lower-script) field components, since forms are defined as anti-symmetric
covariant tensors.
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found for the longitudinal mode. And note that in the viewpoint of the boundary CFT,
the correlators of the same mode are related by conformal Ward identity [19, 43] and have
the same set of pole-skipping points as a consequence.

3.2 Massive 1-form

The 1-form action added with a quadratic term of a non-zero mass m is

S[A] = −1
4

∫
dd+2x

√
−gZ(φ)(F 2 + 2m2A2). (3.7)

The corresponding EOM are

∂M
(√
−gZ(φ)FMN

)
−
√
−gZ(φ)m2AN = 0. (3.8)

The mass in the action explicitly breaks the gauge symmetry. The full set of EOM, con-
taining a large number of coupled terms, is too complicated to solve. A shortcut is to
perform the derivative operator ∂N on EOM, which yields a constraint equation

∂M
(√
−gZ(φ)AM

)
= 0. (3.9)

We hereby point out that this constraint holds only on-shell and does not imply global
U(1) symmetry. We rewrite this equation as

∂MA
M = − 1√

−gZ(φ)A
M∂M (

√
−gZ(φ))

= − 1√
−gZ(φ)A

r∂r(
√
−gZ(φ)).

(3.10)

Inserting this constraint into eq. (3.8), we obtain EOM of a simplified version:5

0 = ∂M (
√
−gZ(φ)∂MAN )− 1√

−gZ(φ)A
r∂r(
√
−gZ(φ))∂N (

√
−gZ(φ))

+Ar∂N∂r(
√
−gZ(φ))−

√
−gZ(φ)m2AN .

(3.11)

With the same ansatz of near-horizon expansion as eq. (3.5), we find the first pole-
skipping points for the correlator of boundary currents dual to the time component av at

ω = −2iπT, k2 = −m2h− πT (dh′ + 2hZ ′/Z). (3.12)

One can check that these two points are the same as those in eq. (2.19) for the scalar if the
dilatonic coupling is dropped. And we note that in the zero-mass limit, these two points
do not reduce to the massless case in eq. (3.6). That’s to say, the appearance of a non-zero
mass breaks the gauge symmetry and therefore renders the pole-skipping property of the
1-form correlator distinct.

5The EOM in the form of field components are lengthy, which we omit here. Only ar is coupled to av
in our configuration, as one can check by evaluating their coupled EOM. Thus the special points for the
single component av can be evaluated in the same way as the scalar mode of the massless gauge field.
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An equivalent method is to employ Stückelberg mechanism. We briefly present the
process as follows. With an auxiliary scalar field θ, a gauge invariant action can be written
as [41]

S[A] = −1
4

∫
dd+2x

√
−gZ(φ)(F 2 + 2m2(A− dθ)2). (3.13)

The restored gauge symmetry is manifest: AM → AM + ∂MΛ, θ → θ + Λ, ∀Λ. EOM are

∂M (
√
−gZ(φ)FMN )−

√
−gZ(φ)m2(AN − ∂Nθ) = 0. (3.14)

Similarly, the constraint
∂M (
√
−gZ(φ)(AM − ∂Mθ)) = 0 (3.15)

simplifies the EOM as6

0 = ∂M (
√
−gZ(φ)∂MAN )− ∂N (√−gZ(φ))√

−gZ(φ) (Ar∂r(
√
−gZ(φ))−�θ)

+Ar∂N∂r(
√
−gZ(φ))−

√
−gZ(φ)m2(AN − ∂Nθ),

(3.16)

where we have unusually defined �θ = ∂M (√−gZ(φ)∂Mθ). To fix the gauge, we set Ar = 0.
With the near-horizon expansion in eq. (3.5) for aµ and the same manner

θ(r) = (r − r0)λθ(θ(0) + θ(1)(r − r0) + θ(2)(r − r0)2 + · · · ) (3.17)

for θ, we find the first pole-skipping points for the correlator of boundary currents dual to
av identical to the pair in eq. (3.12). We will present higher order analytics together in
section 5.

4 2-form

In this section, we study the pole-skipping phenomenon of holographic correlators of U(1)
currents generalized as 2-form. Specifically, we attempt to renormalize the UV divergence
of 2-form following [38, 39], and to calculate the redefined correlators. In subsection 4.1,
we focus on the U(1) gauge field; in subsection 4.2, we generalize the field configuration
with a non-zero mass.

