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1 Introduction

Symmetries and their breaking play a crucial role in modern formulation of particle physics
theories. The symmetry structure of a theory can substantially vary during the evolution
of the universe. The usual expectation is that spontaneously broken symmetries get re-
stored at high temperatures, however the Weinberg’s work [1] presented the prospect of
high-temperature symmetry non-restoration (SNR), as well as the potential to delay sym-
metry restoration to higher temperatures. SNR and related phenomena were studied in
numerous subsequent papers [2–34], with the recent applications mostly concentrating on
electroweak (EW) symmetry breaking, in particular in relation to electroweak baryogenesis
(EWBG) [35, 36] at temperatures above the EW scale. One of the main reasons for such
an interest is that many (although, not all) EWBG models currently face an increasing
pressure from the null results in searches for the new physics which is required for successful
EWBG. This new physics includes new sources of CP-violation, and modifications of the
Standard Model (SM) needed to make the electroweak phase transition (EWPT) strongly
first-order, such that the Higgs VEV crosses the value h ' T during the transition. These
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Figure 1. Higgs VEV thermal histories in SM (grey), traditional models of electroweak baryoge-
nesis (blue) and models of high-temperature EWBG (green). Dashed vertical lines correspond to
first-order phase transitions. Red line shows the border between h/T ≶ 1 phases, which in EWBG
models have to be separated by the first-order phase transition.

scenarios tend to be highly testable since the new physics introduced to permit successful
EWBG has to operate at the EWPT, which is conventionally expected to happen at tem-
peratures around 100GeV, and this restricts the mass scale of new physics to be similarly
light if it is to achieve its purpose.

Although traditional models of EWBG necessarily change the properties of the EW
phase transition with respect to the SM predictions, the overall transition temperature
stays around 100GeV due to the thermal effects induced by the SM particles. The SM
fields produce a positive thermal correction to the Higgs mass which takes over the negative
zero-temperature mass at T ∼ 100GeV leading to symmetry restoration, see figure 1. The
most sizeable such a correction is that of the top quark:

LSM ⊃ −λtt̄tH ⇒ δVT ∼ λ2
tT

2|H|2. (1.1)

The idea of high-temperature EWBG [22, 23] is to raise the temperature of EW sym-
metry restoration, potentially to the multi-TeV range, where the phase transition would
occur. The new physics required for EWBG can then be correspondingly heavier and evade
the current or near future experimental bounds. This is achieved by adding a new set of
fields which induce a negative thermal Higgs mass, thus counteracting the corrections in-
duced by the SM fields and moving the EW symmetry restoration to higher temperatures.
As an example we will consider new scalars χ with the interaction

LSNR ⊃ λχhχ2|H|2 ⇒ δVT ∼ −λχhT 2|H|2 , (1.2)

where the negative thermal Higgs mass in δVT has to overcompensate the positive SM
contributions such as that of eq. (1). Other than that, in the scenarios considered so far
the SM has not been modified while being extrapolated to the multi-TeV energies. We
note that this approach is generically incompatible with the models of EWBG which are
motivated by the gauge hierarchy problem, which typically predict qualitative changes to
the theory, and typically new states, at energies above ∼ 1TeV. Thus in this work we seek to
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work towards realizing the prospect of high-temperature EWBG within a supersymmetric
extension of the Standard Model introduced to resolve the hierarchy problem.1

EWBG realizations within the minimal supersymmetric extensions of the Standard
Model (such as the MSSM and NMSSM) experience severe pressure from the non-observa-
tion of new physics at collider experiments, see e.g. [39], and electric dipole moment (EDM)
measurements [40, 41]. This suggests incorporating SNR in these scenarios. In these
supersymmetric extensions the Higgs mass naturalness problem is addressed by assuming
the presence of relatively light superpartners of the states which couple sizeably to the
Higgs field, such as the top quark, thus cancelling their loop contributions to the Higgs
mass. We highlight that models of SNR typically introduce new states χ that must couple
to the Higgs with a strength λχh comparable to the top Yukawa, in order to compensate
for the positive top-quark-induced thermal Higgs mass (1.1). It follows that for SNR
scenarios to comply with the EW scale naturalness considerations one must necessarily
supersymmetrize the SNR sector as well.

