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1 Introduction and summary

There are infinite-dimensional local algebras in 2 dimensions, having Virasoro algebra as
a subalgebra. The conformal blocks on the sphere are determined by these algebras at
generic central charge c and operator dimensions {ha, hint

p }, where ha correspond to external
operators Oa and hint

p to the intermediate operator Oint
p . On the other hand, conformal

field theories (CFTs) are specified by consistent CFT data namely the central charge, the
operator dimensions in the spectrum and the 3-point structure constants. The latter occurs
in the conformal block expansion coefficients of the correlators. As one of the consistency
criteria we require crossing symmetry of the correlators on the sphere, and to set up such
bootstrap equations we need to know the matrices connecting the conformal blocks at two
singularities in the cross-ratio x. In plenty of cases, blocks have been obtained in closed
forms as solutions to differential equations satisfied by the correlators, and then the said
connection matrices have been obtained, e.g. [1–4]. They have employed null states w.r.t.
the local algebra to derive such differential equations; however, see the appendix of [5] for a
discussion on general construction of such differential equations on the sphere.
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This paper discusses the construction of differential equation for the conformal blocks
that appear in the expansion of a crossing symmetric 4-point sphere correlator. Crossing
symmetry translates as certain modular properties of the correlator under a well-known
map [6] between the cross-ratio space and the complex upper half plane H+ [7–9]. This
allows us to write modular linear differential equations (MLDEs) in τ ∈ H+ w.r.t. some
subgroup Γ̃ of the modular group for the conformal blocks appearing in the correlator. We
determine Γ̃ based on whether some operators in the correlator are identical or not. By
construction the order of the differential equation is equal to the number of blocks appearing
in the expansion of the correlator. Since we do not use null states, our construction is
general and includes null state equations as subcases. This construction is in the spirit
of [10, 11], which wrote MLDEs for the characters in rational CFTs in keeping with the
modular invariance of the torus partition function formed by the characters.1 However,
the group does not have to be the full modular group in our case. And, we do not need
to assume a finite number of operators in the spectrum; we only need to assume a finite
number of conformal blocks in the expansion of a correlator 〈O1O2O3O4〉 in consideration.
The most general scenario for the latter to happen is as follows.2

O1 ×O2 =
N∑
p=1

Oint
p +

∑
q

Ξint
q , O3 ×O4 =

N∑
p=1

Oint
p +

∑
r

Ξ̃int
r , (1.1)

where in the fusion rules Oa are the 4 external operators and “int” denotes the intermediate
operators. And, the operators Ξint

q are all distinct from Ξ̃int
r .

Although Γ̃ differs depending on whether some or all of the external operators are
identical or not, they all contain Γ(2) as a subgroup. Thus, we begin with an ansatz for the
MLDE w.r.t. Γ(2) that introduces a set of parameters ~α. Modular forms w.r.t. Γ(2) can be
expanded in terms of specific powers of the Jacobi theta functions, and ~α are the expansion
coefficients. The locus on the parameter space is then found so that it forms an MLDE
w.r.t. Γ̃. The rationale behind such a construction is as follows. We strip out a specific
factor from the correlator that encodes the statistics in 2 dimensions, following [7]. The
crossing symmetry of the stripped correlator translates as the invariance under Γ̃-actions
on τ . The holomorphic blocks that contribute to the expansion of the stripped correlator
are therefore generally allowed to transform as a vector valued modular function under Γ̃,
and should so satisfy such an MLDE. In particular, the Γ(2)-actions on τ generate closed
loops circling x = 0, 1. Thus, the Γ(2)-invariance is interpreted as the single-valuedness of
the stripped correlator. Since the statistics are already encoded in the stripped out factor,
this should be the case.

In this paper, we further tune ~α such that the solutions to above MLDE are Virasoro
conformal blocks. We organise our program as the following series of steps. Solving
the MLDE, we obtain the q-expansion coefficients of trial solutions at generic ~α. The q-
expansions of the Virasoro blocks can be computed using Zamolodchikov’s elliptic recursion
relation [6]. We identify c, ha, hint

p in terms of ~α by comparing the leading behaviour as
1See [12–21] for recent works along this line.
2An integral version can also be written for this scenario resulting in finitely many blocks in the expansion

of the correlator 〈O1O2O3O4〉.
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q → 0 and the first few coefficients in the trial solutions with those of Virasoro blocks.
The parameter space is then constrained such that the higher coefficients also match. In
specific examples, we check it numerically to a sufficiently high order in the q-expansions.
In latter checks, we numerically produce the q-expansion coefficients in the solutions using
known q-expansions of the modular forms and solving the MLDE recursively. On the other
hand, we use a Mathematica code published in [22] for the numerical computations of
q-expansion coefficients in the Virasoro blocks. On the surviving parameter space ~α, the
solutions to MLDE are 4-point Virasoro blocks. We discuss the (hyper-)surfaces in this
parameter space on which the MLDE corresponds to BPZ equations and the possibilities of
new equations. Using the Γ̃-actions, bootstrap equations involving the associated 3-point
coefficients have been set up and solved as well in terms of the MLDE parameters ~α. For
above implementations, we particularly focus on second order MLDEs with the cases of all
identical operators and pairwise identical operators in the correlator. Let us summarize our
main results in the following.

• In the case of all identical primaries in the correlator and 2 intermediate ones, one
of which is identity and the other with dimension greater than zero, we produce a
MLDE w.r.t. the full modular group with a single parameter whose solutions are the
4-point Virasoro blocks. In this case, the MLDE always corresponds to a second order
BPZ equation. For scalar operators, the square of the associated non-trivial 3-point
coefficient is expressed in terms of the MLDE parameter. Correlator of 4 spinning
operators vanishes in this case.

• We also present explicit examples of MLDEs in both unitary and non-unitary theories
in the above case. By testing various unitarity bounds, we constrain the parameter
space. In the present case, the non-negativity of the q-expansion coefficients of
the pillow blocks (which are related to the Virasoro blocks) applies as unitarity
bound [23, 24]. We provide evidence that this is not a sufficient condition for unitarity.

• In the case of pairwise identical primaries in the correlator and 2 intermediate ones,
one of which is identity and the other with dimension greater than zero, starting
from some specific examples of MLDEs (obtained by a computer-assisted search) we
use linear perturbations around them to generate (infinite-)family of MLDEs w.r.t.
a subgroup of the modular group whose solutions are the 4-point Virasoro blocks.
The product of the associated non-trivial 3-point coefficients is expressed in terms of
the MLDE parameters, confining us to scalar operators. We present some MLDEs
that do not correspond to BPZ equations. These are new second order differential
equations whose solutions are Virasoro blocks. These specific cases are non-unitary.

• We also discuss the importance to study MLDEs with meromorphic forms as coef-
ficients, since by tuning the parameters solutions to such MLDEs may as well give
4-point Virasoro blocks. We present one such example where although the differential
equation has additional singularities than the expected ones the Virasoro blocks are
free from them.
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As it stands now, our program focuses on constructing differential equations for
conformal blocks on a basis that is more general than the occurrence of null states, rather
than classifying CFTs.3 We do not bear any expectations regarding integrality of the q-
expansion coefficients in the conformal blocks, unlike characters, which makes our program
challenging. In fact, that is another place where our program differs from that of [10, 11]. In
the latter demanding integrality of the coefficients greatly helps to obtain a finite number of
values of the MLDE parameter, whereas we get connected region(s) in the parameter space
~α where our required MLDEs exist. Nonetheless, we have reported whether the coefficients
are non-negative integers or not in each of our examples presented, keeping in mind that
the cases with integer coefficients may be suitable for a sphere-torus correspondence as
recently reported in [9].

This paper is organized as follows. In section 2, we review the relationship between
crossing symmetry and modular transformations. In section 3, we formulate our program of
the construction of MLDEs for the Virasoro blocks appearing in the expansion of a crossing
symmetric 4-point correlator on the sphere. Section 4 deals with the studies of second
order MLDEs with section 4.1 focusing on the case of all identical external operators and
section 4.2 on the pairwise identical external operators. We end by discussing potential
interesting generalisations in section 5. Our appendix E records the q-expansion of blocks
computed in the explicit examples discussed in this paper.

2 Review

Under a suitable map between the cross-ratio space and the complex upper half plane,
crossing symmetry of a 4-point correlator on the sphere translates as certain modular trans-
formation properties. In this section, we review the necessary elements of this relationship.
For more details, see [6–9].

2.1 Stripped correlators

For 4 (quasi-)primary operators, [7] introduced stripped correlators whose transformations
under crossing are simple in the sense explained below.

Let O1(z1, z̄1), . . . , O4(z4, z̄4) be 4 (quasi-)primary operators located on the sphere. A
4-point correlator of these operators is denoted as

〈Oa(za, z̄a)Ob(zb, z̄b)Oc(zc, z̄c)Od(zd, z̄d)〉

where (abcd) is a permutation of (1234). It is a certain function of the operator locations
and conformal dimensions, which remains invariant up to a phase if we reorder the operators
inside the angle brackets 〈· · · 〉. The latter property is referred to as crossing symmetry and
the said phase encodes the statistics of the operators in 2 dimensions.

3However, a classification program in the context of MLDEs for blocks may also be initiated by considering
correlators of the intermediate operators (which we obtain using our second order MLDEs) with those of the
external ones, and writing down MLDEs for the blocks of these new correlators to see the dimensions of
possible new(if any) intermediate operators. In turn, we advance toward the full spectrum of the CFT. But,
the complexity lies in allowing higher order MLDEs for the blocks in the new correlators.

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
1
5
8

Let us label the 4 places from left to right inside the angle brackets 〈· · · 〉 by i = 1, . . . , 4.
With each ordering of the 4 operators inside the angle brackets, we associate a cross-ratio
of their locations, see (2.1). Consider any given ordering of the 4 operators, w.r.t. which
let (z(i), z̄(i)) and (h(i), h̄(i)) respectively denote the location and the dimension of the
operator that sits at the i-th place. The corresponding correlator can be factored into 2
components, one of which is a function of the associated cross-ratio and the other satisfies
the Ward identities for Global conformal symmetry. I.e.,

〈 ︸︷︷︸
1
︸︷︷︸

2
︸︷︷︸

3
︸︷︷︸

4

〉
= function of cross-ratio×

4∏
i<j=2

(zµijij · z̄
µij
ij )

︸ ︷︷ ︸
≡G0

,

zij = z(i)− z(j), µij = 1
3

4∑
k=1

h(k)− h(i)− h(j), µ̄ij = 1
3

4∑
k=1

h̄(k)− h̄(i)− h̄(j) ,

cross-ratio ≡
(
z(1)− z(2)

)(
z(3)− z(4)

)(
z(1)− z(3)

)(
z(2)− z(4)

) . (2.1)

A specific solution to the global Ward identities is used above which we denote by G0.
Under permutations of operators inside the angle brackets, G0 picks the phase suited to the
statistics of the operators. E.g., it remains invariant for scalar operators.

W.r.t. above rule for cross-ratio, the stripped correlators Gabcd as functions of cross-
ratios are defined as

〈
Oa(za, z̄a)︸ ︷︷ ︸

1

Ob(zb, z̄b)︸ ︷︷ ︸
2

Oc(zc, z̄c)︸ ︷︷ ︸
3

Od(zd, z̄d)︸ ︷︷ ︸
4

〉
= Gabcd

(
xabcd, x̄abcd

)
×G0 ,

xabcd = (za − zb)(zc − zd)
(za − zc)(zb − zd)

, (abcd) = permutation of (1234) . (2.2)

Now, denoting x = x1234 crossing symmetry relates them as follows4

non-trival : G1234 (x, x̄) = G1243

(
x

x− 1 ,
x̄

x̄− 1

)
= G4231

(1
x
,

1
x̄

)
= G3214 (1− x, 1− x̄)

= G3241

(
x− 1
x

,
x̄− 1
x̄

)
= G4213

( 1
1− x,

1
1− x̄

)
,

trival : G1234 (x, x̄) = G2143 (x, x̄) = G3412 (x, x̄) = G4321 (x, x̄) . (2.3)

Furthermore, each Gabcd(x, x̄) is single-valued in x.5 Only 6 among all the Gabcd are
independent. From them all the others can be obtained using the trivial relations in (2.3).

We emphasize that the specific selection of G0 results in the aforesaid simple crossing
transformations of the stripped correlators. There are no x-dependent prefactors in any of
the equalities in (2.3), in contrast to [1, 4]. They reveal the role of the full modular group,
as discussed in the following subsection. However, the role of modular S-transformation is

4Here, x lives on a 3-punctured sphere which we call as the cross-ratio space.
5Here, we mean on the slice x̄ = x∗ with x∗ denoting the complex conjugate of x.
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observable with other choices of G0 and has long been studied; for recent considerations,
see [25–28].

We also note that

〈O1(∞)O2(1)O3(x)O4(0)〉 ≡ lim
z1,z̄1→∞

z2h1
1 z̄2h̄1

1 〈O1(z1, z̄1)O2(1, 1)O3(x, x̄)O4(0, 0)〉

= xµ34(1− x)µ23 x̄µ̄34(1− x̄)µ̄23G1234(x, x̄) . (2.4)

The holomorphic conformal blocks that contribute to the stripped correlator G1234(x, x̄)
exhibit the following leading behaviour as x→ 0.6

Fp(x) = xh
int
p −H

3 (1 +O(x)) , H = h1 + · · ·+ h4 , (2.5)

where hint
p denotes the dimension of the intermediate operator Oint

p that appears in the
fusion channel: O3 × O4 = ∑

pO
int
p . As opposed to the intermediate ones, we call the

operators which sit inside the angle brackets as external operators.

2.2 Modular properties of stripped correlators

Consider the map from the complex upper half plane H+ to the cross-ratio space7 given by
the elliptic lambda function as follows.8

x = λ(τ) =
(
θ2(τ)
θ3(τ)

)4
, τ ∈ H+ ,

θ2(τ) =
∑
n∈Z

eπiτ(n+ 1
2 )2
, θ3(τ) =

∑
n∈Z

eπiτn
2
. (2.6)

The action of the modular group PSL(2,Z) on τ generates all the crossing transformations
on x. In particular, under the actions of the 2 generators of the modular group which are
T : τ → τ + 1, S : τ → − 1

τ , the images on the cross-ratio space respectively have the
transformations: T · x = x

x−1 , S · x = 1− x.
λ(τ) remains invariant under the index 6 normal subgroup Γ(2) of the modular group

generated by T 2 and ST 2S. In particular, T 2, ST 2S generate simple loops around x = 0, 1
respectively. Consequently, Γ(2) plays a role in single-valuedness of each Gabcd(x, x̄) in x as
discussed below.

6Since the holomorphic conformal blocks that contribute to 〈O1(∞)O2(1)O3(x)O4(0)〉 go as xh
int
p −h3−h4

in the limit x→ 0 [1, 4].
7We take the cross-ratio space as C\{0, 1} setting the 3 punctures at 0, 1,∞ using global conformal trans-

formations.
8θ2(τ), θ3(τ), θ4(τ) are the Jacobi theta functions related by Jacobi Identity: θ4(τ)4 = θ3(τ)4 − θ2(τ)4.