4.1 Massless 2-form

The action term of a minimally-coupled 2-form field B is7 [39]

S = 1
6γ2

∫
dd+2x

√
−gZ(φ)H2, (4.1)

where we have made explicit the coupling γ, and H = dB is the field strength, with
components HMNP = ∂MBNP +∂NBPM +∂PBMN . The theory has U(1) gauge symmetry,

6In this Stückelberg configuration, av and θ are coupled in EOM with the gauge Ar = 0.
7We have additionally include the dilatonic coupling in the action in consistency with our previous

configuration.
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i.e., BMN → BMN +∂MΛN−∂NΛM , ∀Λ. By taking the functional derivatives, one obtains
EOM

∂M
(√
−gZ(φ)HMNP

)
= 0. (4.2)

Then, the boundary current operator J derived from on-shell action is

Jµν = − 1
γ2
√
−gZ(φ)Hrµν . (4.3)

J has a continuation in the bulk when necessary. We still assume that the wave vector of
the field lies in x direction, and the field has a plane-wave expansion, i.e.,

B(r, v, x) =
∫

d2k e−iωv+ikxb(r, ω, k). (4.4)

We impose the gauge condition Brµ = 0. Then in asymptotic AdS background space-
time, the mode decomposition is as follows: for d = 2, the parity transformation y → −y
yields the longitudinal mode containing bvx and the transverse mode containing bvy and
bxy; for d ≥ 3, the spatial SO(d− 1) symmetry and the corresponding transformation rule
yield the trivial scalar mode containing bvx, the vector (longitudinal) mode containing bvz
and bxz, and the tensor (transverse) mode containing bz1z2 , where z denotes an arbitrary
spatial coordinate except x. For simplicity, through analysis above, we call the two nontriv-
ial modes to be longitudinal and transverse mode respectively. EOM of these two modes
are evaluated as

0 = k2bvz + kωbxz + iωhb′vz + ikr2fb′xz,

0 = ikZb′xz +
(
(d/2− 1)Zh′ + hZ ′

)
b′vz + hZb′′vz,

0 =
(
Z(2k2 + i(d− 4)ωh′) + 2iωhZ ′

)
bz1z2 − 2r2fhZb′′z1z2

+
(
(4− d)r2fZh′ − 2h

(
Z(−2iω + 2rf + r2f ′) + r2fZ ′

))
b′z1z2 .

(4.5)

This gauge redundancy is obviously seen in the longitudinal mode but harmless if one
seeks to find the pole-skipping points, in that the coefficients b(n) of the near-horizon power
series b(r) = b(0) + b(1)(r − r0) + · · · can be obtained by iteration from b(1) while b(0) can
be left arbitrary. But this indeterminism in one single component, in the sense of UV,
will obscure the definition of the correlator of boundary currents which depends on the
near-horizon boundary condition exactly. As a remedy, we construct a gauge invariant β1
and its orthogonal pair β2:

β1 = kbvz + ωbxz, β2 = ωbvz − kbxz, (4.6)

which yield EOM

0 =
(
kZ(2iω + (d− 2)h′) + 2khZ ′

)
β′1 +

(
Z(−2ik2 + (d− 2)ωh′) + 2ωhZ ′

)
β′2

+ 2khZβ′′1 + 2ωhZβ′′2 ,
0 = k(k2 + ω2)β1 + ikω(r2f + h)β′1 + i(ω2h− k2r2f)β′2.

(4.7)
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Now β1 is saved from the extra d.o.f., which are, not of our interest, fully described instead
by an arbitrary constant term in β2. Imposing the ansatz of near-horizon expansion for bµν

bµν(r) = (r − r0)λµν (b(0)
µν + b(1)

µν (r − r0) + b(2)
µν (r − r0)2 + · · · ), (4.8)

or equivalently for the gauge invariants,8 we find the first-order special points for the
longitudinal and transverse modes at

ω = −2iπT, k2 = πT
(
(d− 4)h′ + 2hZ ′/Z

)
, for longitudinal mode,

ω = −2iπT, k2 = −πT
(
(d− 4)h′ + 2hZ ′/Z

)
, for transverse mode,

(4.9)

where h and Z are evaluated at r = r0.
As we have argued, for scalar and 1-form fields, such kind of special points near the

horizon are naturally regarded as the pole-skipping points of their boundary correlators.
Now we demonstrate with the model of 2-form in the following that the same is true of
higher-form fields which could be divergent on the boundary. Put it another way, pole-
skipping, a property of the holographic correlators, is only determined by IR physics in the
bulk spacetime, which would become self-evident once the boundary divergence is properly
renormalized.

Unlike the scalar and 1-form, the leading-order boundary behavior of 2-form depends
on the spacetime dimension. Without loss of generality, we examine the boundary behavior
and the boundary correlators of dual currents of the longitudinal mode in asymptotic AdS4
and AdS5. For both of the two cases, following [44], we adopt the ansatz of boundary
expansion for the gauge invariants

β1(r →∞) = rλ1

(
b00 + b10 + b11log(r)

r
+ · · ·

)
,

β2(r →∞) = rλ2

(
b′00 + b′10 + b′11log(r)

r
+ · · ·

)
,

(4.10)

as well as the asymptotic behavior at infinity introduced in eq. (2.2).