High-temperature symmetry breaking in supersymmetric theories has been considered
in previous work [42–51] in application to various problems of particle physics, finding
a set of arguments preventing SNR [42–45], and also proposing some ways to overcome
these [47–51]. In this paper we will show that these no-go arguments do not apply in
cases with a large number of SNR states, and present a framework for EWBG utilizing
this feature. This model, although allowing for SNR, requires a quadratically increasing
number of new states for achieving higher SNR temperatures. As a result, while shifting
the EWPT to the TeV scale requires a moderate O(10) number of SNR fields, achieving
a phase transition at multi-TeV temperatures is much more expensive in terms of the
number of new degrees of freedom. This behaviour represents a significant deviation from
what is expected in non-supersymmetric SNR scenarios with scalar SNR fields [21–23], and
suggests that, although the EWSB signatures at current or near future experiments can be
suppressed, their complete removal is not possible unless an extremely large number of new
states is postulated. Moreover, extremely large numbers of states are not very compelling
since this will generically suppress the final baryon asymmetry η by the simple scaling
argument η ∝ 1/g∗(T ), where g∗ is the effective number of degrees of freedom [23].

The aim of this paper is to present a proof-of-principle that a supersymmetric extension
of the SM can permit a strongly first-order phase transition at temperatures well above the
EW scale. The model that we arrive at has a spectrum with the SM superpartners at the
TeV scale or above, while the SM is supplemented with sets of scalar-fermion superpartner
pairs below the TeV scale for the purpose of SNR, and heavier superpartners enhancing
the phase transition to be strongly first order. This model may not be the most economic
realization, but it provides the desired proof-of-principle. Furthermore, this work focuses
primarily on obtaining a strongly first-order phase transition near the TeV scale and we
leave to a future publication a more complete calculation of the baryon asymmetry η in
this setting. While we include some discussion of potential sources of CP violation and the

1An alternative solution to the hierarchy problem can be found in, for instance, Higgs compositeness at
the TeV scale, with the EWBG implementation studied for example in [37, 38].
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preferred particle spectra which avoid suppressions to η in section 5, a full calculation of η
must include a computation of the relevant CP sources, baryon number transport, and the
thickness and velocity of the bubble wall associated to the phase transition, accordingly
this merits a dedicated paper.

The paper is organized as follows. In section 2 we revisit the no-go arguments for
SNR with SUSY and show how the large-nχ limit helps to avoid them. In section 3 we
consider in detail the application of this idea to the EW symmetry breaking. In section 4
we present a simplistic model which, besides SNR, also features a high-temperature first-
order EW phase transition, as necessary for EWBG. Subsequently, in section 5 we outline
the requirements for successful EWBG, in particular we discuss potential sources of CP
violation which arise within supersymmetric models. Finally, we conclude in section 6 and
the appendices contain a discussion of higher-order thermal corrections in our scenario.

2 Symmetry non-restoration in supersymmetric theories

The possibility to have broken symmetries at high temperature in supersymmetric theories
was considered in the past, in attempts to avoid the formation of monopoles or domain
walls. The conclusion however was that in the simplest cases there is a series of obsta-
cles [42–45] which prohibit symmetry breaking at very high T . We will now review these
arguments and highlight a new way to overcome them.

2.1 A ‘no-go’ theorem for high temperature symmetry breaking

Consider a scalar field φ transforming non-trivially under a symmetry G, such that a non-
zero φ vacuum expectation value (VEV) would break this symmetry spontaneously. We
will analyse whether the thermal effects can drive the φ VEV to large values.