See [29–31] for further details about λ(τ), θr(τ).
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Arrange any 6 independent Gabcd in a column and consider it to be a vector-valued
modular function (vvmf)9 w.r.t. PSL(2,Z) on H+ as follows.

~G(τ, τ̄) =



G1234(τ, τ̄)
G2134(τ, τ̄)
G4132(τ, τ̄)
G1432(τ, τ̄)
G2431(τ, τ̄)
G4231(τ, τ̄)


: ~G(γτ, γτ̄) = σ(γ) · ~G(τ, τ̄), γ ∈ PSL(2,Z) ,

σ(S) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


, σ(T ) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


. (2.7)

More precisely, matrices σ(γ) form a linear representation of PSL(2,Z)/Γ(2). The chosen
matrices σ(S), σ(T ) ensure the non-trivial crossing transformations in (2.3). Also, we have
σ(T 2) = σ(ST 2S) = 1. As a result, each component of ~G(τ, τ̄) has Γ(2)-invariance, which
ensures its single-valuedness in x = λ(τ).

A few comments are in order. In case all the 4 external operators are distinct, all the 6
components of ~G(τ, τ̄) are independent and each component is invariant under only Γ(2).
But, σ(S), σ(T ) are reducible when some or all of the 4 external operators are identical.
In the latter case, each component Ga(τ, τ̄) is invariant under a bigger subgroup Γ̃a that
contains Γ(2). E.g., when there are 4 identical operators, ~G(τ, τ̄) has only 1 independent
component which is modular invariant. When there are 2 pairs of identical operators,
~G(τ, τ̄) has 3 independent components; the stabilizer subgroup of each of them contains
Γ(2). In particular, the following representation will be useful for the present work.

O1 = O2 ≡ OL, O3 = O4 ≡ OR ,

~G(τ, τ̄) =

GLLRR(τ, τ̄)
GLRLR(τ, τ̄)
GLRRL(τ, τ̄)

 , σ(S) =

0 0 1
0 1 0
1 0 0

 , σ(T ) =

1 0 0
0 0 1
0 1 0

 . (2.8)

In this case, the stabilizer of the vector (1 0 0)t is the subgroup of PSL(2,Z) generated
by T, ST 2S.

Here, we tabulate the possible cases along with respective stabilizer subgroups as per
our cross-ratio convention and (2.7).

9More generally, w.r.t. a subgroup Γ ⊂ PSL(2,Z) a vector-valued modular form ~V of weight k is
defined as [32]

~V
(
aτ + b

cτ + d

)
= σ(

(
a b

c d

)
)(cτ + d)k~V (τ),

(
a b

c d

)
∈ Γ ,

with σ as linear a representation of Γ. Hereafter, the shorthand vvmf refers to a vector-valued modular form
of weight 0 w.r.t. some subgroup Γ. The subgroup should be clear from the context unless specified.
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Independent stripped correlators Generators of stabilizer subgroup
All identical operators GOOOO S, T

Pairwise identical operators
GLLRR T, ST 2S

GRLRL S, T 2

GLRRL T 2, STS

3 identical operators
GLRRR S, T 2

GRLRR T 2, STS

GRRRL T, ST 2S

All distinct operators Gabcd ,
(abcd) =permutations of (1234) T 2, ST 2S

Table 1. List of possible stabilzer subgroups.

3 MLDE for sphere blocks and bootstrap

Here, we consider the sphere correlator: 〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉. From (2.2)
and (2.6), the associated stripped correlator is G1234(τ, τ̄), which is the first component of
the vvmf ~G(τ, τ̄) in (2.7). It has invariance under a subgroup Γ̃1 ⊇ Γ(2) of the modular
group, as discussed in section 2.2. We confine ourselves to the case where a finite number of
intermediate operators occur in the s-channel OPE O3×O4.10 We denote the number by N .

Let the N intermediate operators that contribute to the s-channel conformal block
expansion of the stripped correlator G1234(τ, τ̄) be: Op(k), k = 1, . . . , N with respective
dimensions (hp(k), h̄p(k)). Since the real (c, h) plane is the primary focus of this article, we
take hp(k) to be ordered as

hp(1) ≤ hp(2) ≤ · · · ≤ hp(N) , (3.1)
without loss of generality. Now, we have

G1234(τ, τ̄) =
N∑
k=1

C12p(k)C34p(k)Fp(k)(τ, τ̄) , (3.2)

where Cijp(k) are the 3-point coefficients and Fp(k)(τ, τ̄) are the non-holomorphic conformal
blocks respective to operators Op(k). Each Fp(k)(τ, τ̄) further factorizes as

Fp(k)(τ, τ̄) = Fp(k)(τ)F̄p(k)(τ̄) , (3.3)

where F̄p(k)(τ̄) is obtained with replacing {h1, . . . , h4, hp(k), τ} by {h̄1, . . . , h̄4, h̄p(k), τ̄} in
the holomorphic block Fp(k)(τ).

The holomorphic blocks Fp(k)(τ) mix among themselves under the action of Γ̃1 on the
complex upper half plane H+, while G1234(τ, τ̄) is an invariant.11 I.e., the blocks Fp(k)(τ)
can be arranged in a row which transform as a vvmf w.r.t. Γ̃1 as follows.12

Fp(k)(γτ) =
∑
k′

Fp(k′)(τ)M(γ)p(k′)p(k), γ ∈ Γ̃1 ⊇ Γ(2) ,

M(γ2 · γ1) = M(γ1) ·M(γ2) , (3.4)
10More generally, the assumption (1.1) suffices for our analysis.
11In particular, mixing under Γ(2) gives monodromies of the holomorphic blocks around x = 0, 1. In

contrast to the non-trivial monodromies around x = 1, those around x = 0 are only phases.
12For definition, see footnote 9.
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where matrices M(γ) form a linear representation of Γ̃1. Now, we regard the N holomorphic
blocks Fp(k)(τ) to be the independent solutions of a linear differential equation in τ of order
N . And, (3.4) requires the differential equation to be invariant under Γ̃1 i.e. an MLDE w.r.t.
Γ̃1. Since Γ̃1 ⊇ Γ(2),13 an MLDE w.r.t. Γ̃1 is always an MLDE w.r.t. Γ(2), but the converse
is not true. Below, we take the strategy to start with the general form of an MLDE w.r.t.
Γ(2) which introduces a set of parameters. Then, we find the locus on the parameter space
such that the differential equation becomes an MLDE w.r.t. Γ̃1.

To begin, the most generic ansatz of aforesaid differential equation that can be written
for the blocks is given by14

DN ~F +
N−1∑
s=1

φs(τ)Ds ~F + φ0(τ)~F = 0, ~F =
(
Fp(1)(τ) · · · Fp(N)(τ)

)
, (3.5)

where φr(τ) are some (meromorphic-)modular forms of weight 2(N − r) w.r.t. Γ(2) and
Dr stands for the r successive operations of the Serre derivative D. At each operation, D
depends on the weight k of the form on which it operates as follows.

D = d

dτ
− iπk

6 E2(τ) , (3.6)

where E2(τ) is the second Eisenstein series.15 E.g., D~F = d
dτ
~F as k = 0 in this case, while

D2 ~F =
(
d
dτ −

iπ
3 E2(τ)

)
d
dτ
~F , etc.

A few comments are in order. Firstly, the objective of using the Serre derivate is to
produce a k + 2 form operating on a k form w.r.t. Γ(2). Unlike the case of PSL(2,Z), as
there exist forms of weight 2 w.r.t. Γ(2) they may be added to modify the Serre derivative
as follows.

D̃ = D + α̃1θ2(τ)4 + α̃2θ3(τ)4, α̃1, α̃2 ∈ C . (3.7)

However, an MLDE written using D̃ can always be brought to the form (3.5). Thus, we
continue to use simply D. Secondly, the requirement of (3.5) to be an MLDE w.r.t. Γ̃1
( 6= Γ(2) when some/all of the operators are identical) restricts the locus of φr(τ) on the
space of 2(N − r)-forms w.r.t. Γ(2).

In the following, we organise the present program in a series of steps.16 We apply them
to definite cases in the subsequent section.

13Where equality holds only when all the external operators are distinct.
14In general, the differential operator in l.h.s. of (3.5) may act on a vector-valued modular form of weight

k w.r.t. Γ(2). But, for all our purposes, it operates on a vvmf.
15Note the modular transformation property of the second Eisenstein series [29–31]

E2(aτ + b

cτ + d
) = (cτ + d)2E2(τ) + 6

iπ
c(cτ + d),

(
a b

c d

)
∈ PSL(2,Z) .

16We detail the construction of MLDE for the holomorphic blocks, but similar steps can be followed
with dimensions {h̄1, . . . , h̄4, h̄p(k)} producing the anti-holomorphic blocks at τ i.e. F̄p(k)(τ). At the end, we
evaluate them at τ̄(= τ∗). Hereafter, blocks refer to holomorphic blocks; when we need to glue them with
anti-holomorphic ones we use specific words.
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Step 1: We fix N ≥ 2 in (3.5). We expand each φr(τ) on a given basis of the space
of (meromorphic-)modular forms of weight 2(N − r) w.r.t. Γ(2). The expansion
coefficients, collectively called as ~α, are complex-valued parameters. However, as
the real (c, h) plane is the primary focus of this article, scanning over real ~α will
often suffice.

Step 2: Based on which external operators are identical, we determine the subgroup Γ̃1.
We find the locus on the parameter space ~α such that each φr(τ) become a form of
weight 2(N − r) w.r.t. Γ̃1. For the subsequent steps, we stay on this locus.

Step 3: We take trial solutions to (3.5) to be of the form

qs
∞∑
n=0

anq
n = a0q

s

(
1 +

∞∑
n=1

an
a0
qn
)
, a0 6= 0, q = eiπτ . (3.8)

The indicial equation is a polynomial equation of degree N in s, which we solve to
get N exponents in terms of the parameters ~α.17 We narrow the parameter space
further such that each of these exponents leads to a series solution consistent with
a0 6= 0.18 On the surviving parameter space, for each of these exponents s(~α), (3.5)
being a linear differential equation does not fix a0. However, it gives recursion
relation(s) for the higher coefficients an in terms of the lower coefficients. The
values s(~α) encode information about the dimensions of the intermediate operators,
while the coefficients an, n ≥ 2 encode information about the central charge as
well.

The preceding 3 steps work for any 4 external (quasi-)primaries Oa, since (2.7) functions.
In particular for quasi-primaries, (3.5) is supposed to be an MLDE for the global conformal
blocks which have no dependencies on central charge. For the subsequent steps, we confine
ourselves to Virasoro primaries Oa. In addition, we consider the expansion of the stripped
correlator in terms of Virasoro blocks.

Step 4: We consider the solutions of (3.5) to be 4-point Virasoro blocks. For generic
central charge c, external operator dimensions ha and internal dimensions hp(k),
the q-expansions of respective Virasoro blocks can be computed [6]. We compare
them with (3.8) to relate the quantities {c, ha, hp(k)} with parameters ~α as follows.
In terms of Zamolodchikov’s H-function, the Virasoro blocks that contribute to
the stripped correlator are given by19

Fp(k)(τ) = (16q)hp(k)− c−1
24 λ(τ)

c−1
24 −

H
3 (1−λ(τ))

c−1
24 −

H
3

×θ3(τ)
c−1

2 −4HH(c,ha,hp(k), q) ,

H(c,ha,hp(k), q) = 1+
∞∑
n=1

bn(c,ha,hp(k))qn , (3.9)

17This can always be done analytically for N < 5.
18This entails removing points ~α where a pair of exponents are separated by an even integer.
19Note that the λ-dependent factors multiplying H are in accordance with (2.4), and hence differ from [6].

Also, recall that H = h1 + · · ·+ h4.
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where the coefficients bn can be obtained using Zamolodchikov’s elliptic recursion
relation, see appendix A. b1 is independent of c. Employing the respective q-
expansions of λ(τ), θ3(τ) as given in appendix B, we get

Fp(k)(τ) = (16q)hp(k)−H
3

(
1+b1q+

(
b2+ 1−c+8H

2

)
q2+

(1−c+8H
2 b1+b3

)
q3+· · ·

)
≡ (16q)hp(k)−H

3

(
1+

∞∑
n=1

fn(c,ha,hp(k))qn
)
. (3.10)

The q-expansion coefficients of Fp(k) are linearly related to those of H . In fact, the
following general patterns arise in (3.10) with some coefficients βnr(c,H), γnr(c,H).

f2n−1 =
n∑
r=1

βnrb2r−1, f2n = γn0 +
n∑
r=1

γnrb2r, n ≥ 1 , (3.11)

which are obtained using the q-expansion of q−1η(τ)12 with known even coefficients
σ2n while odd ones vanish as follows.20

(16q)−hp(k)+H
3 Fp(k) = (16q)−δθ4δ

2 θ
4δ
3 θ

4δ
4 H, δ = c− 1

24 − H

3 ,

(16q)−1θ4
2θ

4
3θ

4
4 = q−1η12 = 1 +

∞∑
n=1

σ2nq
2n . (3.12)

Note that if the odd coefficients vanish in H, the odd coefficients vanish in Fp(k).
We need to equate quantities in (3.10) to respective quantities in (3.8) which are
obtained by solving (3.5):

for arbitrary q near 0 : (16q)hp(k)−H
3 = a0q

s(~α) ,

for n ≥ 1 : fn(c, ha, hp(k)) = an(~α)
a0

.
(3.13)

At this stage, the number of independent CFT quantities {c, ha, hp(k)} is N + 5
or lower when some of the operators have same dimensions. In order to generate
this many independent equations, we use (3.13) with the first few n. These in
principle can be inverted to express the aforesaid CFT quantities in terms of the
parameters ~α. Then, plugging these c(~α), ha(~α), hp(k)(~α) we check the required
validity of (3.13) for higher n, which may further restrict the parameter space ~α.
In cases where the said inversion and/or the checks for higher n are cumbersome
to perform analytically, we resort to numerical techniques.

On the surviving parameter space, the solutions to MLDE (3.5) are 4-point Virasoro
blocks. We discuss the (hyper-)surfaces in this parameter space on which the MLDE
corresponds to BPZ equations and the possibilities of new equations.

20Below, we use (3.9), λ = θ4
2/θ

4
3, θ

4
4 = θ4

3 − θ4
2 and θ2θ3θ4 = 2η3, where η(τ) = q

1
12
∏∞
r=1(1− q2r) is the

Dedekind eta function. σ2n can be obtained by using (B.1) up to any desired n. Thereby, the coefficients
βnr(c,H), γnr(c,H) are known as well for any desired n, r.
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Step 5: In terms of the solutions to (3.5) (which are identified as Virasoro blocks), the
stripped correlator takes the form:

G1234(τ, τ̄) =
(
Fp(1)(τ) · · · Fp(N)(τ)

)
· C ·

(
F̄p(1)(τ̄) · · · F̄p(N)(τ̄)

)t
, (3.14)

where C is an N ×N matrix containing the associated 3-point coefficients. Now,
the Γ̃1-invariance of G1234 sets up the bootstrap equations:

M(γ) · C · M̄(γ)† = C, γ ∈ Γ̃1 , (3.15)

where M̄ is obtained from M using the replacement rule stated below (3.3). Con-
fining γ over the generators of Γ̃1 suffices due to the multiplication rule in (3.4).
Note that knowing the q-expansion of the blocks around q = 0 is not enough to
derive the transformation matrices M(γ). Writing down the MLDE (3.5) for the
blocks is useful in many instances where we can solve it to get the blocks in closed
forms. In latter cases, we obtain M(γ) in terms of ~α for the holomorphic blocks.
For spinning operators, the anti-holomorphic conformal dimension differs from the
holomorphic one. Thus, {h̄1, . . . , h̄4, h̄p(k)} correspond to different values of the
parameters denoted by ~̄α such that c(~α) = c(~̄α), and the solutions to (3.5) with
parameters ~̄α are the anti-holomorphic blocks at τ .21 The complex conjugation
acts in (3.15) as we evaluate the anti-holomorphic blocks at τ̄ = τ∗. We solve the
above matrix equations to obtain C in terms of ~α, ~̄α. Note that when we deal with
only scalar operators, we have ~α = ~̄α and M = M̄ .