• Asymptotic AdS4

In asymptotic AdS4 black hole (studied earlier in [38]), the boundary solution to the
gauge-invariant EOM in eq. (4.7) is

β1(r →∞) = jr,

β2(r →∞) = 2kω
k2 − ω2 jr + const,

(4.11)

where j is the coefficient which will be fixed by the value of boundary current J1 dual
to the source β1(r →∞), and we have only kept the terms up to the first sub-leading
order. From eq. (4.3), the boundary currents Jµν dual to bµν are simply

Jvz = b′vz
γ2 ,

Jxz = i(kbvz + ωbxz + ir2b′xz)
r2γ2 .

(4.12)

8For simplicity, we refer to the gauge invariant β1 and its pair β2 as gauge invariants hereinafter.
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Therefore J1 is at leading order

J1 = Jµν
δbµν
δβ1

∼ j

γ2(k2 − ω2) = β′1
γ2(k2 − ω2) ,

(4.13)

where in the second line we have inserted the transformation rule of the field com-
ponents in eq. (4.6) and the boundary solution in eq. (4.11). With J1 we rewrite the
boundary solution in eq. (4.11) as

β1(r →∞) = γ2(k2 − ω2)J1r. (4.14)

The divergence as r →∞ makes the boundary behavior not well-defined, dependent
on a radial cutoff rΛ at some energy scale Λ. Regarding the boundary CFT as a
matrix-valued field theory, we consider J as a single-trace operator [45]. Then with
the double-trace deformation [45]

Sct = γ2

2κ

∫
dd+1x JµνJ

µν , (4.15)

we obtain a shift term for the boundary solution, i.e.,

δSct
δJ1 = γ2

2κ
δJµνJ

µν

δJ1

= γ2

2κηµρηνσ
(
Jρσ

δJµν

δJ1 + Jµν
δJρσ

δJ1

)
= γ2

2κηµρηνσ
(
Jρσ

δβ1
δbµν

+ Jµν
δβ1
δbρσ

)

∼ − j
κ
,

(4.16)

where in order to compute the leading-order term in the last line, we have used
the Lorentzian metric ηµν = diag(−1, 1, 1) for the boundary field, the values of the
boundary currents in eq. (4.12), and the transformation rule of the field components
in eq. (4.6). At some cutoff rΛ, this shift term and the boundary solution in eq. (4.14)
yield altogether

β1(rΛ) = γ2(k2 − ω2)J1rΛ −
γ2(k2 − ω2)J1

κ

≡ b00 −
γ2(k2 − ω2)J1

κ
,

(4.17)

where in the second line we have defined b00, which is finite now, as the source.
Compare with the choices of boundary conditions in section 2.2 and we know that
eq. (4.17) corresponds to a mixed boundary condition. Finally, we evaluate the
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correlator of J1 in the linear response model:

GRJ1,J1(ω, k) = J1

b00

= J1

β1(rΛ) + γ2(k2−ω2)J1

κ

= 1
γ2(k2 − ω2)

[
β1(rΛ)
β′1(rΛ) + 1

κ

] .
(4.18)

The correlator, a physical quantity, should be independent of the cutoff scale [38]. By
assuming the double-trace coupling κ as a function of energy scale Λ, one can obtain
from the square bracket in eq. (4.18) a β-function and evaluate the fixed point by
extremization. Furthermore, since the bulk field EOM has no global solution, β1(rΛ)
has to be expanded as the infinite series from the near-horizon expansion similar to
eq. (4.8). Therefore, GRJ1,J1 has a series of pole-skipping points, the first of which is
exactly (ω, k) in eq. (4.9), unaltered by the shift term resulting from the double-trace
deformation.

• Asymptotic AdS5

In analogy, in asymptotic AdS5 black hole (studied earlier in [39]), the boundary
solution to the gauge-invariant EOM in eq. (4.7) is

β1(r →∞) = b00 + j log(r),

β2(r →∞) = b′00 + 2kω
k2 − ω2 j log(r),

(4.19)

where we have kept the terms up to the first sub-leading order.

The boundary current J1 at leading order is

J1 = Jµν
δbµν
δβ1

∼ j

γ2(k2 − ω2) = rβ′1
γ2(k2 − ω2) .

(4.20)

With J1 we rewrite the boundary solution in eq. (4.19) as

β1(r →∞) = b00 + γ2(k2 − ω2)J1log(r). (4.21)

With the double trace deformation in eq. (4.15), we obtain a shift term identical to
the one for AdS4,

δSct
δJ1 = γ2

2κ
δJµνJ

µν

δJ1

∼ − j
κ
.