To determine the effect of the high-temperature plasma on φ we first write down the
thermal potential in high-T expansion, i.e. assuming all particles in plasma having mass
m . T :

δVT = T 2

24Tr
[
M2

0 +M1/2M
†
1/2 + 3M2

1

]
, (2.1)

whereMi are the mass matrices of particles with spin i, which are functions of the φ field.
Assuming that supersymmetry is at most softly broken, the supertrace of mass matrices
has to be independent of φ

Tr
[
M2

0 − 2M1/2M
†
1/2 + 3M2

1

]
6= f(φ). (2.2)

Using this relation we can now express the spin-0 and spin-1 mass matrices as a function
ofM1/2, to obtain

δVT = T 2

8 Tr
[
M1/2M

†
1/2

]
= T 2

8
∑
ij

|M1/2 ij |2. (2.3)

It follows that in G-symmetric renormalizable theories, the most general form of the sum is∑
ij

|M1/2 ij |2 = c0 + (c1φ+ h.c.) + c2 φ
†φ, (2.4)
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where we omitted the G-indices for simplicity. The quantity on the l.h.s. of eq. (2.4) is,
trivially, non-negative. To ensure this at large φ field values, c2 φ

†φ has to be a positive
semidefinite quadratic form. We then find that the thermal potential (2.3) produces non-
negative thermal masses ∝ T 2c2 φ

†φ and hence, if non-vanishing, drives the φ field towards
the symmetry-restoring minimum.

Let us discuss the effect of a non-vanishing c1 coefficient. Since all the terms on the
r.h.s. of eq. (2.4) have to be G-invariant, the coefficient c1 can only be non-zero if it is
proportional to some other scalar fields, which we collectively denote φ′, transforming non-
trivially under G. By the same reasoning as before we conclude that the φ, φ′-dependent
part of the sum (2.4) has to be positive-semidefinite, leading to non-negative thermal masses
for both fields. This leaves open a possibility to have a flat direction in φ− φ′ plane. One
can generically expect that in such a situation the position of the minimum of the sum of
the zero-temperature potential and its finite-T correction will not be able to experience a
significant growth with temperature, and hence such a scenario is also not relevant for our
purposes.

The above conclusions are based on the following assumptions:

(I) All of the fields are light: mi . T ;

(II) All of the fields are in thermal equilibrium;

(III) None of the fields carry a net charge (together with (I) and (II) implying eq. (2.1));

(IV) All of the interactions are renormalizable (implying eq. (2.4)).

We will now discuss the consequences of breaking each of these assumptions. First of all,
the assumption (I) is violated if some of the fields are much heavier than T and hence
their masses should be dropped from eq. (2.1). On the other hand, these heavy degrees
of freedom can be integrated out of the theory, giving rise to a set of non-renormalizable
interactions. If the heaviness of integrated out heavy fields is achieved without introducing
a naturalness problem for the φ field, which is the case we are interested in, then the
property of the supertrace (2.2) would hold for the remaining light degrees of freedom.
Thus this case is equivalent to breaking the condition (IV) which we will discuss in its
turn.

Another proposed way to get SNR is to violate the assumption (II). The authors of
ref. [48] proposed to suppress the interactions of the relevant scalar field assuming the
presence of flat direction in the potential. As a result the field doesn’t thermalize, and
hence part of the thermal effects should also be dropped from eq. (2.1). Furthermore, in
ref. [50] the authors showed how a non-zero net lepton number, violating the assumption
(III), can lead to high-temperature symmetry breaking.2

2An alternative approach using large net charges was recently proposed in [34], which might also be
applicable in the supersymmetric case.
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Figure 2. One-loop thermal corrections to the scalar mass from the scalar (left diagram)
and fermionic (right diagram) degrees of freedom in models with non-renormalizable interac-
tions (2.6), (2.14).

2.2 Non-renormalizable operators and symmetry non-restoration

Finally, the authors of ref. [46] proposed to use non-renormalizable interactions to get SNR
by violating the condition (IV). In the presence of dimension-five interactions, the fermionic
mass takes the form (we assume no extra scalars this time)∑

ij

|M1/2 ij |2 = c0 + c2 φ
†φ+ c4 (φ†φ)2, (2.5)

hence the behaviour of the whole expression at large φ values is controlled by c4, while c2
is allowed to be negative, generating a negative thermal correction to the Higgs mass. As
an example, ref. [46] considered a model with a superpotential