Step 6: We attempt to differentiate unitary CFTs from non-unitary ones on the surviving
parameter space ~α and present examples of each. For unitary theories, we should
necessarily set c, ha, hp(k) ≥ 0. In our context, unitarity bounds on the q-expansion
coefficients of the blocks will be of importance. The only known such bounds are
for the case h1 = h4, h2 = h3, as stated in the following in terms of the quantities
used in the present work. Consider the following q-expansion coefficients f̃n in
linear relation to fr.

pillow blocks : F̃p(k)(τ) ≡ 16
H
3−

c
24 η(τ)4H− c2Fp(k)(τ)

= (16q)hp(k)− c
24

(
1 +

∞∑
n=1

f̃nq
n
)
,

first few coefficients : f̃1 = f1, f̃2 = f2 + 1
2(c− 8H), f̃3 = f3 + 1

2(c− 8H)f1 ,

f̃4 = f4 + 1
2(c− 8H)f2 + 1

8(c− 8H)(c− 8H + 6), . . . ,

general patterns : f̃2n−1 =
n∑
r=1

β̃nrf2r−1, f̃2n = γ̃n0 +
n∑
r=1

γ̃nrf2r, n ≥ 1 .

(3.16)

21See footnote 16.
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In the above, F̃p(k) are known as the pillow blocks. The coefficients f̃n can be
obtained to any desired order qn, using (3.10) and (B.1), thereby the coefficients
β̃nr(c,H), γ̃nr(c,H) are known as well. For the case h1 = h4, h2 = h3, all the
f̃n ≥ 0 [23, 24], as they can be interpreted as the norms on some Hilbert space.22

In our fourth step, we have obtained fr, c,H in terms of ~α. Therefore, f̃r can be
expressed in terms of ~α using (3.16). Hence, the non-negativity of f̃n(~α) restricts
the parameter space ~α when we have h1 = h4, h2 = h3 for unitary theories.

In case the Virasoro representations corresponding to h̄a, h̄p(k) are unitary, similar
constraints apply on ~̄α. In addition, the reality of the 3-point coefficients associated
with the stripped correlator (obtained in terms of ~α, ~̄α in our fifth step) may narrow
both parameter spaces ~α, ~̄α further, in unitary CFTs.

4 Case studies: second order MLDEs

In the simplest scenario, in (3.5) φr(τ), r = 0, . . . , N−1 are holomorphic forms of respective
weights 2(N − r) w.r.t. Γ(2) on H+. Since θ2(τ)4aθ3(τ)4b with non-negative integers a, b
form the basis of the space of holomorphic 2(a+ b)-forms w.r.t. Γ(2) on H+, we can write

φr =
∑

a,b=0,1,2,...
a+b=N−r

αabθ
4a
2 θ4b

3 , r = 0, . . . , N − 1 , (4.1)

for some coefficients αab.
The present program has been organised as a series of steps in section 3. In this section,

we implement this for the case: N = 2 with holomorphic forms φ0, φ1 of respective weights
4, 2 w.r.t. Γ(2). In this case, we write down the following ansatz introducing parameters
~α = (α1, . . . , α5), completing our first step.23

d2 ~F

dτ2 −
iπ

3 E2(τ)d
~F

dτ
+ iπ

((1
3 − 2α1

)
θ2(τ)4 +

(1
3 − 2α2

)
θ3(τ)4

)
d~F

dτ

+ π2
(
α3θ2(τ)8 + α4θ2(τ)4θ3(τ)4 + α5θ3(τ)8

)
~F = 0 ,

~F =
(
Fp(1)(τ) Fp(2)(τ)

)
. (4.2)

As shown in appendix C, (4.2) leads to the most general second order linear differential
equation with 3 regular singular points in variable x = λ(τ).24 In the following two
subsections, we implement the remaining steps separately to the cases O1 = O2 = O3 = O4
and O1 = O2, O3 = O4.

22The work [23] provides an alternative viewpoint on q-expansions of Virasoro blocks, under the map from
the Riemann sphere with 4 marked points ∞, 1, x, 0 to the “pillow” geometry T 2/Z2 with 4 corners. This
enables to uncover the above non-negativity conditions.

23The expansion coefficients ~α on the basis (4.1) are chosen in a specific way for later convenience.
24Hence, clearly meromorphic φ0, φ1 should result in more and/or new type singularities. See section 5,

for a discussion.
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4.1 All identical operators

Let us take O1 = O2 = O3 = O4 ≡ O. Now, we implement the second step. In the present
case, Γ̃1 is the full modular group. In order for (4.2) to be an MLDE w.r.t. full modular
group, we must have

α1 = α2 = 1
6 , α3 = α5 = −α4 . (4.3)

The rationale behind this is as follows. The space of holomorphic (4a+ 6b)-forms w.r.t. the
modular group is spanned by E4(τ)aE6(τ)b with non-negative integers a, b. The Eisenstein
series E4, E6 being forms w.r.t. the modular group are also forms w.r.t. any subgroup
without altering respective weights. Thus, they can be expressed in terms of θ4

2, θ
4
3. Clearly,

there is no holomorphic modular form of weight 2 and only 1 holomorphic modular form of
weight 4 which is E4. And, the latter can be expressed as [29–31]

E4 = θ8
2 − θ4

2θ
4
3 + θ8

3 . (4.4)

Therefore, in the present case, the MLDE (4.2) becomes

d2 ~F

dτ2 −
iπ

3 E2(τ)d
~F

dτ
+ α3π

2E4(τ)~F = 0 . (4.5)

In the third step, in (4.5) we substitute the trial solution (3.8) and the respective
q-expansions of E2(τ), E4(τ) as given in appendix B. Solving the indicial equation, we get25

s = s1, s2 , s1 = 1
6
(
1−
√

36α3 + 1
)
, s2 = 1

6
(
1 +
√

36α3 + 1
)
. (4.6)

Let us first take s = s1, and consider the following points on the parameter space.26

α3 = 1
36
(
9m2 − 1

)
, m = 1, 2, 3, . . . . (4.7)

At any of the above points with even m, the coefficients in the q-expansion of the l.h.s. of
the MLDE (4.5) cannot be set to zero consistently with a0 6= 0. Therefore, by requiring the
existence of a solution with s = s1, we constrain the parameter space as follows.

α3 6=
1
36
(
9m2 − 1

)
, m = 2, 4, 6, . . . . (4.8)

At any of the points (4.7) with odd m, (4.5) does not fix a0, am. In this case, all the ar
with odd r < m are equal to zero, all the ar with odd r > m are proportional to am.27 At
a generic point α3 different from (4.7), only a0 is unfixed. In this case, all the ar with odd
r vanish. In both cases, all the ar with even r are proportional to a0. The first few are
presented below.

a2 =−
2a0
(√

36α3+1+180α3−1
)

√
36α3+1−6

,

a4 =
a0
(
7
(√

36α3+1−1
)
+36

(
25
√

36α3+1−1800α3−129
)
α3
)

18
√

36α3+1−36α3−73
,

a6 =
4a0
(
91
(√

36α3+1−1
)
−6α3

(
180α3

(
1800α3−105

√
36α3+1+958

)
+117

√
36α3+1+1198

))
397
√

36α3+1+36
(√

36α3+1−36
)
α3−1332

.

(4.9)

25It is worth noting that for real α3 > −1/36, we have s1 < s2.
26The statements that come next are based on studying (4.5) at points (4.7) with m = 1, 2, . . . , 50.
27Thus, if we require am to be zero, all the odd coefficients vanish.
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Analytic expressions of higher even coefficients are more lengthy in terms of a0. However,
since we will be using a8 for analytic computations, let us now provide the equation to
be solved. (√

36α3 + 1− 1
)

(7a0 + 4a2 + 3a4 + a6) + 2
(√

36α3 + 1− 24
)
a8

+ 180 (73a0 + 28a2 + 9a4 + a6)α3 − 12 (4a2 + 6a4 + 3a6) = 0 . (4.10)

Let us now take s = s2. In this case, (4.5) does not fix a0. All the ar with odd r vanish,
and all the ar with even r are proportional to a0. The first few even coefficients are
presented below.

a2 =−
2a0
(√

36α3+1−180α3+1
)

√
36α3+1+6

,

a4 =
a0
(
7
(√

36α3+1+1
)
+36

(
25
√

36α3+1+1800α3+129
)
α3
)

18
√

36α3+1+36α3+73
,

a6 =
4a0
(
91
(√

36α3+1+1
)
+6α3

(
180α3

(
105
√

36α3+1+1800α3+958
)
−117

√
36α3+1+1198

))(√
36α3+1+6

)(√
36α3+1+12

)(√
36α3+1+18

) .

(4.11)
And, a8 can be obtained by solving the following equation.(√

36α3 + 1 + 1
)

(7a0 + 4a2 + 3a4 + a6) + 2
(√

36α3 + 1 + 24
)
a8

− 180 (73a0 + 28a2 + 9a4 + a6)α3 + 12 (4a2 + 6a4 + 3a6) = 0 . (4.12)

In the fourth step, we tune α3 and the above unfixed coefficients so that the 2 solutions
found in the previous step are 4-point Virasoro blocks. The relevant CFT quantities are
{c, h, hp(1), hp(2)}.28 We assume identity to be an intermediate operator as compatible with
the identical external operators,29 and the dimension of the other intermediate operator to
be greater than zero. Thus, in keeping with our convention (3.1), we take30

hp(2) > hp(1) = 0 . (4.13)

By comparing the q → 0 limits of the 2 solutions found in the third step with those of (3.10),
we see that the 2 values of s in (4.6) are the candidates for hp(k) − 4h/3, k = 1, 2. Since
s1 ≯ s2, we equate the first solution i.e. the one with s = s1, with the vacuum block. Hence,
h, hp(2) can be expressed in terms of α3 as

h = 1
8
(√

36α3 + 1− 1
)
, hp(2) = 1

3
√

36α3 + 1, α3 > −
1
36 . (4.14)

This also fixes a0 of the respective solutions to be 16s. For the Virasoro blocks in the present
case, all the odd coefficients f2r−1, r ≥ 1 in (3.10) vanish.31 Both the series solutions are

28Here, h ≡ h1 = h2 = h3 = h4, H = 4h.
29The necessary requirements for the occurance of the vacuum block are: h1 = h2, h3 = h4.
30The exclusion of the equality hp(2) = hp(1) is due to the uniqueness of identity operator.
31When h1 = h2, h3 = h4, all the odd coefficients b2r−1, r ≥ 1 in H identically vanish [22]. See appendix A

for a discussion.
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Figure 1. Red dashed line represents the locus of (c(α3), h(α3)). Blue dashed line represents the
locus of the level-2 Virasoro null states.

automatically tailored to this, except for the first solution we need to fix am = 0 when
α3 =

(
9m2 − 1

)
/36, m = 1, 3, 5, . . . . Now, to express the central charge c in terms of α3,

one may equate the ratio a2/a0 for the first solution to the coefficient f2 for the Virasoro
vacuum block:32

b2(c, h, 0) + 1− c+ 32h
2 = −2

(√
36α3 + 1 + 180α3 − 1

)
√

36α3 + 1− 6 .

=⇒ c
.= 7− 7

√
36α3 + 1− 9α3

(√
36α3 + 1− 10

)
9α3 − 2 , (4.15)

where the dotted equality indicates that the limiting value to be taken at α3 = 2/9. It
is straightforward to check that (c(α3), h(α3)) lies on the locus of the level-2 Virasoro
null states:

16h2 + h(2c− 10) + c = 0 . (4.16)

However, only a portion of it gets traced when we vary α3, since c(α3) ≤ 1, h(α3) > −1/8,
see figure 1. Therefore, for the case of 4 identical external primaries and 2 intermediate ones,
one of which is identity and the other with dimension greater than zero, the MLDE (4.5)
always corresponds to a second order BPZ equation.33

Note that in the present case, the non-vanishing coefficients in the q-expansions of the
Virasoro blocks are the even ones f2n, and they all have c-dependencies. The MLDE, on the
other hand, computes a2n/a0 in terms of α3 as candidates for them. So far, we have only

32Here, we use (A.5) with hL = hR = h.
33In the opposite order, second order BPZ equations for identical operators containing a level-2 null state

have been brought to the form (4.5) in appendix A of [9].
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equated f2 of the vacuum block with a2/a0 of our first solution, yielding c(α3) in (4.15). We
have checked that plugging this c(α3) into f4, f6, f8 of the vacuum block respectively gives
a4/a0, a6/a0, a8/a0 of the first solution (as in (4.9), (4.10)). We have performed a similar
check, relating the coefficients f2, f4, f6, f8 of the excited block (with dimension hp(2)(α3) as
obtained in (4.14)) to the coefficients a2/a0, a4/a0, a6/a0, a8/a0 of our second solution (as
in (4.11), (4.12)). For these checks, we have used a Mathematica code published in [22] to
get the first few analytical coefficients b2, b4, b6, b8 of the q-expansion of H, and then used
its relation to Virasoro blocks (3.9) to generate the required coefficients f2, f4, f6, f8, see
appendix A. We expect this to hold true for higher coefficients as well, in support of which
we present two numerical examples at the end of this subsection.