(4.22)
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At some cutoff rΛ, this shift term and the boundary solution in eq. (4.21) yield

β1(rΛ) = b00 + γ2(k2 − ω2)J1log(rΛ)− γ2(k2 − ω2)J1

κ

≡ b00 −
γ2(k2 − ω2)J1

κ
,

(4.23)

where in the second line we have redefined b00 as the source. Finally, we evaluate the
correlator of J1:

GRJ1,J1(ω, k) = J1

b00

= J1

β1(rΛ) + γ2(k2−ω2)J1

κ

= 1
γ2(k2 − ω2)[ β1(rΛ)

rΛβ
′
1(rΛ) + 1

κ ]
.

(4.24)

In AdS5, we expect the correlator to be dependent only on the Landau pole r∗ =
rΛe

1
κ , an invariant through the RG flow [39]. This could be achieved by a possible

combination of rΛ and κ if one found an explicit formula for the correlator. In
addition, if we expand β1(rΛ) as the infinite series in the form of the near-horizon
expansion, we can again draw the conclusion that GRJ1,J1 has a series of IR pole-
skipping points, the first of which is exactly (ω, k) in eq. (4.9), unaltered by the shift
term from the double-trace deformation.

4.2 Massive 2-form

The 2-form action added with a quadratic term of a non-zero mass m is

S[A] = − 1
6γ2

∫
dd+2x

√
−gZ(φ)(H2 + 3m2B2). (4.25)

The corresponding EOM are

∂M
(√
−gZ(φ)HMNP

)
−
√
−gZ(φ)m2BNP = 0. (4.26)

The constraint equation
∂M (
√
−gZ(φ)BMN ) = 0 (4.27)

helps simplify the EOM to be9

0 = ∂M
(√
−gZ(φ)∂MBNP

)
+ [
√
−gZ(φ)BrP∂r

(√
−gZ(φ)

)
∂N

( 1√
−gZ(φ)

)
+BrP∂N∂r

(√
−gZ(φ)

)
− (N ↔ P )]−

√
−gZ(φ)m2BNP .

(4.28)

Similar to the massless case, the boundary current operator J is now evaluated as

Jµν = − 1
γ2
√
−gZ(φ)(Hrµν +m2Bµν). (4.29)

9In our configuration, bvz and brz are coupled in EOM (z denotes an arbitrary spatial coordinate).
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With the same ansatz of near-horizon expansion as eq. (4.8), we find the first special points
for bvz components (z denotes an arbitrary spatial coordinate)

ω = −2iπT, k2 = −m2h− πT (dh′ + 2hZ ′/Z). (4.30)

These two points are exactly the same as those for the massive 1-form in eq. (3.12). This
is no coincidence. We will elaborate on this issue in the discussion section.

Now we demonstrate that the mass-dependent boundary divergence of 2-form in the
bulk does not affect the pole-skipping properties of the boundary correlators either. For
brevity, performing the same double-trace method as done in the massless model, we renor-
malize the boundary behavior and evaluate the boundary correlators, by assuming asymp-
totic AdS4, for instance, to be the background spacetime.

Firstly, the leading-order EOM on the boundary can be simplified as

0 = −m2r2brz + 2bvz + r4b′′rz,

0 = (2−m2)r2brz −m2bvz + 4r3b′rz + r4b′′rz + r2b′′vz,

0 = (2−m2)bvr + 4rb′vr + r2b′′vr,

(4.31)

with the assumption of the asymptotic behavior in eq. (2.2). We expand the field compo-
nents on the boundary as

bµν(r →∞) = rλµν
(
bµν,00 + bµν,10 + bµν,11log(r)

r
+ · · ·

)
. (4.32)

The boundary solution of bvz is easily found to be

bvz(r →∞) = jrλ, λ = 1
2(1 +

√
1 + 4m2), (4.33)

while brz and bvr are sub-leading. Then from eq. (4.29), the boundary current Jvz is at
leading order

Jvz = jλrλ−1

γ2 . (4.34)

With the double trace deformation in eq. (4.15), we obtain a shift term

δSct
δJvz = γ2

2κ
δJµνJ

µν

δJvz = −γ
2Jvz

κ
. (4.35)

Therefore we renormalize the boundary solution at some cutoff rΛ to be

bvz(rΛ) ≡ b00 −
γ2

κ
Jvz, (4.36)

where b00 is the redefined source. Finally, we evaluate the correlator of Jvz:

GRJvz,Jvz(ω, k) = Jvz

b00

= Jvz

bvz(rΛ) + γ2Jvz

κ

= 1
γ2[ bvz(rΛ)

b′vz(rΛ) + 1
κ ]
.