W = −1
2µφ

2 + 1
4φ

4/Λ, (2.6)

featuring a φ → −φ symmetry, whose breaking at high T was analysed. The correspond-
ing scalar potential reads (we use the same notation for the superfields and their scalar
components)

V = |φ|2|µ− φ2/Λ|2 (2.7)

= 1
2µ

2(φ2
1 + φ2

2)− µ

2Λ(φ4
1 − φ4

2) + 1
8Λ2 (φ2

1 + φ2
2)3. (2.8)

To compute the leading order thermal correction we use eq. (2.1), and remove the fermionic
masses using eq. (2.2), thus making δVT a function of scalar masses, which can be read
from eq. (2.7). We thus obtain

δVT = T 2

16Tr
[
M2

0

]
⊃ 3

8
µ

ΛT
2(φ2

2 − φ2
1) + 9T 2

32Λ2 (φ2
1 + φ2

2)2. (2.9)

Corresponding one-loop diagrams are shown in figure 2.
We see from eq. (2.9) that the φ1 field receives a negative mass correction (we assume

µ,Λ > 0), which can overcome the positive zero-temperature mass in eq. (2.8) if

T 2 >
4
3µΛ, (2.10)

thus destabilizing the φ1 potential around the origin and allowing the field to get a
symmetry-breaking VEV. However, as was noted in refs. [44, 45], the φ1 mass also receives
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Figure 3. Two-loop thermal corrections to the scalar mass from the scalar (left diagram)
and fermionic (right diagram) degrees of freedom in models with nonrenormalizable interac-
tions (2.6), (2.14).

a positive two-loop thermal correction from the third operator in eq. (2.8). The same-order
effect also comes from a two-loop correction with fermions, see figure 3. Computing these
corrections one gets [44]

δV ′T = 9
64
T 2

Λ2T
2φ2

1. (2.11)

Requiring that the positive correction of (2.11) is subleading compared to the negative
mass correction from (2.9), implies

T 2 <
8
3µΛ. (2.12)

Given that the upper bound on the temperature (2.12) is very close to the lower one (2.10),
one should analyse them more carefully. Adding all the mass corrections together we obtain
the effective thermal mass

m2
φ1(T ) = µ2 − 3

4
µ

ΛT
2 + 9

32
T 4

Λ2 = 1
2µ

2 + 2
(

1
2µ−

3
8
T 2

Λ

)2

> 0, (2.13)

hence no SNR is actually possible.
The two-loop fermionic effect growing with temperature is linked to the nonrenormal-

izable fermion-scalar interactions, which, by eq. (2.5) are the necessary requirement for
SNR. As for the |φ|6 term in scalar potential, which also induces the positive thermal two-
loop mass correction, its presence is required by supersymmetry, and can also be related
to the need for having a scalar potential bounded from below, since the φ1 quartic term is
negative [44]. Moreover, a scalar potential generated from any superpotential satisfies the
boundedness condition by construction. This latter argument led the authors of ref. [44]
to suggests that the problem is generic to all supersymmetric theories, although no robust
proof of that was presented.

2.3 Symmetry non-restoration from high multiplicity

We will now show how the upper and lower bounds on SNR temperature in nonrenormaliz-
able theories can be made compatible, by assuming a large number of states generating the
thermal corrections. Let us consider two sets of superfields: Hu,d, whose scalar component
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VEVs would break EW symmetry, and χ1,2 transforming in a fundamental and an anti-
fundamental representations of a U(n) group, which will be responsible for the generation
of the negative thermal mass to the Higgs fields. We will first use a somewhat simplified
model allowing to demonstrate the mechanism, and will turn to the realistic case in the
next section. The superpotential reads

W = µχ(χ1.χ2) + cχh
Λ (Hu.Hd) (χ1.χ2), (2.14)

and corresponding scalar potential is

V = µ2
χ(|χ1|2 + |χ2|2) + 1

Λcχhµχ(|χ1|2 + |χ2|2)(Hu.Hd + h.c.) (2.15)

+ c2
χh

Λ2
{
(|Hu|2 + |Hd|2)|χ1.χ2|2 + (|χ1|2 + |χ2|2)|Hu.Hd|2

}
. (2.16)