In the fifth step, we obtain the modular transformation matrices that act on the above
solutions to (4.5) and then set up equation for the 3-point coefficient cOOp(2) associated
with the stripped correlator GOOOO. Plugging (4.3) in (C.3), and then using (C.4) we get34

M(T ) =(
e
iπ
6 (1−

√
36α3+1) 0

0 e
iπ
6 (1+

√
36α3+1)

)
,

M(S) =
1
2 csc

(
π
6
√

36α3+1
) √

π2
1
3
√

36α3+1 csc(π3
√

36α3+1)Γ(1+ 1
6
√

36α3+1)
Γ(1− 1

3
√

36α3+1)Γ( 1
2 + 1

2
√

36α3+1)

−
√
π2−

1
3
√

36α3+1 csc(π3
√

36α3+1)Γ(1− 1
6
√

36α3+1)
Γ( 1

2−
1
2
√

36α3+1)Γ(1+ 1
3
√

36α3+1) −1
2 csc

(
π
6
√

36α3+1
)

 .
(4.17)

At this stage, we want to glue the holomorphic blocks with the anti-holomorphic ones. When
−1/36 < α3 < 20/9, α3 6= 2/9, for each α3 we have an ᾱ3 6= α3 with c(α3) = c(ᾱ3), thus, we
have possibilities of spinning operators. We take ᾱ3 to correspond to the anti-holomorphic
dimensions, and from aforementioned formulae of dimensions it is clear that the identical
external operators and also the excited intermediate operator are all spinning. However, in
such cases, the bootstrap condition corresponding to T in (3.15) alone sets C = 0, thereby,
the correlator of 4 identical spinning operators vanish. Now, the non-trivial case will be to
deal with only scalar operators. In the latter case, with α3 > −1/36 the bootstrap condition
corresponding to T in (3.15) allows only vanishing non-diagonal elements in C:

C =
(

1 0
0 β

)
, β = c2

OOp(2) . (4.18)

Now, the S-invariance solves for β as

β =
2 1

3 (−2)
√

36α3+1Γ
(
−1

3
√

36α3 + 1
)

Γ
(
1− 1

6
√

36α3 + 1
)

Γ
(

1
2
√

36α3 + 1 + 1
2

)
Γ
(

1
3
√

36α3 + 1
)

Γ
(

1
2 −

1
2
√

36α3 + 1
)

Γ
(

1
6
√

36α3 + 1 + 1
) . (4.19)

In the sixth step, we constrain the parameter space α3 to meet various unitarity bounds.
Note that α3 > −1/36 already maintains hp(2) > 0, see (4.14). h > 0 now further restricts

34Γ(1− z)Γ(z) = π cscπz has also been used to simplify the expressions.
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α3 > 0. Accordingly, c takes the value 0 only when α3 = 35/36, which (4.8) rules out. As a
result, we can only have c > 0, which limits 0 < α3 < 35/36. In fact, in this region of the
parameter space, we have 0 < c ≤ 1, where the equality holds at α3 = 2/9.

We have 4 identical external operators in the present case, thus the non-negativity of
the q-expansion coefficients of the pillow blocks, as discussed in section 3, applies. Since
the odd coefficients f2r+1 of the Virasoro blocks vanish, so do the odd coefficients f̃2n+1 of
respective pillow blocks in (3.16). Now, the non-negativity of the even coefficients f̃2n of
the pillow blocks requires

γ̃n0 +
n∑
r=1

γ̃nr
a2r
a0
≥ 0, n = 1, 2, 3, . . . , (4.20)

as per the identification of the Virasoro blocks with the 2 solutions of our MLDE. Corre-
sponding to each solution, by plugging respective a2r/a0 in terms of α3 in (4.20) along with
the substitutions (4.14) and (4.15), we get a countable infinite set of non-negative functions:
f̃2n(α3) ≥ 0, n ≥ 1. For both the solutions, we analyze the cases with n = 1, . . . , 10.
For the first solution i.e. the one identified with the vacuum block, f̃2(α3), . . . , f̃20(α3) are
non-negative in the region 0 < α3 < 35/36, except f̃6(α3), f̃14(α3). Now, the requirement of
the non-negativity of the last 2 uplifts the lower bound on α3 from 0 to α∗3 ≈ 0.00719982.35

In fact, α∗3 comes from the condition f̃6(α3) ≥ 0 as the uplift of the lower bound from
the condition f̃14(α3) ≥ 0 is smaller, see figure 2a. Now, the consideration of the second
solution i.e. the one identified with the excited block provides a stronger lower bound on α3.
In this case, f̃2(α3), . . . , f̃20(α3) are non-negative in the region 0 < α3 < 35/36, with the
exceptions for f̃2(α3), f̃8(α3), f̃10(α3), f̃12(α3). Now, the requirement of the non-negativity
of the last 4 uplifts the lower bound on α3:

α∗∗3 ≤ α3 <
35
36 , (4.21)

where α∗∗3 ≈ 0.0242458 is the smallest positive real root of the polynomial 2624400x3 −
333720x2 + 3249x+ 80. In fact, α∗∗3 comes from the condition f̃2(α3) ≥ 0 as the uplifts of
the lower bound from the conditions f̃8(α3), f̃10(α3), f̃12(α3) ≥ 0 are smaller, see figure 2b.

Figure 2 shows the semi-logarithmic plots versus α3 of the first few non-vanishing
coefficients of the pillow blocks corresponding to the 2 solutions of our MLDE. As can be
observed, each of these coefficients is non-negative and continuous on some region of the
type [α̂3, 35/36) with α̂3 < 2/9. If this feature continues to occur in higher coefficients,
we may expect further improvement on the lower bound in (4.21), but we do not obtain
countable points in α3. In contrast to this, we know that for 0 < c < 1 the following discrete
values are admissible for unitary CFTs [33, 34].

c = 1− 6
l(l + 1) , l = 3, 4, 5, . . . , (4.22)

35α∗3 is the smallest positive real root of the polynomial

132860250000000000x7 − 90541248876000000x6 + 67714737664118400x5 − 11791778905265760x4

+ 581776809364116x3 + 1455851807721x2 − 375258931508x+ 2439586688 .
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(a) For vacuum pillow block
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(b) For excited pillow block

Figure 2. First few non-vanishing q-expansion coefficients in the pillow blocks are plotted against
α3. y-axes are taken to be logarithmic.

which can be attained respectively at36

α3 = 2
9 −

l

(l + 1)2 ,
2
9 + l + 1

l2
, l = 3, 4, 5, . . . . (4.23)

Hence, the above discussion indicates that the non-negativity of the q-expansion coefficients
of pillow blocks is a necessary but not sufficient condition for unitary CFTs. In support of
this, we also present one numerical non-unitary example at the end of this subsection in
which the q-expansion coefficients of both pillow blocks are tested to be non-negative to
order q125.

Now in unitary CFTs, the 3-point coefficient cOOp(2) associated with the stripped
correlator GOOOO must be real. Thus, the non-negativity of c2

OOp(2) obtained in (4.19)

36The lowest such α3 (l = 3) equals 5/144 ≈ 0.0347222, which is well above α∗∗3 .
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Figure 3. c2
OOp(2) is plotted against α3.

improves the upper bound on α3 as

α∗∗3 ≤ α3 ≤
2
3 , (4.24)

see figure 3. Note that 2/3 is also the highest value of α3 allowed in the discrete set (4.23).

Explicit examples.

• Non-unitary: consider the MLDE (4.5) with α3 = 1/2. The associated CFT quantities
can be computed as

c= 1
5
(

104−23
√

19
)
≈ 0.749065, h= 1

8
(√

19−1
)
≈ 0.419862, hp(2) =

√
19
3 ≈ 1.45297 ,

c2
OOp(2) =

2− 2
√

19
3 Γ

(
−
√

19
3

)
Γ
(

1−
√

19
6

)
Γ
(

1
2 +
√

19
2

)
Γ
(√

19
3

)
Γ
(

1
2−
√

19
2

)
Γ
(

1+
√

19
6

) ≈ 0.833669 .

(4.25)
The 2 solutions to the MLDE respectively go as (16q) 1

6−
√

19
6 and (16q) 1

6 +
√

19
6 as q → 0.

We have solved the MLDE recursion relations numerically and found the q-expansion
coefficients an up to order q125 for both solutions, with odd ones vanishing. On the
other hand, first using the Mathematica code in [22], the q-expansion coefficients bn
of the H-functions corresponding to hp(1) = 0 and hp(2) = 1.45297 are numerically
obtained up to order q125, and then the numerical coefficients fn of the 2 respective
Virasoro blocks are calculated coding the relation (3.12). Indeed, they respectively
match the 2 solutions of our MLDE. In the present example, we have found the
q-expansion coefficients of the blocks to be non-integers.
Knowing above coefficients an, we have calculated the q-expansion coefficients of
respective pillow blocks up to order q125, with odd ones vanishing. We have found
all the even ones (4.20) to be positive and non-linearly growing with n for both the
pillow blocks,37 although the central charge does not lie in (4.22).

37See figure 4 in appendix E.
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• Ising CFT: we consider the correlator 〈σσσσ〉 where 1 and ε contribute in the
intermediate channel. The CFT parameters as well as the Virasoro blocks that
contribute to the associated stripped correlator are given by

c = 1
2 , hσ = 1

16 , hε = 1
2 , c2

σσε = 1
4 ,

F1(τ) =

√√
1− λ(τ) + 1

√
2 12
√

(1− λ(τ))λ(τ)
, Fε(τ) =

√
2
√

1−
√

1− λ(τ)
12
√

(1− λ(τ))λ(τ)
.

(4.26)

Here we record the first few q-expansion coefficients:

F1(τ) = (16q)−
1

12
(
1 + 3q2 + 4q4 + 7q6 + 13q8 + 19q10 + · · ·

)
,

Fε(τ) = (16q)
5

12
(
1 + q2 + 3q4 + 4q6 + 7q8 + 10q10 + · · ·

)
. (4.27)

The above q-expansions can be obtained to any desired order qn employing the q-
expansion of λ(τ) as given in appendix B. The odd coefficients are zero while all the
even ones happen to be positive integers, which we have tested up to order q125.

Now considering the MLDE (4.5) with α3 = 5/144, the 2 series solutions generate
the aforesaid q-expansions, which we have tested up to order q125. Also the CFT
quantities associated with the MLDE agree with those mentioned above.

4.2 Pairwise identical operators

Let us take O1 = O2 ≡ OL, O3 = O4 ≡ OR. In this case, Γ̃1 is the subgroup of the modular
group generated by T, ST 2S. In order for (4.2) to be an MLDE w.r.t. Γ̃1, we must have

α2 = 1
2 − 2α1, α5 = −α4 . (4.28)

This is due to the following transformations and Jacobi identity [29–31]:

θ2(τ + 1) = e
iπ
4 θ2(τ), θ3(τ + 1) = θ4(τ), θ4(τ)4 = θ3(τ)4 − θ2(τ)4 . (4.29)

Therefore, in the present case, the MLDE (4.2) becomes

d2 ~F

dτ2 −
iπ

3 E2 (τ) d
~F

dτ
+ iπ

(1
3 − 2α1

)(
θ2 (τ)4 − 2θ3 (τ)4

) d~F
dτ

+ π2
(
α3θ2 (τ)8 − α4θ3 (τ)4 θ4 (τ)4

)
~F = 0 . (4.30)

The residual parameter space ~α = (α1, α3, α4) is 3 dimensional.
The series solutions (3.8) satisfying (4.30) have the following exponents.38

s = s1, s2, s1 = 1
2 − 2α1 −

√(1
2 − 2α1

)2
− α4, s2 = 1

2 − 2α1 +
√(1

2 − 2α1

)2
− α4 .

(4.31)
38It is worth noting that for real α1 and α4 < ( 1

2 − 2α1)2, we have s1 < s2.
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For s = s1, consider the following surfaces.(1
2 − 2α1

)2
− α4 = m2

4 , m = 1, 2, 3, . . . . (4.32)

On these surfaces with even m, the q-expansion coefficients of the l.h.s. of MLDE (4.30)
cannot be set to zero consistently with a0 6= 0. Therefore, by requiring the existence of a
solution with s = s1, we constrain the parameter space as follows.

(1
2 − 2α1

)2 − α4 6=
m2

4 , m = 2, 4, 6, . . . . (4.33)

On the surfaces (4.32) with odd m, (4.30) does not fix a0, am. In this case, all the ar with
odd r < m are equal to zero, all the ar with odd r > m are proportional to am.39 At a
generic point ~α away from (4.32), only a0 is unfixed. In this case, all the ar with odd r
vanish. In both cases, all the ar with even r are proportional to a0. For s = s2, (4.30) does
not fix a0. All the ar with odd r vanish, and all the ar with even r are proportional to a0.

We will only use a2, a4, a6, a8 for analytic computations. Their analytic expressions in
terms of a0 being lengthy, we record here the equations to be solved in the cases s = s1, s2.

a2 (−α4−((s+2)(4α1+s+1)))+8a0 (32α3+2α4−12α1s+s) = 0 ,

a4 (−α4−((s+4)(4α1+s+3)))+8a2 (32α3+2α4−12α1(s+2)+s+2)
−8a0 (−256α3+14α4+12α1s+s) = 0 ,

a6
(
−α4−s2−4α1(s+6)−11s−30

)
+8a4 (32α3+2α4−12α1(s+4)+s+4)

−8a2 (−256α3+14α4+12α1(s+2)+s+2)+32a0 (224α3+14α4−12α1s+s) = 0 ,

a8
(
−α4−s2−4α1(s+8)−15s−56

)
+8a6 (32α3+2α4−12α1(s+6)+s+6)

−8a4 (−256α3+14α4+12α1(s+4)+s+4)+32a2 (224α3+14α4−12α1(s+2)+s+2)
−8a0 (−2048α3+142α4+12α1s+5s) = 0 .

(4.34)

The recursion relations for even coefficients involve the lower even coefficients only, which is
owing to the fact that E2, θ

4
2 − 2θ4

3, θ
8
2, θ

4
3θ

4
4 have q-expansions with even coefficients.

Now, we tune ~α and the above unfixed coefficients so that the above 2 series solutions
are 4-point Virasoro blocks. The associated CFT quantities are {c, hL, hR, hp(1), hp(2)}.40

We assume identity to be an intermediate operator as compatible with the pairwise identical
external operators, and the dimension of the other intermediate operator to be greater than
zero. In keeping with our convention (3.1), we take

hp(2) > hp(1) = 0 . (4.35)

Since s1 ≯ s2, the first series solution i.e. the one with s = s1 should be equated with the
vacuum block, while the series solution with s = s2 should be equated with the excited

39Thus, if we require am to be zero, all the odd coefficients vanish.
40Here, hL ≡ h1 = h2, hR ≡ h3 = h4, H = 2(hL + hR).
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block. Comparing the exponents (4.31) with those in (3.10), we get

2(hL + hR) = 6α1 −
3
2 + 3

√(1
2 − 2α1

)2 − α4 , (4.36)

hp(2)(~α) =
√

(1− 4α1) 2 − 4α4, α4 <
(1
2 − 2α1

)2
, α1 ∈ R . (4.37)

This also fixes a0 of the respective solutions to be 16s. For the Virasoro blocks in case of
pairwise identical external operators, all the odd coefficients f2r−1, r ≥ 1 in (3.10) vanish.41

Both the series solutions are automatically tailored to this, except for the first solution we
need to fix am = 0 when

(1
2 − 2α1

)2 − α4 = m2/4, m = 1, 3, 5, . . . . In order to obtain the 3
quantities c, hL, hR in terms of ~α, one may solve the 3 equations namely (4.36), f2 = a2/a0
and f4 = a4/a0, where in each of the last 2, l.h.s. corresponds to the vacuum block (A.5)
while r.h.s. corresponds to the first series solution. However, due to the symmetry of these 3
equations under hL ↔ hR, c(~α), hL(~α), hR(~α) cannot be determined uniquely. In addition,
unlike in the case of all identical external operators, the demands to match the higher
coefficients in the first solution with respective ones in the vacuum block, as well as the
coefficients in the second solution with respective ones in the excited block turn out to be
quite restrictive for the parameter space ~α in the present case. Thus, we adopt a different
strategy detailed below. For a computer-assisted search for points ~α where both solutions
to the MLDE (4.30) are Virasoro blocks, we first simultaneously satisfy the 6 equations in
{α1, α3, α4, c, hL, hR} given below.

for vacuum block : 2(hL + hR)− 6α1 −
3
2 + 3

√(1
2 − 2α1

)2 − α4 = 0 ,

f2 (c, hL, hR, 0)− a2(~α)
a0

= 0, f4 (c, hL, hR, 0)− a4(~α)
a0

= 0 ,

f6 (c, hL, hR, 0)− a6(~α)
a0

= 0, f8 (c, hL, hR, 0)− a8(~α)
a0

= 0 ,

for excited block : f2
(
c, hL, hR, hp(2)(~α)

)
− a2(~α)

a0
= 0 .