(4.37)
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Note that this abstract form looks identical to the massless correlator in eq. (4.18), only
different in an overall prefactor. But its explicit form depends on the bulk field EOM now
with an additional mass term. Insert the near-horizon expansion of bvz(rΛ) in eq. (4.8) and
we shall verify that the corresponding correlator has a series of IR pole-skipping points,
the first of which is (ω, k) in eq. (4.30), unaltered by the shift term from the double-
trace deformation. As an aside, one can check that in higher spacetime dimensions, the
conclusion stated above also holds true.

5 p-form

Now we generalize the discussion of the previous two sections to p-form to probe the
pole-skipping pattern with near-horizon analysis. In subsection 5.1, we study the massless
U(1)-gauge case; in subsection 5.2, we briefly talk about the massive configuration. We
also discuss and visualize the analytic results of higher orders as an extension of previous
sections.

5.1 Massless p-form

Generically, the action term of a minimally-coupled p-form field P can be written as

S[P ] = − 1
2(p+ 1)

∫
dd+2x

√
−gZ(φ)(dP )2, (5.1)

where dP is the (p+ 1)-form field strength, with components

dPM0···Mp = (p+ 1)∂[M0PM1···Mp]

= 1
p!P(∂M0PM1···Mp)

=
p∑
j=0

(−1)j∂MjPM0···Mj−1Mj+1···Mp ,

(5.2)

where in the second line P denotes the alternating sum over all permutations of the indices.
The theory has U(1) gauge symmetry, i.e., P → P + dΛ for arbitrary (p− 1)-form Λ whose
exterior derivative obeys eq. (5.2). By taking the functional derivatives, we obtain EOM

∂M0(
√
−gZ(φ)dPM0···Mp) = 0. (5.3)

We still assume that the wave vector of the field lies in x direction, and that the field has
a plane-wave expansion, i.e.,

P (r, v, x) =
∫

d2k e−iωv+ikxp(r, ω, k). (5.4)

As a natural generalization from 2-form, with the gauge condition Pr··· = 0, there are
generically three modes for p-form P , which we name as10 (1) scalar mode pvx···, which is

10The components of a higher form generically transform as tensors under SO(d − 1). The three modes
are named hereby so as to be consistent with 1-form and 2-form.
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trivial, (2) vector (longitudinal) mode pvz1···zp−1 , pxz1···zp−1 , where z denotes any spatial
coordinate except x, (3) tensor (transverse) mode pz1···zp , which exists only in dimension
d ≥ p+ 1. Note that such a classification of modes only holds for the form number p ≥ 2.
Then one can check the EOM of the longitudinal mode and the transverse mode

0 = k2pvz1···zp−1 + kωpxz1···zp−1 + iωhp′vz1···zp−1 + ikr2fp′xz1···zp−1 ,

0 = ikZp′xz1···zp−1 +
(
(d/2− (p− 1))Zh′ + hZ ′

)
p′vz1···zp−1 + hZp′′vz1···zp−1 ,

0 = (Z(2k2 + i(d− 2p)ωh′) + 2iωhZ ′)pz1···zp − 2r2fhZp′′z1···zp

+
(
(2p− d)r2fZh′ − 2h(Z(−2iω + 2rf + r2f ′) + r2fZ ′)

)
p′z1···zp .

(5.5)

Imposing the ansatz of near-horizon expansion for pµ1···µp

pµ1···µp(r) = (r − r0)λµ1···µp (p(0)
µ1···µp + p(1)

µ1···µp(r − r0) + p(2)
µ1···µp(r − r0)2 + · · · ), (5.6)

or analogously for the gauge invariants, we find the first-order pole-skipping points for the
boundary correlators of the longitudinal and transverse modes at

ω = −2iπT, k2 = πT
(
(d− 2p)h′ + 2hZ ′/Z

)
, for longitudinal mode,

ω = −2iπT, k2 = −πT
(
(d− 2p)h′ + 2hZ ′/Z

)
, for transverse mode,

(5.7)

where h and Z are evaluated at r = r0.
We also find the higher order points by solving the equations of series expansion order

by order, which are summarized in table 1 and 2 for the two modes, respectively. Here
we have restricted to AdS black hole and ignored the dilatonic coupling for conciseness
of the results, with metric functions f(r) = 1 − ( r0r )d+1, h(r) = r2 in eq. (2.1). And we
have observed that even with such kind of simplification, the analytic expressions become
extremely lengthy for the third and higher orders, and therefore we only display some of
the results corresponding to specific low forms and low dimensions.

The Matsubara frequencies are strictly satisfied, and the number of pole-skipping
points is 2n for order n (n ≥ 1), as expected. As we have mentioned in section 3, there ex-
ists an extra “zeroth” order point at the origin for the longitudinal mode, and the massless
scalar can be included in the transverse mode by taking p = 0. And in some special cases,
the values of k2 may degenerate, e.g. the longitudinal mode of 1-form in AdS3 spacetime.
Our results for scalar and massless 1-form consist with those in [19].