Repeating the steps performed in the previous example, we find that the χ fields introduce a
thermal correction to the Hu.Hd mass mixing term, with a parametric size nχcχh(µχ/Λ)T 2.
The appearance of the factor of nχ can be simply understood from eq. (2.15), where to
evaluate the thermal average one needs to sum over all the χ1,2 components, 〈|χ1,2|2〉T ∼
nχT

2. This mixing results in one of the Higgs mass eigenstates developing a negative mass
and rolling away from the origin, thus breaking the EW symmetry. For this to happen,
the Higgs mass mixing ∼ nχcχh(µχ/Λ)T 2 has to overcome the positive thermal correction
to the diagonal Higgs mass δm2

h(SM) ∼ O(1)T 2 induced by the SM states, implying

cχhµχ
Λ &

1
nχ
. (2.17)

On the other hand, the dimension-six terms in eq. (2.16) generate positive two-loop thermal
contributions to the diagonal Higgs mass matrix elements ∼ nχc2

χhT
4/Λ2, which force the

EW symmetry restoration at very high temperature. Analogous two-loop contribution
comes from the loops of fermionic χ components, as depicted in figure 3. These two-loop
corrections are subdominant compared to the off-diagonal Higgs thermal mass term as
long as

cχhµχ
Λ .

µ2
χ

T 2 . (2.18)

Combination of the constraints (2.17) and (2.18) provides an upper bound on the temper-
ature, T . µχ

√
nχ. At the same time, for the thermal effects induced by the SNR states to

be efficient, their mass should not be much greater than the temperature, µ2
χ . T 2, hence

SNR can occur in the interval of temperatures

|µχ| . T .
√
nχ|µχ|. (2.19)

Thus while for nχ = 1 the ‘no go’ theorem of [42–45] hold, the conclusion that SNR is
impossible is avoided in the case that nχ � 1, allowing for a modest window in which to
realize SNR. Notably, this feature is analogous to what happens in the model of fermions-
induced SNR [24, 25, 28], which is included in the supersymmetric model considered here
as a sub-sector.
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Finally, we note that while a generic non-renormalizeable theory is expected to feature
an infinite set of higher-dimensional operators, their effect can be kept under control in
the large-nχ limit. We discuss this point, together with higher-order thermal loops, in
appendix A.

3 Electroweak symmetry non-restoration with supersymmetry

We will now discuss the SNR mechanism presented in the previous section in more de-
tail. Following the usual approach, we will assume that the χ fields coupled to the Higgs
sector are new SM-singlets. Introducing new states for the purpose of SNR (rather than
trying to use superpartners of the SM fields) allows us to choose freely their couplings and
multiplicity. Notably, the new particles, being SM singlets, can have a mass near the EW
scale without conflict with experimental data (unlike, for instance, squarks). This lightness
allows them to effectively contribute to the Higgs thermal potential around T ' 100GeV,
where the SM thermal effects would otherwise shift the Higgs VEV below the critical value
h/T = 1. As for the U(nχ) symmetry, for simplicity we will restrict our analysis to the
case when it remains unbroken at all relevant temperatures.

Our main interest here is to demonstrate the possibility of EW SNR, hence we will
pay maximal attention to the SNR sector and its couplings to the Higgs. The Higgs sector
itself is, however, beyond our main focus. We will make the simplifying assumption that
the Higgs sector is in the alignment limit [52] (as we detail shortly), and also take the
masses of the additional Higgs states to be ∼ 2TeV [53], which is beneficial for reproducing
experimental observations, but without specifying how the required masses and couplings
are generated. We will also neglect the thermal effects of the SM fields’ superpartners. We
will consider the following superpotential

W = µχ(χ1.χ2) + µh(Hu.Hd) + cχh
Λ (Hu.Hd) (χ1.χ2) + cχ

Λ (χ1.χ2)2, (3.1)

where Hu and Hd are the two MSSM Higgs superfields, and χ1, χ2 are new SM singlet
chiral superfields transforming as a fundamental and an antifundamental representations
of a U(nχ) symmetry. Hu.Hd is a shorthand notation for the SU(2)L-invariant term
(Hu)αεαβ(Hd)β . Additionally, we will assume the following overall Higgs potential