(4.38)

These equations can be written explicitly using (4.34), (4.37), (A.5)–(A.8). They are
symmetric under hL ↔ hR, involve radicals in ~α and ratios of polynomials with at most the
powers c6, h4

L, h
4
R. We provide a set of explicit points {α1, α3, α4, c, hL, hR} satisfying above.

With these values we numerically check the required validity of (3.13) for higher coefficients
in both solutions. In the next step, we use linear perturbations around these points to
generate new ones, eventually proving the set to be infinite. The general procedure is as
follows. The set of equations (4.38) abstractly can be written as

gI(tJ) = 0, I, J = 1, . . . , 6 . (4.39)

Suppose a solution t̂J is a part of a continuous family, then we have

gI(t̂J + δtJ) = 0 =⇒
∑
J

∂Jg
I
∣∣∣
t̂J
δtJ = 0 I = 1, . . . , 6 , (4.40)

41See footnote 31.
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with rank(∂JgI
∣∣
t̂J

) ≤ 5. Solving above equations allows us to choose some of the δtJ , the
remaining ones are linearly related to them. In the case rank(∂JgI

∣∣
t̂J

) = 6, we have trivial
solution: δtJ = 0 ∀J , and the solution t̂J is likely to be an isolated point, unless non-linear
perturbations come into play.

Let us present here 2 points satisfying (4.38). Subsequently we discuss linear perturba-
tions around them in detail.

α1 = −1
3 , α3 = − 13

198 , α4 = −3
√

2
11 −

52
99 , c = 82

√
2
11 − 34 ≈ 0.964917 ,

hL = 5√
22
− 1 ≈ 0.0660036, hR = 2

√
2
11 ≈ 0.852803 , (4.41)

hp(2) = 6
√

2
11 + 1 ≈ 3.55841 ;

α1 = 1
2 , α3 = 1, α4 = 0, c = 1, hL = 1

4 , hR = 5
4 , hp(2) = 1 .

(4.42)

Non-BPZ cases. For the example (4.41), with the values of α1, α3, α4 the 2 solutions
to the MLDE (4.30) respectively go as (16q)

2
3−3
√

2
11 and (16q)3

√
2

11 + 5
3 as q → 0. We have

solved the MLDE recursion relations numerically and found the q-expansion coefficients an
up to order q125 for both solutions, with odd ones vanishing. On the other hand with the
values of c, hL, hR, first using the Mathematica code in [22], the q-expansion coefficients bn
of the H-functions corresponding to hp(1) = 0 and hp(2) = 3.55841 are numerically obtained
up to order q125, and then the numerical coefficients fn of the 2 respective Virasoro blocks
are calculated coding the relation (3.12). Indeed, they respectively match to the 2 solutions
of our MLDE. In the present example, we have found the q-expansion coefficients of the
blocks to be non-integers.

Note that none of the (c, hL), (c, hR) lies on the locus of the level-2 Virasoro null states:

16h2
L + hL(2c− 10) + c 6= 0, 16h2

R + hR(2c− 10) + c 6= 0 . (4.43)

Hence, corresponding to ~α in (4.41), we have a second order MLDE (4.30) whose solutions
are 4-point Virasoro blocks and the MLDE does not correspond to a BPZ equation.

At (4.41), rank(∂JgI) = 5 and we have

δα3 = 1
726(385− 18

√
22)δα1, δα4 = 1

726(945
√

22 + 1364)δα1,

δc = 3
11(188− 41

√
22)δα1, δhL = − 3

44(5
√

22− 24)δα1,

δhR = − 3
11(
√

22 + 4)δα1 .

(4.44)

Knowing the above first derivatives w.r.t. α1 at one point, one cannot trace the full curve
away from (4.41), however, guided by the above formulae nearby points satisfying (4.38)
can be scanned. Here we present one new point near (4.41) well approximated by (4.44)
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with δα1 = 10−4, and indeed the errors are of the order (δα1)2.

α1 =− 9997
30000 , α3 = −54

√
549835009−7144225927

108900000000 ,

α4 = −1484514
√

549835009−14294885369
27225000000 , c= 41

√
549835009−934859

27500 ,

hL = 5
√

549835009−109982
110000 , hR =

√
549835009−3

27500 , hp(2) = 3
√

549835009+27491
27500 .

(4.45)
Moreover, with (4.45) we have numerically tested the required validity of (3.13) for higher
coefficients in both solutions up to order q125, in a similar way to the previous case. We
have found the q-expansion coefficients of the solutions to be non-integers. In this case as
well, the MLDE is a non-BPZ one since (4.43) holds.

BPZ cases. For the example (4.42), with the values of α1, α3, α4 the 2 solutions to the
MLDE (4.30) respectively go as (16q)−1 and (16q)0 as q → 0. We have solved the MLDE
recursion relations and found the q-expansion coefficients an up to order q21 for both
solutions, with odd ones vanishing.42 On the other hand with the values of c, hL, hR, first
using the Mathematica code in [22], the q-expansion coefficients bn of the H-functions
corresponding to hp(1) = 0 and hp(2) = 1 are obtained up to order q21, and then the
coefficients fn of the 2 respective Virasoro blocks are calculated coding the relation (3.12).
Indeed, they respectively match to the 2 solutions of our MLDE. In the present example,
we have found the q-expansion coefficients of the blocks to be non-integers. The full
computation has been done analytically.43

Clearly (c, hL) lies on the locus of the level-2 Virasoro null states:

16h2
L + hL(2c− 10) + c = 0, 16h2

R + hR(2c− 10) + c 6= 0 . (4.46)

Hence, the MLDE corresponds to a BPZ equation in the present case.
At (4.42), rank(∂JgI) = 4 and we have

δα4 = 3δα1 −
δα3
2 , δhL = 3

8(δα3 − 2δα1), δhR = 3
8(6δα1 + δα3), δc = 0 .

(4.47)
This is a 2 dimensional space. The points on it are not guaranteed to correspond BPZ cases.
In addition, there could be higher order perturbations that may alter c from 1. However,
the curve satisfying (4.38) and passing trough (4.42) such that always c = 1 and the MLDE
corresponds to a BPZ equation i.e. hL = 1/4 can be easily obtained as

α3(α1) = −α1 (α1 − 3)− 1
4 , α4(α1) = 2α1 (2α1 − 1) , hR(α1) = 3α1 −

1
4 .

(4.48)
42For the first solution, we set a1 = 0 by hand as ~α lies on the surface (4.32) with m = 1.
43For c = 1 i.e. b = i [see, definition (A.1)], the numerical code in [22] breaks. Hence, taking the external

dimensions hL = 1/4, hR = 5/4, we use the code for the analytical computations of the first 21 q-expansion
coefficients in the H-functions corresponding to 2 Virasoro blocks with above intermediate dimensions and
arbitrary c. Then we take b→ i limit.
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Along the curve, hp(2) = 1. And, the 2 solutions to the MLDE (4.30) respectively go as
(16q)−2α1 and (16q)1−2α1 as q → 0. As the above ~α lies on the surface (4.32) with m = 1,
we set a1 = 0 by hand for the first solution. With this, the odd coefficients in both solutions
vanish as required for the 2 Virasoro blocks corresponding to hp(1) = 0 and hp(2) = 1. We
have analytically tested the required validity of (3.13) in both solutions up to order q21.

Now, we present one new point near (4.42) for which c 6= 1, nonetheless well approxi-
mated by (4.47) with δα1 = 10−4, δα3 = 10−4 up to errors of order (δα1)2, (δα3)2, δα1δα3.

α1 = 5001
10000 , α3 = 10001

10000 , α4 = 10003
√

400080013− 200030003
200000000 ,

c = 13002600310009− 600060003
√

400080013
1000200010000 , hL = 3

√
400080013− 40009

80000 ,

hR = 3
√

400080013 + 40015
80000 , hp(2) =

√
400080013− 10003

10000 .

(4.49)
Moreover, with (4.49) we have numerically tested the required validity of (3.13) for higher
coefficients in both solutions up to order q125. We have found the q-expansion coeffi-
cients of the solutions to be non-integers. In this case as well, the MLDE is a BPZ one
since (4.46) holds.

Now, the modular transformation matrices that act on the above solutions to (4.30) are44

M(T ) =
(
e
iπ
2 (1−4α1−

√
κ1) 0

0 e
iπ
2 (1−4α1+√κ1)

)
, (4.50)

M(ST 2S)(1,1) =−ie
1
2 iπ(4α1+√κ1) cos(2π√κ2)csc

(
π
√
κ1

2

)
,

M(ST 2S)(2,1) =−
2−2√κ1−1

(
(−1)4√κ2−1

)
(−1)2α1−2√κ2 csc

(
2π√κ2

)
Γ
(
1−
√
κ1
2
)
Γ
(
−
√
κ1
2
)

Γ
(
−
√
κ1
2 −2√κ2+ 1

2
)
Γ
(
−
√
κ1
2 +2√κ2+ 1

2
) ,

M(ST 2S)(1,2) =−
2iπe2iπα1Γ

(√
κ1+1

)
Γ
(√
κ1
)

Γ
(1

2(√κ1+1)
)2 Γ

(1
2(√κ1−4√κ2+1)

)
Γ
(1

2(√κ1+4√κ2+1)
) ,

M(ST 2S)(2,2) = ie−
1
2 iπ(√κ1−4α1) cos(2π√κ2)csc

(
π
√
κ1

2

)
,

κ1 = (1−4α1)2−4α4, κ2 =α2
1+α3 . (4.51)

Now confining us to scalar operators, the bootstrap condition corresponding to T in (3.15)
allows only vanishing non-diagonal elements in C:

C =
(

1 0
0 β

)
, β = cLLp(2) · cRRp(2) , (4.52)

where cLLp(2), cRRp(2) are the 3-point coefficients associated with the stripped correlator

44Computed using (C.5).
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GLLRR. Now, the S-invariance solves for β as45

β = −
Γ
(

1
2
(√
κ1 + 1

))4 (
cos

(
2π√κ2

)
csc2

(
π
√
κ1

2

)
cos

(
2π√κ2

∗)− 1
)

4π2Γ
(√
κ1 + 1

)2 Γ
(√
κ1
)2

× Γ
(1

2 (√κ1 − 4√κ2 + 1)
)

Γ
(1

2 (√κ1 + 4√κ2 + 1)
)

Γ
(1

2
(√
κ1 − 4√κ2

∗ + 1
))

× Γ
(1

2
(
4√κ2

∗ +√κ1 + 1
))

.

(4.53)
Thus, in the aforesaid explicit examples we have

for (4.41), β = −
16−6

√
2

11−1Γ
(
− 3

√
2
11 −

1
2
)2

Γ
(1

2 − 3
√

2
11
)2(

1(
1−2 cos

(
2
√

2
11π

))2 − 1
)

Γ
(
− 4

√
2
11
)2

Γ
(
− 2

√
2
11
)2

≈ 0.0000419138 ;

for (4.42), β = 5
4 ;

for (4.45), β ≈ 0.0000419882 ;

for (4.49), β ≈ 1.24968 .

(4.54)

And, along the curve (4.48)

β = 1
4 |1− 12α1| cot

(
π
√

12α1 − 1
)

tan
(
π
√

12α1 − 1∗
)
. (4.55)

Note that with the pairing LLRR of external operators the non-negativity of the
q-expansion coefficients of pillow blocks does not apply as unitarity bound, see section 3.
In all the examples above, c, hL, hR, hp(2) are greater than zero, except in the case (4.48)
we need to restrict α1 > 1/12. However, the non-BPZ examples (4.41), (4.45) and the
BPZ example (4.49) are non-unitary since the respective central charges are less than 1
but do not lie in (4.22). On the other hand, in the BPZ example (4.42) with c = 1, the
representations with respective hL, hR, hp(2) are all unitary.46

5 Discussions

In the above, we have constructed MLDEs w.r.t. subgroups of modular group whose solutions
are Virasoro conformal blocks that appear in a crossing symmetric 4-point correlator on the
sphere. We have particularly focused on second order MLDEs with holomorphic coefficients
in the cases of all identical and pairwise identical (LLRR) external operators, namely (4.5)
and (4.30). In the first case, the relevant subgroup is the full modular group, and in the
second case, it is generated by T, ST 2S. The central charge, operator dimensions of both

45Here, ∗ denotes the complex conjugate. We know that κ1 > 0 due to (4.37).
46The Kac determinants for a representation with (c = 1, h > 0) are non-negative, and respective Gram

matrices are positive semi-definite [4].
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external as well intermediate ones are functions of parameters that appeared in the MLDEs.
We are able to provide these functional dependencies explicitly in the first case and in a
subcase of the second case, elsewhere they are implicit. This has been done by comparing
the q-expansions of the solutions to the MLDEs with those of Virasoro blocks. Using actions
of respective subgroups, bootstrap equations involving the associated 3-point coefficients
have been set up and solved as well in terms of the MLDE parameters. For the case of
all identical external operators, our MLDE with one single parameter corresponds to BPZ
equation. We have illustrated one unitary example and one non-unitary example at the end
of section 4.1. The non-negativity of the q-expansion coefficients in the pillow blocks applies
in this case as unitarity bound, and we have shown this to be an insufficient condition
for unitarity by calculating the coefficients in pillow blocks to be also non-negative for
our non-unitary example. For the case of pairwise identical operators, starting from a few
specific examples of MLDEs we have used linear perturbations around them to generate
(infinite-)family of MLDEs in section 4.2. In this case, some of the MLDEs presented do not
correspond to BPZ equations. These are novel second order differential equations whose
solutions are Virasoro blocks. This itself is quite exciting result in the context of building
differential equations for the blocks. Also, out of those blocks crossing symmetric correlators
can be written as our bootstrap equations possess nontrivial solutions in those cases. In
these specific examples, from the corresponding central charges it is clear that the respective
representations are non-unitary. With the classification of non-unitary CFTs with c < 1,
one will be able to identify the respective CFTs where these (c, h)-values lie. Appendix E
records the q-expansion of blocks computed in our explicit examples.

Below, we discuss potential generalisations of the present analysis and related future
avenues, including the consideration of meromorphic forms as the coefficients in our MLDEs
in some detail.