The data above are graphically displayed in figure 1 and figure 2, respectively for the
two modes. The background spacetime is set as AdS5 (d = 3); the radius is fixed as r0 = 1.
Roughly speaking, we see that for an arbitrary p-form, the pole-skipping points tend to be
dispersed farther as the order n goes up, while the two modes display opposite patterns.
For the longitudinal mode, positive k2 (real value of k) for the pole-skipping points exists
only in the case of 1-form; for the transverse mode, positive k2 exist in the case of higher
forms. More precisely, at the fixed order n, the points form n clusters on the ω − k2

plane. Within each cluster, the value of k2 decreases as the form number increases in the
longitudinal mode, while it increases as the form number increases in the transverse mode.
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zeroth order:
in AdSd+2: ω = k = 0
first order:
in AdSd+2: ω = −1

2 i(1 + d)r0, k
2 = 1

2(1 + d)(d− 2p)r0
2

second order:
in AdSd+2: ω = −i(1 + d)r0, k

2 = (1 + d)
(
−p±

√
d2 + p(2 + p)− d(1 + 2p)

)
r0

2

third order:
ω = −3

2 i(1 + d)r0
1-form

in AdS3: k2 = −r0
2,−9r0

2,−r0
2

in AdS4: k2 = 0,−3(4 +
√

2)r0
2, 3(−4 +

√
2)r0

2

in AdS5: k2 = (−6 + 4
√

6)r0
2,−30r0

2,−2(3 + 2
√

6)r0
2

2-form
in AdS4: k2 = 3(−4 +

√
11)r0

2,−3(4 +
√

11)r0
2,−9r0

2

in AdS5: k2 = 2(−9 + 2
√

14)r0
2,−2(9 + 2

√
14)r0

2,−18r0
2

in AdS6: k2 = 0,−50r0
2,−30r0

2

3-form
in AdS5: k2 = −2(15 + 2

√
6)r0

2, (−30 + 4
√

6)r0
2,−6r0

2

in AdS6: solvable but lengthy
in AdS7: k2 = −75r0

2, 3(−9 + 4
√

3)r0
2,−3(9 + 4

√
3)r0

2

Table 1. Pole-skipping analytics for the massless longitudinal mode.

first order:
in AdSd+2: ω = −1

2 i(1 + d)r0, k
2 = −1

2(1 + d)(d− 2p)r0
2

second order:
in AdSd+2: ω = −i(1 + d)r0, k

2 = (1 + d)
(
−d+ p±

√
d+ (−2 + p)p

)
r0

2

third order:
ω = −3

2 i(1 + d)r0
1-form
in AdS4: k2 = 0,−3(4 +

√
2)r0

2, 3(−4 +
√

2)r0
2

in AdS5: k2 = 2(−9 + 2
√

14)r0
2,−18r0

2,−2(9 + 2
√

14)r0
2

2-form
in AdS5: k2 = (−6 + 4

√
6)r0

2,−2(3 + 2
√

6)r0
2,−30r0

2

in AdS6: k2 = 0,−50r0
2,−30r0

2

3-form
in AdS6: solvable but lengthy
in AdS7: k2 = −45r0

2, 3(−11 + 4
√

11)r0
2,−3(11 + 4

√
11)r0

2

Table 2. Pole-skipping analytics for the massless transverse mode.
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Figure 1. Scatter diagram for the massless longitudinal mode. The background spacetime is set
as AdS5 (d = 3); the radius is fixed as r0 = 1.
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1-form
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Figure 2. Scatter diagram for the massless transverse mode. The background spacetime is set as
AdS5 (d = 3); the radius is fixed as r0 = 1. Caveat: the transverse mode of 3-form does not exist
physically in five dimensions. These points are evaluated with an extension of the p-domain.

5.2 Massive p-form

In analogy, we briefly present the computation of bulk p-form with a non-zero mass. The
action term is

S[P ] = − 1
2(p+ 1)

∫
dd+2x

√
−gZ(φ)

(
(dP )2 + (p+ 1)m2P 2

)
. (5.8)

The corresponding field EOM are

∂M0

(√
−gZ(φ)dPM0···Mp

)
−
√
−gZ(φ)m2PM1···Mp = 0. (5.9)

Following the simplification of 1-form and 2-form and assuming the plane-wave expansion
in eq. (5.4) and the near-horizon expansion of the field components in eq. (5.6), we find
with no difficulty the first pole-skipping points for the correlator of boundary currents dual
to pvz1···zp−1 at

ω = −2iπT, k2 = −m2h− πT (dh′ + 2hZ ′/Z). (5.10)
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first order:
in AdSd+2: ω = −1