V2HDM = m2
Hu|Hu|2 +m2

Hd|Hd|2 +m2
Hud(Hu.Hd + h.c.) (3.2)

+β1
2 |Hd|4 + β2

2 |Hu|4 + β3|Hu|2|Hd|2 + β4|Hu.Hd|2, (3.3)

where the parameters m2
i , βi can be traded for the physical parameters:

mh,H,H+,HA , tan β = vu
vd
, v2 = v2

u + v2
d, (3.4)

and the mixing angle α [54], where 〈Hu〉 = (0, vu/
√

2), 〈Hd〉 = (vd/
√

2, 0) such that
vu = v sin β and vd = v cosβ.
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The scalar potential resulting from eq. (3.1) is

V = µ2
χ|χi|2+µ2

h|Hu|2+µ2
h|Hd|2

+ 1
Λ
{
cχhµχ|χi|2(Hu.Hd+h.c.)+cχhµh|Hi|2(χ1.χ2+h.c.)+2cχµχ|χi|2(χ1.χ2+h.c.)

}
+
c2
χh

Λ2

{
|Hi|2|χ1.χ2|2+|χi|2|Hu.Hd|2

}
+ 2cχhcχ

Λ2

{
|χi|2(Hu.Hdχ

†
1.χ
†
2+h.c.)

}
+

4c2
χ

Λ2

{
|χi|2|χ1.χ2|2

}
, (3.5)

where i = 1, 2 for χ and i = u, d for H fields. The fermionic part of the Lagrangian reads

− LF = µχ χ̃1.χ̃2 + 1
Λ
(
cχhχ̃1.χ̃2Hu.Hd + cχ(χ̃1.χ2 + χ̃2.χ1)2 + 2cχ χ1.χ2 χ̃1.χ̃2 + h.c.

)
.

(3.6)
Notably, the term cχhχ̃1χ̃2Hu.Hd/Λ gives a thermal contribution to the Higgs mass mixing
with magnitude ∼ cχhµχT 2/Λ, furthermore, a two-loop diagram with the same interaction
generates a correction to the diagonal mass ∼ c2

χhT
4/Λ2.

In the following sections we will discuss more quantitatively the effect of the new states
on the Higgs thermal mass, and the conditions needed to achieve EW SNR.

3.1 Higgs and χ thermal potential

The one-loop thermal correction to the scalar potential can be computed using the standard
expression involving sums over bosons b and fermions f

δVT =
∑
b

gb
T 4

2π2Jb[m
2
b/T

2]−
∑
f

gf
T 4

2π2Jf [m2
f/T

2], (3.7)

where gb and gf are numbers of bosonic and fermionic degrees of freedom, m2
b,f are their

masses, and the thermal loop functions are

Jb[x] =
∫ ∞

0
dk k2 log

[
1− e−

√
k2+x

]
, Jf [x] =

∫ ∞
0

dk k2 log
[
1 + e−

√
k2+x

]
. (3.8)

While the exact expression will be used for deriving the numerical results, we will first
use the high-T approximation, m2

b,f/T
2 � 1, to understand the analytic behaviour of

the thermal effects. In this case the thermal corrections are simplified to the following
expression

δVT '
T 2

24

[∑
b

gbm
2
b + 1

2
∑
b

gfm
2
f

]
. (3.9)

Note that this expression was used earlier in eq. (2.1).
Using the scalar potential (3.5), the fermionic part of the Lagrangian (3.6) and the

standard form of the interactions of Hu,d with the top quark and SM gauge bosons, we
obtain the following expression for the sum of the fermion mass terms, retaining only the
terms quadratic in fields∑

f

gfm
2
f = 12yt2|Hu|2 +4nχ

cχhµχ
Λ (Hu.Hd+h.c.)+8cχµχ(nχ + 1)

Λ (χ1.χ2 +h.c.), (3.10)
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and for the boson mass terms∑
b

gbm
2
b = 2(3β2 + 2β3 + β4)|Hu|2 + 2(3β1 + 2β3 + β4)|Hd|2 + 3

2(3g2 + g′2)(|Hu|2 + |Hd|2)