1. Meromorphic forms. In the above, as the coefficients of our MLDEs we have
considered holomorphic forms, see (4.2). The ansatz (4.2) leads to the most general second
order linear differential equation with 3 regular singular points in variable x = λ(τ) namely
at x = 0, 1,∞. Thus, considerations of meromorphic φ0, φ1 should result in more and/or
new type singular points of the differential equation in x. However, here we point out that
such considerations will be important for writing down MLDEs for 4-point Virasoro blocks.
Consider the following MLDE w.r.t. the full modular group.

d2 ~F

dτ2 −
iπ

3 E2(τ)d
~F

dτ
+ 2iπα1

E6(τ)
E4(τ)

d~F

dτ
+ π2

(
α3
E6(τ)2

E4(τ)2 + α2E4(τ)
)
~F = 0 ,

α1 = 2
3 , α2 = 164

225 , α3 = −8
9 .

(5.1)

E4 has zeros at τ = e
iπ
3 , e

2iπ
3 which correspond to x = (−1)1/3,−(−1)2/3 respectively. E6

is non-vanishing at these points. The 2 solutions to the MLDE (5.1) respectively go as
(16q)− 4

5 and (16q)− 1
5 as q → 0. Now considering 4 identical external operators of dimension

h = 3/5 in a CFT with central charge c = 7/10, the above solutions respectively coincide
with the Virasoro blocks corresponding to the intermediate dimensions hp(1) = 0 and
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hp(2) = 3/5. We have analytically tested the required validity of (3.13) for q-expansion
coefficients in both solutions up to order q21. In doing so, the q-expansion coefficients in
the solutions are obtained solving the above MLDE recursively. For c = 7/10 i.e. b = i

√
5/2

[see, definition (A.1)], the numerical code in [22] breaks. Thus, taking external dimensions
h = 3/5, we use the code for the analytical computations of the first 21 q-expansion
coefficients in the H-functions corresponding to 2 Virasoro blocks with above intermediate
dimensions and arbitrary c. Then we take b→ i

√
5/2 limit. These coefficients are then used

to calculate the coefficients in the Virasoro blocks coding the relation (3.12). In the present
example, we have found the q-expansion coefficients of the solutions to be non-integers.
The MLDE (5.1) is a non-BPZ one as 16h2 + h(2c− 10) + c 6= 0.

Once the above solutions are identified with the Virasoro blocks, one can solve the
MLDE recursively to obtain their q-expansions to any desired order qn. We have done this
numerically and found the coefficients up to order q100 with 50-digit precision. Within
this accuracy, the two solutions vanishes at q = ie−

√
3π/2,−ie−

√
3π/2 i.e. respectively at

τ = e
iπ
3 , e

2iπ
3 . Thus, the solutions are analytic although the MLDE has singularities at

these points. In the variable x = λ(τ), (5.1) becomes

d2 ~F

dx2 + P (x)d
~F

dx
+Q(x)~F = 0, P (x) = 2(2x− 1)

x(x− 1) (x2 − x+ 1) ,

Q(x) = 2
(
2x6 − 6x5 − 63x4 + 136x3 − 63x2 − 6x+ 2

)
25x2(x− 1)2 (x2 − x+ 1)2 .

(5.2)

Clearly x = (−1)1/3,−(−1)2/3 are regular singular points of the above ODE. Nonetheless,
at these points the 2 general solutions given below are analytic with vanishing constant
term in respective Taylor series.

((x− 1)x+ 1)P
3
5
− 1

5
(2x− 1)√

−((x− 1)x)
,

((x− 1)x+ 1)Q
3
5
− 1

5
(2x− 1)√

−((x− 1)x)
, (5.3)

where Pmn (x) denotes the associated Legendre polynomial and Qmn (x) the associated Legen-
dre function of the second kind [35]. As the 2 aforesaid Virasoro blocks can be written as
linear combinations of (5.3), they are analytic at x = (−1)1/3,−(−1)2/3 as well, and vanish
at these points.

The above discussion shows the importance to scan over MLDEs with meromorphic
coefficients in order to construct differential equations for 4-point Virasoro blocks. Such
an MLDE may lead to new singularities as well in the Virasoro blocks in addition to the
expected ones, unlike the above example.47 Such a case will be interesting as this can not
be observed from the q-expansions of the Virasoro blocks due to Zamolodchikov. We leave
the systematic study for the future.

2. MLDEs with c > 1, ha, hp(k) > 0. The examples constructed in this paper are
with c ≤ 1. It will be important to scan the parameter space ~α for points such that the
MLDE (3.5) gives Virasoro blocks with c > 1, ha, hp(k) > 0 when Op(k) 6= 1. If it exists,

47For W3 conformal blocks, such a situation has been reported earlier in [36].
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the MLDE will be a non-BPZ one, additionally the corresponding CFT will be unitary as
all representations with (c > 1, h > 0) are unitary. Such a CFT contains infinite number of
Virasoro primaries in its spectrum [37]. Thus, above MLDE having a finite order N would
reveal non-trivial information about the fusion rules, such as (1.1) or a truncation.

To initiate, let us take the case of pairwise identical operators studied in this paper. In
this case, existence of an MLDE (4.30) that corresponds to c > 1, hL, hR, hp(2) > 0 (hp(1) =
0) is not ruled out yet, unlike the case of all identical operators. We have performed a
preliminary search as follows. Here, we deal with an inverse problem of the one discussed in
section 4.2. We use the first 3 equations in (4.38) to express α1, α3, α4 in terms of c, hL, hR,
then try to satisfy the remaining 3 equations in the region c > 1, hL, hR > 0 and single
out the cases with hp(2) > 0. For this, we numerically vary c from 1.025 to 3 with step-size
0.025, and each hL, hR from 0.025 to 2 with step-size 0.025. This generates 259200 points
in the above region. For each of these, we numerically solve the first 3 equations in (4.38)
to get α1, α3, α4 and with these values we check the validity of the remaining 3 equations
within a tolerance 0.1. We have taken a large tolerance, keeping in mind that the desired
point satisfying (4.38) can possibly be an isolated one and may lie only near any of the
generated points. For none of the 259200 points generated, (4.38) can be satisfied within
above tolerance. Increasing the upper limit of c, hL, hR and/or decreasing the step-sizes
make the numerics more involved, which we leave for the future.

3. Sphere-torus correspondence. Recently [9] reported a new sphere-torus correspon-
dence that relates the characters of diagonal theories to specific 4-point conformal blocks
on the sphere. Their proposed correspondence considers on the torus-side a CFT denoted
by Tt and on the sphere-side a CFT given by Tt × Tt/Z2. In the present context of MLDEs,
a potential future direction will be to classify all MLDEs (second or higher order, with
holomorphic and meromorphic coefficients as well) in the case of all identical operators
(where the relevant subgroup is the full modular group)48 whose solutions are Virasoro blocks
with non-negative integer q-expansion coefficients, additionally with the S-transformation
matrix M(S) (that acts on the blocks) satisfying some integrality conditions coming from
Verlinde’s formula [38]. Then we get candidates for MLDEs for characters and will be able
to study sphere-torus correspondences more generally(if they exist) than the proposed one
in certain types of theories.

4. Infinite number of Virasoro blocks. In unitary CFTs with c > 1 whose spectra
necessarily contain infinite number of Virasoro primaries, the conformal block expansions of
some (crossing symmetric)correlators are likely to have an infinite number of Virasoro blocks
as well. Construction of MLDEs for such blocks are out of the scope of the present program.
However, such blocks may be expressed in terms of eigen functions of Laplace-Beltrami
operator on the upper half plane with some choice of metric, generalising the ideas in [39–42].

It will be also interesting to study MLDEs in the other possible cases given in table 1. For
this, one needs to generalise the code in [22] for analytical and/or numerical computations
of the q-expansion coefficients in the H-functions adapted in those cases. When all the

48Also, possibly in the case LRRR, as argued in appendix D.
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operators are distinct, we take a preliminary attempt as discussed at the end of appendix A.
It will be also interesting to consider higher order MLDEs and to generalize our construction
for other type of conformal blocks. Finally, we should mention that the discrete values
in (4.23) require an explanation in the alternative viewpoint on q-expansions of Virasoro
blocks provided in [23] on top of the non-negativity of the q-expansion coefficients of
pillow blocks.
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A Zamolodchikov’s H-function

The Zamolodchikov’s H-functions are related to the Virasoro blocks, see (3.9). The q-
expansion coefficients in the H-functions can be obtained using Zamolodchikov’s elliptic
recursion formula [6]. We discuss relevant properties of these coefficients in this appendix.
We also obtain the q-expansion coefficients of the Virasoro blocks.

To set up the recursion relation, we suitably adapt the parameterizations from [22] for
our correlator 〈O1(∞)O2(1)O3(x)O4(0)〉 as follows.49

c = 1 + 6
(
b+ 1

b

)2
, ha = 1

4

(
b+ 1

b

)2
− λ2

a ,

hmn = 1
4

(
b+ 1

b

)2
− λ2

mn, λmn = 1
2

(
m

b
+ nb

)
,

Rmn = 2
∏
p,q

(λ3 + λ4 − λpq) (λ4 − λ3 − λpq) (λ1 + λ2 − λpq) (λ2 − λ1 − λpq)
∏
r,s

′
λ−1
rs ,

(A.1)
where p, q, r, s run over

p = −m+ 1,−m+ 3, . . . ,m− 3,m− 1, q = −n+ 1,−n+ 3, . . . , n− 3, n− 1 ,
r = −m+ 1,−m+ 2, . . . ,m, s = −m+ 1,−m+ 2, . . . ,m ,

(A.2)

and the primed product means that (r, s) = (0, 0) and (m,n) are excluded. The recursion
relation for H is given by

H(c, ha, hp, q) = 1 +
∑

m,n=1,2,...

qmnRmn
hp − hmn

H(c, ha, hmn +mn, q) . (A.3)

Note that Rmn is symmetric when we interchange both λ1 ↔ λ4 and λ2 ↔ λ3, as the
following holds.∏

p,q

(λ4 − λ3 − λpq)(λ2 − λ1 − λpq) =
∏
p,q

(λ1 − λ2 − λpq)(λ3 − λ4 − λpq) . (A.4)

Hence, (A.3) asserts that H is invariant under the interchange: h1 ↔ h4, h2 ↔ h3.
49In contrast to us, [22] considers 〈O1(0)O2(x)O3(1)O4(∞)〉. And, as discussed in appendix B, x is the

inverse elliptic nome.
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One can obtain the higher coefficients bn from the knowledge of the lower ones by
evaluating (A.3) iteratively. All the odd coefficients bn contain a factor of R11. Therefore,
they vanish when h1 = h2 or h3 = h4 [22, 43].

In the case h1 = h2 ≡ hL, h3 = h4 ≡ hR, [22] implements Zamolochikov’s recursion
relation for H in a companion Mathematica notebook. The code can be used for both
numerical and analytical computations of the q-expansion coefficients bn in H yielding
the analytic even coefficients b2n in terms of b, hL, hR, hp with odd ones vanishing. In the
present paper, we need the first few analytic even coefficients f2n in (3.10). f2n are linearly
related to b2n (3.11). Thus, we use the above code to get the first few analytic coefficients
b2n, and replace the parameter b in terms of c. Then, coding the relation (3.12), we get the
required even coefficients of the Virasoro blocks. Below we present the first few. The higher
analytic coefficients are very lengthy. For the vacuum block we have

f2 = b2+ 1
2 (1−c+16hL+16hR) = 512hLhR

c
−8(hL+hR) ,

f4 = b4+ 1
8 (1−c+16hL+16hR)(4b2+7−c+16hL+16hR)

= 4
c(5c+22)

[
8h2

L (640hR (2−c+32hR)+c(5c+22))+c(5c+22)hR (8hR−1)

+hL (16hR (128−320(c−2)hR+c(5c−42))−c(5c+22))
]
. (A.5)

f6 = 1
3c(−1+2c)(22+5c)(68+7c)×

(32(−c(−1+2c)(22+5c)(68+7c)hL (1+hL (−3+8hL))+

(−c(−1+2c)(22+5c)(68+7c)+2(−23296+c(155320+3c(12322+c(5113+70c))))hL−

24(68928+c(35640+c(46346+c(−279+70c))))h2
L+

512(376+c(15494+3c(57+70c)))h3
L

)
hR−

3(−c(−1+2c)(22+5c)(68+7c)+8(68928+c(35640+c(46346+c(−279+70c))))hL−

1024(9256+c(9538+c(−839+70c)))h2
L+32768(876+c(−251+70c))h3

L

)
h2

R−

8(c(−1+2c)(22+5c)(68+7c)−64(376+c(15494+3c(57+70c)))hL+

12288(876+c(−251+70c))h2
L−262144(29+70c)h3

L

)
h3

R

))
. (A.6)

f8 = 1
3c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)×

(2(c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)hL (−3+4hL (35+16hL (−3+4hL)))+

(−3c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)+

8(−15630336+c(93118128+c(2402116+c(−65081200+c(3581843+5c(−163753+7350c))))))hL−

64(82286592+c(−121751536+c(−129927860+c(56360240+c(−4282919+15c(72119+630c))))))

h2
L+1024(−7839360+c(−97857360+c(−2557588+c(−10723064+5c(427349+c(3181+210c))))))

h3
L−65536(−42864+c(−2709332+c(−1710448+c(259441+5c(2173+210c)))))h4

L

)
hR+

4(35c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)−

16(82286592+c(−121751536+c(−129927860+c(56360240+c(−4282919+15c(72119+630c))))))

hL+
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128(−213555712+c(66109744+3c(76581868+c(−7652528+5c(1019645+c(2173+210c))))))h2
L−

16384(−13406640+c(−5758900+c(−1753868+15c(195457+c(−2363+210c)))))h3
L+

524288(−831704+c(−410542+3c(180603+25c(−19+42c))))h4
L

)
h2

R+

64(−3c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)+

16(−7839360+c(−97857360+c(−2557588+c(−10723064+5c(427349+c(3181+210c))))))hL−

1024(−13406640+c(−5758900+c(−1753868+15c(195457+c(−2363+210c)))))h2
L+

196608(−386760+c(368134+5c(50751+c(−2783+210c))))h3
L−

4194304(−10686+c(24559+5c(−599+210c)))h4
L

)
h3

R+

256(c(−1+2c)(46+3c)(3+5c)(22+5c)(68+7c)−

256(−42864+c(−2709332+c(−1710448+c(259441+5c(2173+210c)))))hL+

8192(−831704+c(−410542+3c(180603+25c(−19+42c))))h2
L−

1048576(−10686+c(24559+5c(−599+210c)))h3
L+16777216(−251+5c(661+210c))h4

L

)
h4

R

))
.