2 i(1 + d)r0, k
2 = −1

2(d+ d2 + 2m2)r0
2

second order:
in AdSd+2: ω = −i(1 + d)r0, k

2 =
(
−(d+ d2 +m2)±

√
2(1 + d)(d+ d2 +m2)

)
r0

2

third order:
ω = −3

2 i(1 + d)r0
in AdS3, m

2 → 0: k2 = −r0
2, (−5 + 4

√
2)r0

2,−(5 + 4
√

2)r0
2

in AdS3, m
2 = 1

2 : k2 = −3
2r0

2, 1
2(−11 + 4

√
10)r0

2,−1
2(11 + 4

√
10)r0

2

in AdS3, m
2 = 1: k2 = (−6 + 4

√
3)r0

2,−(6 + 4
√

3)r0
2,−2r0

2

in AdS4, m
2 → 0: k2 = 3(−4 +

√
19)r0

2,−3(4 +
√

19)r0
2,−9r0

2

Table 3. Pole-skipping analytics for the massive temporal mode.
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m
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m
2→0, p-form

m
2=4, p-form

Figure 3. Scatter diagram for the massive temporal mode. The background spacetime is set as
AdS5 (d = 3); the radius is fixed as r0 = 1.

For simplicity, we call the corresponding mode the temporal mode.11 These two points are
again identical to those for massive 1-form and 2-form correlators, and do not reduce in
zero-mass limit to the points of the massless longitudinal mode in eq. (5.7).

The higher order pole-skipping points for the temporal mode are summarized in table 3.
Here we have restricted to AdS black hole and ignored the dilatonic coupling. We see that
at the third order, the concise analytic results are quite limited for d ≥ 2. Therefore we only
display some of the results to be succinct.We see again the degeneracy that the massive
results are independent of the form number, while only the leading order result coincides
with the massive scalar case, cf. the second order result in eq. (2.20) and table 3.

The data above are graphically displayed in figure 3. The background spacetime is set
as AdS5 (d = 3); the radius is fixed as r0 = 1. We see that the nonzero mass shifts the
negative value of k2 to be smaller, and that at higher orders, the points for the massive
scalar are more densely clustered than the points for the massive forms.

11The other physical mode, which we call the spatial mode, contains the spatial components which are
decoupled in the EOM after the simplification.

– 21 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
4

6 Discussion and conclusion

In this section, we briefly summarize the main results aforesaid, and clarify some facts
about the pole-skipping properties of the U(1) gauge models and those symmetry-broken
massive configurations separately.

We have found the pole-skipping points of U(1)-gauged boundary correlators with
near-horizon analysis in the bulk spacetime. As explained in this work as well as in [19],
at these points on the (ω, k)-plane, the two independent solutions degenerate, or more
precisely, the extra d.o.f. in the coefficients of the near-horizon series expansion render
the solution unphysical. Specifically, to study the full dynamics in asymptotic AdSd+2, we
have considered the U(1) field configured as generic p-form with d ≥ p. The first order
pole-skipping points of the boundary correlators are located at

ω = −2iπT, k2 = πT
(
(d− 2p)h′ + 2hZ ′/Z

)
, for p-form longitudinal mode,

ω = −2iπT, k2 = −πT
(
(d− 2p)h′ + 2hZ ′/Z

)
, for p-form transverse mode,

(6.1)

considering the transformation properties of the modes. This is a generalization of the re-
sults in [19, 20]. For the massless cases of higher orders, the analytic results are summarized
in table 1 and 2.

Now we seek to find a relation between the pole-skipping properties of U(1) correlators
and electromagnetic duality. Recall the proportionality of the boundary values of the dual
fields in eq. (2.8)

β̃(d−p) ∝ ∗dα(p+1), dα̃(d+1−p) ∝ ∗β(p), (6.2)

and we can establish with our plane-wave expansion in eq. (5.4) a pair of dual relations of
their components evaluated on the boundary:

pz1···zp ⇐⇒ ∗pvzp+1···zd−1 , pvz1···zp−1 ⇐⇒ ∗pzp···zd−1 . (6.3)

These relations prompt us to investigate the pole-skipping points of the corresponding
modes of P and its dual ∗P . Recall the points for the scalar (0-form) correlator in eq. (2.19),
which take the values in zero-mass limit

ω = −2iπT, k2 = −m2h− πTdh′ m→0−→ −πTdh′. (6.4)

With some simple calculations, we discover that the pole-skipping points of the dual modes
are exactly identical if the dilatonic coupling is ignored. One can check this argument by
using eq. (6.1), (6.3), and (6.4) at the first order, and further by using table 1 and 2 at
higher orders. For instance,

in asymptotic AdS3 : k2(alon) = k2(φ),
in asymptotic AdS4 : k2(blon) = k2(φ),
in asymptotic AdS5 : k2(clon) = k2(φ),

k2(blon) = k2(atran), k2(btran) = k2(alon),
in asymptotic AdSd+2 : k2(dlon) = k2(φ),

k2(plon) = k2(∗ptran), k2(ptran) = k2(∗plon),

(6.5)
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where we have denoted the correlators of the scalar, 1-form, 2-form, 3-form, d-form, and
(p ≥ 2)-form by φ, a, b, c, d, p, respectively, and denoted the two modes by the shorthand
of their first few letters. Therefore, we declare a trans-mode identification of pole-skipping,
which we consider as a near-horizon verification of electromagnetic duality in asymptotic
AdS spacetime.