+4nχ
cχhµχ

Λ (Hu.Hd + h.c.) + 8cχµχ(nχ + 1) + cχhµh
Λ (χ1.χ2 + h.c.), (3.11)

where yt is the top quark Yukawa and g, g′ are the EW gauge couplings. These thermal
corrections can be accounted for by modifying the mass terms in the Higgs potential (3.2)
in the following manners

m2
Hu → m2

Hu + y2
t

4 T
2 + T 2

12 (3β2 + 2β3 + β4) +
(

3g2

16 + g′2

16

)
T 2 ≡ m2

Hu + cTuT
2

m2
Hd → m2

Hd + T 2

12 (3β1 + 2β3 + β4) +
(

3g2

16 + g′2

16

)
T 2 ≡ m2

Hd + cTdT
2

m2
Hud → m2

Hud + nχ
cχhµχ

4Λ T 2, (3.12)

while the thermally corrected χi mass eigenvalues read

m2
χ±(Hi)T =µ2

χ + cχhµχ
Λ (Hu.Hd + h.c.)

±
{
cχhµh

Λ (|Hu|2 + |Hd|2) + cχµχ(nχ + 1)
2Λ T 2 + cχhµh

3Λ T 2
}
.

(3.13)

We will now use these expressions to analyse the thermal evolution of our model.

3.2 Electroweak symmetry non-restoration

Let us now derive more precisely the conditions needed to obtain EW SNR. To this end
we will examine the mass matrix of the Higgs doublet components hu, hd

M2
h =

[
m2
Hu(T ) m2

Hud(T )
m2
Hud(T ) m2

Hd(T )

]
, (3.14)

where the mass matrix elements are defined in eq. (3.12). High-T EWSB can be achieved
when one of the mass eigenvalues becomes negative, hence we need the determinant of the
mass matrix to be negative as well, implying

m4
Hud(T ) > m2

Hu(T )m2
Hd(T ), (3.15)

or, explicitly, ∣∣∣∣m2
Hud + nχ

cχhµχ
4Λ T 2

∣∣∣∣ > √(m2
Hu + cTuT 2)(m2

Hd + cTdT 2). (3.16)

This condition then places a lower bound on the combination nχcχhµχ/Λ. Let us consider
this expression in the limits of high and low temperature. At very high T , where all the
T -independent contributions are negligible, the SNR condition becomes∣∣∣∣nχ cχhµχ4Λ

∣∣∣∣ > √cTucTd. (3.17)
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Figure 4. Left panel: the Higgs potential in the hu = hd direction at various temperatures in
the presence of SNR states, for nχ = 10, µχ = 650 GeV, µH = −130 GeV,Λ = 2.5 TeV, cχh =
3.2, tan β = 1 and a common heavy Higgs mass scale mH,H+,HA

= 2 TeV. Right panel: the
corresponding Higgs VEV hΣ =

√
h2
u + h2

d evolution with temperature.

Experimental data [55] suggests that the additional Higgs states are heavy, and the
neutral Higgs mixing is close to the alignment limit [52]. In this case, to study EWSB
at low temperatures we can just rotate the states to the mass eigenbasis and consider the
VEV of the lightest state hlight. The thermal correction to the potential of this light state
induced by the SNR fields is given by

VSNR = Hu.Hd
nχcχhµχ

Λ
T 2

4 + h.c. → −cαsαh2
light

nχcχhµχ
Λ

T 2

4 , (3.18)

where in the second step we performed the rotations

hu → cαhlight − sαhheavy, hd → sαhlight + cαhheavy , (3.19)

to the mass eigenstates basis. Equation (3.18) shows that the negative thermal mass of hlight
is maximal for cαsα = 1/2, which in the alignment limit cos(α+ β) = 0 implies tan β = 1.
Thus deviations from tan β = 1 typically imply a reduction in the degree of SNR which
can be achieved. Since in the alignment limit the lightest mass eigenstate is SM-like, the
positive thermal correction induced by the SM states is fixed to be δVT ' 0.2T 2h2

light.