(A.7)

And, for the excited block corresponding to dimension hp we have

f2 = 4hp (3c−2(c−1)hp)−8hL (2hp (c−8hp−64hR+11)+c−64hR)−8hR (2hp (c−8hp+11)+c)
2hp (c+8hp−5)+c . (A.8)

f4 = 2
(c+8hp−1)(5c(2hp+3)+2(hp−1)(8hp−33))(2chp+c+2hp (8hp−5))×(
4(−1+hp)hp

(
7hp (−13+4hp)(−3+8hp)−1206hR+64hp

(
273−386hp+64h2

p

)
hR+

16(−645+8hp (487+8hp (−43+8hp)))h2
R

)
+

64h2
L ((−1+hp)hp (−645+8hp (487+8hp (−43+8hp)))+

64(−15+hp (161+2hp (191+64(−7+hp)hp)))hR+1024(−15+4hp (26+hp (−19+8hp)))h2
R

)
+

8hL

(
(−1+hp)hp

(
−603+32hp

(
273−386hp+64h2

p

))
+

16(−96+hp (1013+hp (−6829+8hp (1307+8hp (−39+8hp)))))hR+

512(−15+hp (161+2hp (191+64(−7+hp)hp)))h2
R

)
+

5c3 (16h2
L (3+4hp (2+hp))+hp (1+2hp)(9+2hp (−7+4hp))−6hR+8hp (−20+hp (−1+8hp))hR+

16(1+2hp)(3+2hp)h2
R+2hL (3+2hp)(−1+16hR+2hp (−13+8hp+16hR))

)
−

c2 (hp (−153−4hp (−484+hp (919+4hp (−101+8hp))))+

2(51+4hp (−83+hp (33+16hp (25+16hp))))hR+16(−51+4hp (−235+hp (7+72hp)))h2
R+

2hL (51+4hp (−83+hp (33+16hp (25+16hp)))+2256hR+64hp (−467+hp (71+232hp))hR+

5120(3+4hp (2+hp))h2
R

)
+16h2

L

(
−51+1920hR+4hp

(
−235+7hp+72h2

p+640(2+hp)hR

)))
+

2c(hp (−99+2hp (1238+hp (−2771+4(499−64hp)hp)))+66hR−

4hp (748+hp (−6929+8hp (1415+8hp (−73+8hp))))hR+

16(−33+2hp (−728+hp (−353+16hp (73+12hp))))h2
R+

2hL (33−2hp (748+hp (−6929+8hp (1415+8hp (−73+8hp))))+4080hR−
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32hp (176+hp (369+16hp (−189+4hp)))hR+512
(
45+2hp

(
−177+68hp+64h2

p

))
h2

R

)
+

16h2
L (−33+2880hR+2(hp (−728+hp (−353+16hp (73+12hp)))+

64hp

(
−177+68hp+64h2

p

)
hR+5120(3+4hp (2+hp))h2

R

))
. (A.9)

It is straightforward to check the symmetry of the above coefficients under hL ↔ hR, as
previously argued.

The aforesaid code in [22] cannot be used for the calculations of the coefficients bn
when all the external operators are distinct, and needs to be generalised. In a preliminary
analysis, coding (A.3) for the general case, we have calculated the first few coefficients
bn, which upon setting h1 = h2, h3 = h4 reproduce above results. Here, we present the
first few analytic coefficients bn in the general case. The higher analytic coefficients are
very lengthy.

b1 = 8(h1−h2)(h3−h4)
hp

. (A.10)

b2 = 1
2hp (c+2hp (−5+c+8hp))×(
128c(h1−h2)2 (h3−h4)2+

((−1+c)c+

16
(
−h2

(
c+48h2

3+16h4 (−1+3h4)−16h3 (1+6h4)
)
+c
(
4h2

3+h4 (−1+4h4)−h3 (1+8h4)
)

+

4h2
1
(
c+16h2

3+4h4 (−3+4h4)−4h3 (3+8h4)
)
+4h2

2
(
c+16h2

3+4h4 (−3+4h4)−4h3 (3+8h4)
)

+

h1
(
−c+16h3−48(h3−h4)2+16h4−8h2

(
c+16h2

3+4h4 (−3+4h4)−4h3 (3+8h4)
))))

hp+

2
(
5+6c+c2+64h2

1+64h2
2−48h3−16ch3+64h2

3−16h2 (3+c−16h3−16h4)−

16h1 (3+c+8h2−16h3−16h4)−16(3+c+8h3)h4+64h2
4
)
h2

p

)
. (A.11)

b3 = 4(h1−h2)(h3−h4)
3hp (2+c+hp (−7+c+3hp))(c+2hp (−5+c+8hp))×(
c(2+c)

(
5+3c+64h2

3+16h4 (−3+4h4)−16h3 (3+8h4)
)

+(
−100+c

(
19+48c+9c2)+64(−20+c(−1+3c))h2

3+16h4 (60−9c(1+c)+4(−20+c(−1+3c))h4)−

16h3 (−60+9c(1+c)+8(−20+c(−1+3c))h4))hp+

3
(
−310+c(−5+c(49+2c))+64(6+5c)h2

3+16h4 (42−c(27+2c)+4(6+5c)h4)−

16h3 (−42+c(27+2c)+8(6+5c)h4))h2
p+

6
(
167+c(154+3c)+192h2

3−48(19+c−4h4)h4−48h3 (19+c+8h4)
)
h3

p+1152h4
p+

48h2
(
−c(2+c)−16h2

3 (c+hp (−7+3c+9hp))−16h2
4 (c+hp (−7+3c+9hp))+

hp (20−3c(1+c)−hp (−42+c(27+2c)+6(19+c)hp))+

16h4 (c+hp (3(−3+c)+hp (9+2c+6hp)))+

16h3 (c−9hp+hp (3+2hp)(c+3hp)+2h4 (c+hp (−7+3c+9hp))))+

64h2
1 (c(2+c)+hp (−20+c(−1+3c)+3hp (6+5c+6hp))−12h4 (c+hp (−7+3c+9hp))+

2h2
3 (c(8+c)+hp (−26+11c+24hp))+2h2

4 (c(8+c)+hp (−26+11c+24hp))+

4h3 (−3(c+hp (−7+3c+9hp))−h4 (c(8+c)+hp (−26+11c+24hp))))+
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64h2
2 (c(2+c)+hp (−20+c(−1+3c)+3hp (6+5c+6hp))−12h4 (c+hp (−7+3c+9hp))+

2h2
3 (c(8+c)+hp (−26+11c+24hp))+2h2

4 (c(8+c)+hp (−26+11c+24hp))+

4h3 (−3(c+hp (−7+3c+9hp))−h4 (c(8+c)+hp (−26+11c+24hp))))+

16h1 (−3c(2+c+16(−1+h4)h4)−3(−20+3c(1+c)+16h4 (9−3c+(−7+3c)h4))hp+

3(42−c(27+2c)+16(9+2c−9h4)h4)h2
p−18(19+c−16h4)h3

p−48h2
3 (c+hp (−7+3c+9hp))+

48h3 (c−9hp+hp (3+2hp)(c+3hp)+2h4 (c+hp (−7+3c+9hp)))+

8h2
(
−c(2+c)+hp

(
20+c−3c2−3hp (6+5c+6hp)

)
+12h4 (c+hp (−7+3c+9hp))−

2h2
3 (c(8+c)+hp (−26+11c+24hp))−2h2

4 (c(8+c)+hp (−26+11c+24hp))+

4h3 (3(c+hp (−7+3c+9hp))+h4 (c(8+c)+hp (−26+11c+24hp)))))) . (A.12)

B q-expansion of certain functions

The q-expansions of the functions λ(τ), θ2(τ), θ3(τ), θ4(τ), η(τ), E2(τ), E4(τ), E6(τ) are used
in this paper. Exact formulae for the q-expansions of θr and η are given by

θ2(τ) = 2
∑

n=1,3,5,...
qn

2/4 ,

θ3(τ) = 1 + 2
∞∑
n=1

qn
2
,

θ4(τ) = 1 + 2
∞∑
n=1

(−1)nqn2
,

η(τ) =
∑

n=0,∓1,∓2,...
(−1)nq(6n+1)2/12 . (B.1)

For the functions λ(τ), E2(τ), E4(τ), E6(τ), below we present formulae in terms of some
Mathematica library functions. Then, it is straightforward to write Mathematica routines
to obtain their q-expansion coefficients to any desired order qn.

First note that the local inverse of (2.6) is given by [6, 29–31]

τ(λ) = i
K(1− λ)
K(λ) ,

K(λ) ≡
∫ 1

0

dt√
(1− t2) (1− λt2)

= 1
2π 2F1

(1
2 ,

1
2; 1;λ

)
, (B.2)

where K denotes the complete elliptic integral of the first kind. The elliptic nome is given by

q(λ) = eiπτ(λ) . (B.3)

The elliptic nome and its inverse are Mathematica library functions, EllipticNomeQ[λ] and
InverseEllipticNomeQ[q], respectively, with the latter providing the elliptic lambda function
λ as a function of q.50

The library function EllipticTheta[r, q] provides the Jacobi theta functions θr, r = 2, 3, 4
as a function of q. As presented below, the Eisenstein series E2 can be expressed in terms

50On the other hand, the Mathematica library function ModularLambda[τ ] provides λ(τ).
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of the complete elliptic integral of the second kind E, the elliptic lambda function λ and
the Jacobi theta functions θr, and E4, E6 in terms of θr [29–31]. Using Mathematica library
function EllipticE[λ] for E(λ), EllipticE[InverseEllipticNomeQ[q]] provides its q-dependency.

E2 = 6
π
E(λ)θ2

3 − θ4
3 − θ4

4, E(λ) ≡
∫ 1

0

√
1− λt2
1− t2 dt ,

E4 = 1
2
(
θ8

2 + θ8
3 + θ8

4

)
,

E6 = 1
2
(
θ12

3 + θ12
4 − 3θ8

2

(
θ4

3 + θ4
4

))
. (B.4)

Now using Mathematica, the coefficients of the q-expansions of λ(τ), E2(τ), E4(τ), E6(τ)
can be obtained to any desired order qn. Here, we present the first few terms:

λ(τ) = 16q − 128q2 + 704q3 − 3072q4 + 11488q5 − 38400q6 + 117632q7 − 335872q8 + · · · ,
E2(τ) = 1− 24q2 − 72q4 − 96q6 − 168q8 + · · · ,
E4(τ) = 1 + 240q2 + 2160q4 + 6720q6 + 17520q8 + · · · ,
E6(τ) = 1− 504q2 − 16632q4 − 122976q6 − 532728q8 + · · · . (B.5)

C Closed form solutions

In this appendix, we consider the second order MLDE w.r.t. Γ(2) in (4.2) and provide 2
solutions in closed form. The solutions are so chosen that they shall be directly identified —
whenever possible on the parameter space ~α — with conformal blocks from their q → 0
behaviour.

Under the change of variable x = λ(τ), (4.2) leads to51

x2(1−x)2d
2 ~F

dx2 +x(1−x)
(
1− 2α2− (2α1 + 1)x

)d~F
dx
− (α3x

2 +α4x+α5)~F = 0 , (C.1)

where we have used the following relations.

dλ

dτ
= iπλ(1− λ)θ4

3, E2 = −(2λ− 1)θ4
3 + 3

iπθ4
3

d

dτ
θ4

3 . (C.2)

(C.1) is the most general second order linear differential equation with 3 regular singular
points viz. at x = 0, 1,∞.52 Therefore, the solutions can be obtained in terms of Gauss

51In order to obtain closed form solutions to MLDEs of orders 2 and 3 for the characters, [11] made a
variable change from the torus parameter τ to an auxiliary space x = λ(τ). Here, we follow the same path,
except in our case x-space should be interpreted as the cross-ratio space.

52In order for ∞ to be a regular singular point of a differential equation given below, limy→0 yP ( 1
y

) and
limy→0 y

2Q( 1
y

) should be finite. Thus, P should be a linear while Q a quadratic polynomial in x. (C.1) has
the most general such P,Q.

d2f

dx2 + P (x)
x(x− 1)

df

dx
+ Q(x)
x2(x− 1)2 f = 0 .

.
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hypergeometric function as

Fp(1)(x) = xµ−(1− x)ν− 2F1(a−, b−; c−;x), Fp(2)(x) = xµ+(1− x)ν+ 2F1(a+, b+; c+;x) ,

µ∓ = α2 ∓
√
α2

2 + α5 ,

ν∓ = 1
2 − α1 − α2 ∓

√(
α1 + α2 −

1
2
)2 + (α3 + α4 + α5) ,

a∓ = 1
2 ±

√
α2

1 + α3 ∓
√
α2

2 + α5 ∓
√(

α1 + α2 −
1
2
)2 + (α3 + α4 + α5) ,

b∓ = 1
2 ∓

√
α2

1 + α3 ∓
√
α2

2 + α5 ∓
√(

α1 + α2 −
1
2
)2 + (α3 + α4 + α5) ,

c∓ = 1∓ 2
√
α2

2 + α5 . (C.3)

It is straightforward to obtain the actions of T, S on the above solutions using the following
identities [29–31].

2F1(a, b; c;x) = (1− x)c−a−b 2F1(c− a, c− b; c;x) ,

2F1(a, b; c;T · x) = (1− x)a 2F1(a, c− b; c;x) = (1− x)b 2F1(c− a, b; c;x) ,

2F1(a, b; c;S · x) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1;x)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) xc−a−b 2F1(c− a, c− b; c− a− b+ 1;x) ,

2F1(a, b; c;S · x) = Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) xc−a−b(1− x)1−c

2F1(1− b, 1− a; 1 + c− a− b;x)

+ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)(1− x)1−c

2F1(1 + b− c, 1 + a− c; 1 + a+ b− c;x) .

(C.4)

In particular, we compute that53

F (ST 2S ·x) =

(
e2iπ(a+c)+e2iπ(b+c)−e2iπ(a+b)−e2iπc

)
e−2iπ(a+b−ν)

e2iπc−1 F (x)

− 2iπΓ(c−1)Γ(c)e−iπ(a+b−c−2ν)

Γ(a)Γ(b)Γ(c−a)Γ(c−b) x1−c+µ(1−x)c−a−b+ν 2F1(1−a,1−b;2−c;x) ,

F (x) =xµ(1−x)ν 2F1(a,b;c;x) . (C.5)

And, note that the values of {1− c+ µ, c− a− b+ ν, 1− a, 1− b, 2− c} for any of the 2
solutions in (C.3) give the respective values of {µ, ν, a, b, c} for the other solution.

D Some implications of crossing

Why do the conformal blocks appearing in the expansion of a crossing symmetric correlator
admit a q-expansion? In this appendix, we argue that crossing symmetry implies it, and
that such implications can also reveal information regarding the coefficients. We do not
confine us to Virasoro blocks; for the latter, Zamolodchikov’s recursion formula already
offers an answer.

53We also use the relation Γ(1− z)Γ(z) = π cscπz.
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The connection between crossing transformations and modular transformations is
reviewed in section 2.2. In particular, the stripped correlators have invariance under some
subgroup containing Γ(2), as summarized in table 1. The holomorphic conformal blocks
that contribute to a stripped correlator are allowed to transform linearly, e.g. see (3.4). In
particular, the action of T 2 ∈ Γ(2) relates a block to itself up to a phase. Invariants under
T 2 : τ 7→ τ + 2 should admit Fourier series expansion ∼ ∑n∈Z anq

n, q = eiπτ , whereas
those that pick up phases should admit expansion ∼ qs

∑
n∈Z anq

n, s /∈ Z. Furthermore,
for stripped correlators whose stabilizer subgroup contains T : τ 7→ τ + 1 (see, table 1), the
odd coefficients a2n+1 should vanish in corresponding blocks, supporting our results for the
cases OOOO and LLRR analyzed in this paper.