Similarly, we have probed the generalized configuration by assuming a non-zero mass
for the bulk fields. For simplicity, we have focused on the temporal mode, whose first-order
pole-skipping points are located at

ω = −2iπT, k2 = −m2h− πT (dh′ + 2hZ ′/Z), ∀ p-forms, p ≥ 1. (6.6)

And the higher order analytics are summarized in table 3. Unlike the massless pole-skipping
points, these points are independent of the form number p, while they are distinct from
the massive scalar case, cf. eq. (6.4) and (2.20). Therefore, we interpret the appearance of
the form number in the values of pole-skipping points as a messenger of gauge symmetry
for holographic form models. In addition, in zero-mass limit, these points do not reduce to
the form-number dependent massless values in eq. (6.1) as well as table 1 and 2. As argued
in [29], in gauge field theories the ground state would be degenerate, with equivalent states
connected by the gauge symmetry. In our context, the explicitly broken gauge symmetry
gives rise to new physics, say, prospectively in the pole-skipping phenomenon which could
have a correspondence to the non-degeneracy of the boundary ground state in chaotic
systems.

Furthermore, we have reviewed with the example of 2-form that the boundary diver-
gence can be fixed by holographic renormalization, or more precisely, by means of the
double-trace deformation in the view of the boundary CFT. Therefore, with the choice of
mixed boundary condition, the redefined source and the double-trace coupling term would
lead to well-defined holographic correlators. Then we have demonstrated that the coupling
κ does not make a difference in the pole-skipping properties considering the IR physics,
i.e., the near-horizon boundary condition. We understand the meaning of IR in the sense
that:

(1) By computing the correlators, one can tell directly where their pole-skipping points
lie. Such kind of computation is practically difficult both in CFT and by GKPW relation
(which is simplified as the ratio of the response and the source in the linear response
system). Compared to quantized boundary CFT, the gravitational computation in the
bulk is IR. (2) In another sense, the renormalization of the boundary CFT corresponds to
the radial cutoff in the bulk, that is, the flow downward to lower energy scale is translated
to be the radial cutoff deeper in the bulk [46–48]. Therefore, the pole-skipping points of
the boundary correlators only depend on IR bulk physics.

As a complement, we have introduced in eq. (2.3) from [33] that with the gauge condi-
tion Pr··· = 0, in AdSd+2 a generic propagating p-form field P behaves on the boundary as12

P (r →∞) = α+ β r2p−d−1 + · · · , (6.7)
12In [33], the boundary spacetime is assumed to be AdSd+1. Please note this number difference from our

setup for a close examination.
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where α and β are constants of r. Exceptionally, a logarithmic term would appear when
d is odd and p = (d − 1)/2 [33], exemplified by the boundary solution of 2-form, i.e. the
electromagnetic dual for d = 3 as we discussed in section 4. Therefore, one could adopt
a similar prescription of renormalization to fix the possibly existing boundary divergence
and thus to examine the veracity of the special points obtained from near-horizon analysis
in eq. (5.7) and eq. (5.10).

We emphasize that the form models are chosen to be minimally coupled because we
expect that with these basic models the pole-skipping properties of more complicated
configurations could be unveiled. Certainly their would be (possibly huge) difference among
different cases in the analytic locations of the special points. We believe, however, that our
form models are typical of a wide range of cases, and could be used to be compared with
future results based on other models which have explicit physical meaning in condensed
matter physics. In this sense, we expect that this work paves the way for future studies.

In conclusion, we have studied the pole-skipping properties of U(1)-gauged holographic
correlators of form currents and discovered a trans-mode equivalence in correspondence
with electromagnetic duality. We have discussed the generalization with explicit symme-
try breaking, indicative of more interesting chaotic physics to be detected. These results
are examined at the first few orders of pole-skipping. We have also substantiated our
near-horizon computation by holographically renormalizing the boundary solutions and
demonstrated that the pole-skipping properties are only determined by the IR physics,
consistent with the previous models without divergence on the boundary. These results
motivate us to extend our studies to models with spontaneous symmetry breaking in future
works, as an attempt to investigate the superconducting phase with holography.
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