The preceding arguments do not use input from local conformal symmetry. Now,
consideration of expansion of stripped correlators in Virasoro blocks gives further input.
As discussed in appendix A, the odd coefficients in holomorphic Varasoro blocks vanish
also for cases with 3 identical external operators. Hence, they only pick up phases under
T . This suggests that the stabilizer subgroups respectively of GLRRR, GRLRR extend to
contain T (at least for scalar operators in diagonal theories, where above phases simply
cancel in (3.3)). In particular for the case LRRR, such an extension would imply the full
modular invariance of the stripped correlator as evident from table 1. In latter scenario,
exploration with MLDEs may be simpler, however we await a code to solve Zamolodchikov’s
recursion relations efficiently in the case of LRRR.

E Results: q-expansion of blocks

q-expansions are central to our analysis. In section 4, we identify the solutions to our MLDEs
with Virasoro blocks by computing their q-expansion. In the numerical examples presented,
we compute them up to order q125 whereas in our analytical examples we compute them
up to order q21. In this appendix, we record our results. Also, we point out the growth of
the coefficients as we increase the order in the cases relevant for above analysis. Note that
these are the blocks that contribute to a stripped correlator and the odd coefficients vanish
in all these blocks.

Let us begin by recording our numerical results, in all of which we have verified (3.13)
up to a125 with 300-digit precision. In example (4.25), the non-vanishing even q-expansion
coefficients up to a124 (normalised to a0) in the vacuum block are

1., 113.776, 1318.76, 8953.83, 45554.7, 193572., 720910., 2.42997× 106, 7.56262× 106,

2.20463× 107, 6.08207× 107, 1.60059× 108, 4.04272× 108, 9.84867× 108, 2.32339× 109,

5.32536× 109, 1.18921× 1010, 2.59341× 1010, 5.53433× 1010, 1.1577× 1011, 2.37753× 1011,

4.79993× 1011, 9.53746× 1011, 1.86715× 1012, 3.60477× 1012, 6.86907× 1012, 1.29291× 1013,

2.40542× 1013, 4.42624× 1013, 8.06029× 1013, 1.45334× 1014, 2.59591× 1014, 4.5953× 1014,

8.06522× 1014, 1.40399× 1015, 2.42496× 1015, 4.15706× 1015, 7.07519× 1015, 1.19587× 1016,

2.00789× 1016, 3.34978× 1016, 5.55407× 1016, 9.15427× 1016, 1.50017× 1017, 2.44485× 1017,

3.96308× 1017, 6.39088× 1017, 1.02544× 1018, 1.63736× 1018, 2.60214× 1018, 4.11652× 1018,

6.48338× 1018, 1.01672× 1019, 1.58774× 1019, 2.46937× 1019, 3.82538× 1019, 5.90318× 1019,

9.0754× 1019, 1.39013× 1020, 2.12177× 1020, 3.22722× 1020, 4.89199× 1020, 7.39103× 1020 .

(E.1)
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And, those in the excited block are

1., 16.3417, 121.096, 662.756, 2930.97, 11288.2, 38987.8, 123853., 367079., 1.02728× 106,

2.73655× 106, 6.98647× 106, 1.71814× 107, 4.08764× 107, 9.4404× 107, 2.1227× 108,

4.65826× 108, 9.99806× 108, 2.10255× 109, 4.33915× 109, 8.80012× 109, 1.75602× 1010,

3.45142× 1010, 6.68825× 1010, 1.27894× 1011, 2.41521× 1011, 4.50744× 1011, 8.31869× 1011,

1.5191× 1012, 2.74635× 1012, 4.91789× 1012, 8.72672× 1012, 1.53517× 1013, 2.6783× 1013,

4.63572× 1013, 7.963× 1013, 1.35791× 1014, 2.29947× 1014, 3.8678× 1014, 6.46383× 1014,

1.07352× 1015, 1.77222× 1015, 2.90877× 1015, 4.74756× 1015, 7.70691× 1015, 1.24456× 1016,

1.99965× 1016, 3.19714× 1016, 5.08747× 1016, 8.05822× 1016, 1.27067× 1017, 1.99498× 1017,

3.11895× 1017, 4.8562× 1017, 7.53096× 1017, 1.16336× 1018, 1.79035× 1018, 2.7451× 1018,

4.19392× 1018, 6.38499× 1018, 9.68762× 1018, 1.46496× 1019, 2.20812× 1019 . (E.2)

In example (4.41), the non-vanishing even q-expansion coefficients up to a124 (normalised
to a0) in the vacuum block are

1., 22.5168, 155.137, 1012.31, 4846.06, 20358.9, 74099.5, 246722., 756421., 2.17942× 106,

5.93833× 106, 1.5456× 107, 3.86082× 107, 9.30858× 107, 2.17367× 108, 4.93379× 108,

1.09128× 109, 2.35798× 109, 4.98668× 109, 1.03402× 1010, 2.10536× 1010, 4.21495× 1010,

8.30662× 1010, 1.61317× 1011, 3.08998× 1011, 5.84279× 1011, 1.09143× 1012, 2.0155× 1012,

3.68168× 1012, 6.65632× 1012, 1.19171× 1013, 2.11381× 1013, 3.71626× 1013, 6.47843× 1013,

1.12026× 1014, 1.92222× 1014, 3.27389× 1014, 5.53648× 1014, 9.29893× 1014, 1.55159× 1015,

2.5726× 1015, 4.23956× 1015, 6.94569× 1015, 1.13148× 1016, 1.83315× 1016, 2.95425× 1016,

4.73666× 1016, 7.55686× 1016, 1.19984× 1017, 1.89619× 1017, 2.98317× 1017, 4.6727× 1017,

7.28798× 1017, 1.13201× 1018, 1.75122× 1018, 2.69857× 1018, 4.14257× 1018, 6.33569× 1018,

9.6549× 1018, 1.46613× 1019, 2.21872× 1019, 3.3464× 1019, 5.03074× 1019 . (E.3)

And, those in the excited block are

1., 6.49066, 37.2408, 157.757, 602.987, 2034., 6375.5, 18572., 51279.2, 134657., 339483., 824399.,
1.9386× 106, 4.42624× 106, 9.84517× 106, 2.13779× 107, 4.54201× 107, 9.45765× 107,

1.93325× 108, 3.88437× 108, 7.68114× 108, 1.4964× 109, 2.87485× 109, 5.45115× 109,

1.02096× 1010, 1.89003× 1010, 3.46063× 1010, 6.27063× 1010, 1.12504× 1011, 1.99958× 1011,

3.52221× 1011, 6.15142× 1011, 1.06558× 1012, 1.83148× 1012, 3.12437× 1012, 5.29181× 1012,

8.90121× 1012, 1.48735× 1013, 2.46949× 1013, 4.07504× 1013, 6.68471× 1013, 1.09031× 1014,

1.76856× 1014, 2.85346× 1014, 4.58016× 1014, 7.3151× 1014, 1.16267× 1015, 1.83932× 1015,

2.89656× 1015, 4.54138× 1015, 7.08976× 1015, 1.10221× 1016, 1.70663× 1016, 2.6321× 1016,

4.04391× 1016, 6.18982× 1016, 9.44007× 1016, 1.43461× 1017, 2.17265× 1017, 3.27932× 1017,

4.93344× 1017, 7.3981× 1017, 1.10593× 1018 . (E.4)

In example (4.45), the non-vanishing even q-expansion coefficients up to a124 (normalised
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to a0) in the vacuum block are

1., 22.5157, 155.091, 1011.73, 4841.93, 20336.7, 74002.5, 246351., 755143., 2.17537× 106,

5.92632× 106, 1.54224× 107, 3.85186× 107, 9.28568× 107, 2.16803× 108, 4.92036× 108,

1.08818× 109, 2.35099× 109, 4.9713× 109, 1.03071× 1010, 2.0984× 1010, 4.20056× 1010,

8.27738× 1010, 1.60732× 1011, 3.07848× 1011, 5.82047× 1011, 1.08716× 1012, 2.00742× 1012,

3.66658× 1012, 6.62842× 1012, 1.18661× 1013, 2.10458× 1013, 3.69971× 1013, 6.44902× 1013,

1.11508× 1014, 1.91317× 1014, 3.25822× 1014, 5.50954× 1014, 9.25296× 1014, 1.5438× 1015,

2.55949× 1015, 4.21763× 1015, 6.90924× 1015, 1.12546× 1016, 1.82326× 1016, 2.9381× 1016,

4.71043× 1016, 7.51449× 1016, 1.19303× 1017, 1.8853× 1017, 2.96582× 1017, 4.64522× 1017,

7.24463× 1017, 1.1252× 1018, 1.74057× 1018, 2.68198× 1018, 4.11684× 1018, 6.29595× 1018,

9.59373× 1018, 1.45674× 1019, 2.20438× 1019, 3.32457× 1019, 4.99762× 1019 . (E.5)

And, those in the excited block are

1., 6.48905, 37.2247, 157.656, 602.497, 2031.99, 6368.21, 18547.9, 51205.3, 134444., 338901., 822881.,
1.93479× 106, 4.417× 106, 9.8235× 106, 2.13284× 107, 4.53099× 107, 9.4337× 107,

1.92815× 108, 3.87373× 108, 7.65933× 108, 1.49201× 109, 2.86614× 109, 5.43411× 109,

1.01767× 1010, 1.88378× 1010, 3.44887× 1010, 6.24878× 1010, 1.12103× 1011, 1.99227× 1011,

3.50904× 1011, 6.12792× 1011, 1.06142× 1012, 1.82418× 1012, 3.11169× 1012, 5.26991× 1012,

8.8637× 1012, 1.48097× 1013, 2.45872× 1013, 4.05696× 1013, 6.65456× 1013, 1.08531× 1014,

1.76033× 1014, 2.83998× 1014, 4.55821× 1014, 7.27954× 1014, 1.15694× 1015, 1.83013× 1015,

2.88189× 1015, 4.51808× 1015, 7.05291× 1015, 1.09641× 1016, 1.69754× 1016, 2.61792× 1016,

4.02186× 1016, 6.15568× 1016, 9.38742× 1016, 1.42652× 1017, 2.16027× 1017, 3.26043× 1017,

4.90472× 1017, 7.3546× 1017, 1.09937× 1018 . (E.6)

In example (4.49), the non-vanishing even q-expansion coefficients up to a124 (normalised
to a0) in the vacuum block are

1., 148.008, 2839.72, 22946.4, 137099., 652398., 2.69607× 106, 9.91395× 106, 3.34532× 107,

1.04835× 108, 3.0955× 108, 8.6743× 108, 2.32537× 109, 5.99176× 109, 1.49132× 1010,

3.59723× 1010, 8.43696× 1010, 1.9287× 1011, 4.30744× 1011, 9.41538× 1011, 2.01776× 1012,

4.24544× 1012, 8.78156× 1012, 1.78772× 1013, 3.58556× 1013, 7.09143× 1013, 1.38418× 1014,

2.6684× 1014, 5.08405× 1014, 9.57924× 1014, 1.78593× 1015, 3.29634× 1015, 6.02618× 1015,

1.09166× 1016, 1.96039× 1016, 3.49117× 1016, 6.16778× 1016, 1.08132× 1017, 1.88185× 1017,

3.25192× 1017, 5.58132× 1017, 9.51668× 1017, 1.61246× 1018, 2.71544× 1018, 4.54604× 1018,

7.56752× 1018, 1.2528× 1019, 2.06298× 1019, 3.37959× 1019, 5.50883× 1019, 8.93608× 1019,

1.44274× 1020, 2.31869× 1020, 3.70994× 1020, 5.91036× 1020, 9.37639× 1020, 1.48143× 1021,

2.33129× 1021, 3.6545× 1021, 5.70712× 1021, 8.87984× 1021, 1.37668× 1022, 2.12685× 1022 .

(E.7)
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And, those in the excited block are

1., 42.6747, 478., 3230.59, 17114.5, 75273., 292801., 1.02805× 106, 3.33913× 106, 1.0141× 107,

2.91492× 107, 7.98197× 107, 2.09678× 108, 5.30691× 108, 1.29985× 109, 3.09053× 109,

7.15424× 109, 1.61607× 1010, 3.56992× 1010, 7.72494× 1010, 1.64009× 1011, 3.42098× 1011,

7.01913× 1011, 1.41815× 1012, 2.82419× 1012, 5.54841× 1012, 1.07619× 1013, 2.06235× 1013,

3.90726× 1013, 7.32267× 1013, 1.35829× 1014, 2.49493× 1014, 4.54007× 1014, 8.18824× 1014,

1.46425× 1015, 2.5971× 1015, 4.57051× 1015, 7.98319× 1015, 1.38437× 1016, 2.38405× 1016,

4.07827× 1016, 6.93169× 1016, 1.17086× 1017, 1.96592× 1017, 3.28181× 1017, 5.44788× 1017,

8.99474× 1017, 1.47731× 1018, 2.41404× 1018, 3.92536× 1018, 6.35237× 1018, 1.02324× 1019,

1.64081× 1019, 2.61962× 1019, 4.16453× 1019, 6.59316× 1019, 1.03961× 1020, 1.63281× 1020,

2.55471× 1020, 3.98222× 1020, 6.18484× 1020, 9.5717× 1020, 1.4762× 1021 . (E.8)

Let us now record our analytical results, in all of which we have verified (3.13) up to a21.
In example (4.42), the non-vanishing even q-expansion coefficients up to a20 (normalised to
a0) in the vacuum block are

1, 148, 8518
3 ,

206488
9 ,

8635969
63 ,

1849279724
2835 ,

3275260738
1215 ,

7671897005992
773955 ,

77663518514651
2321865 ,

37237371707708776
355245345 ,

549763890597127946
1776226725 . (E.9)

And, those in the excited block are

1, 128
3 ,

7168
15 ,

1017344
315 ,

48504832
2835 ,

42666752
567 ,

32363573248
110565 ,

11931331945472
11609325 ,

658803675430912
197358525 ,

2572473554680448
253746675 ,

1086962474550605824
37300761225 . (E.10)

In example (5.1), the non-vanishing even q-expansion coefficients up to a20 (normalised to
a0) in the vacuum block are

1, 1776
7 ,

660600
119 ,

21723712
357 ,

2022713932
4403 ,

566425403808
206941 ,

1221717596032
88689 ,

846338945000064
13865047 ,

3390143052603318
13865047 ,

37515825996029872
41595141 ,

4175770663888371264
1344909559 . (E.11)

And, those in the excited block are

1, 3252
13 ,

1394622
299 ,

13504840
299 ,

4063264659
12857 ,

1213556570100
681421 ,

254874044554
29627 ,

1835485844863032
49743733 ,

594419355156438531
4128729839 ,

2145046306273955184
4128729839 ,

746562367866167426862
425259173417 . (E.12)

At the end of section 4.1, we have also discussed the q-expansion of pillow blocks up
to order q125 in example (4.25). For this computation, the data given in (E.1), (E.2) are
sufficient. Below in figure 4, we plot the coefficients to show their non-linear growth with
increasing order, as important in above-mentioned discussion.

– 41 –



J
H
E
P
0
2
(
2
0
2
3
)
1
5
8

20 40 60 80 100 120
n

100

106

f

n

For vacuum pillow block

For excited pillow block

Figure 4. Even q-expansion coefficients in pillow blocks for the example (4.25) are plotted. Odd
ones vanish. y-axis is logarithmic.
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