SNR can be achieved provided that these positive thermal corrections from SM states are
overcome by the negative contribution of the SNR states (3.18), which implies the condition

s2αnχ
cχhµχ

Λ & 2. (3.20)

In figure 4 we show an example of the resulting Higgs potential and the corresponding
Higgs VEV evolution with temperature.

3.3 Regimes of effective field theory validity

At high temperature the accuracy of our effective description can degrade for two reasons.
The first one is the presence of higher-loop effects leading to thermal corrections which grow
with temperature faster than the leading effect which we use for SNR. More precisely, we
obtain (see appendix B)

δV 2−loop
T ' 0.03nχc2

χh

T 4

Λ2 |Hi|2. (3.21)
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Requiring these corrections to be small, 0.03nχc2
χhT

4/Λ2 � T 2, implies the bound

T � 5√
nχ

Λ
cχh

. (3.22)

This condition also ensures the convergence of the series of the leading non-daisy thermal
loops, see appendix A.

On the other hand, our effective field theory (EFT) cannot capture the thermal effects
induced by heavy physics at the scale Λ which has been integrated out, hence for validity
of the EFT one also needs to restrict the analysis to temperatures below the cutoff T � Λ.
Numerically, the one-loop thermal effects of a state with mass Λ become ∼ 1/5 suppressed
for T . Λ/3. The restrictions of eq. (3.22) and T � Λ are used in our numerical scans.

3.4 Numerical scans

In this section we will present the results of numerical parameter space scans of the model
defined in eq. (3.1) to identify regions of EW SNR. For now we will only be interested in
finding the points which lead to EW symmetry being continuously broken from some high
temperature down to T = 0 with hΣ/T > 1, where hΣ =

√
h2
u + h2

d. The discussion of a
possibility of having a high-temperature first-order EWPT is postponed to section 4.

In our numerical scans we used the exact one-loop thermal corrections (3.7) improved
with daisy resummation.3 In addition, to this we take into account zero-temperature
1-loop corrections via the Coleman-Weinberg potential [58]. We impose the tree-level
2HDM stability bounds [54] on the scan points, and also check numerically that hi = vi
is the only minimum of the one-loop zero-temperature scalar potential within the field
range |hi|, |χi| < Λ (we could have allowed for additional metastable minima but we
chose a stronger constraint to simplify the analysis). We require the thermal χi squared
masses (3.13) to remain positive along the Higgs field trajectory,4 and that the two-loop
and cutoff effects to be at least 1/5 suppressed. We scan the Higgs VEVs’ trajectories from
T = 0 and terminate at Tmax such that either h/T drops below 1, or the two-loop and
cutoff effects become too large, or one of the χi thermal squared masses becomes negative.

The scan results are presented in figure 5, where we show maximal SNR temperature
as function of various parameters, for nχ = 10, 30. The maximal temperature first grows
with µχ, since the latter controls the correction to the Higgs mass (3.18), but then starts
dropping since too large µχ suppresses the density of χ particles in plasma. The dependence
on cχh is dictated by the perturbativity bounds (3.22). The upper bounds on cχ and µh are
dictated by the requirement to have no additional minima of the scalar potential within the

3We use all-mode daisy resummation [56] although resumming only the zero modes [57] does not change
much our results. We use high-T expansion for the computation of thermally corrected masses to be used
for resummation, suppressing the contributions of heavy fields with a factor exp[−νmi/T ], with ν chosen
to match numerically the one-loop thermal masses obtained without the high-T expansion.

4This requirement is introduced to simplify the analysis since negative thermal squared masses for χi
would imply non-zero χi VEVs, greatly complicating the numerical calculation. This restriction could be
dropped, potentially leading to alternative viable parameter points, but this is beyond the scope of this
work. Weinberg’s original work [1] suggests it can be possible for the fields driving the high-T symmetry
breaking to have VEVs.
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Figure 5. Maximal SNR temperature as a function of µχ, µh, cχh and cχ where in the upper
panels we fix nχ = 10,Λ = 2.5 TeV, tan β = 1,mH,H+,HA

= 2 TeV and in the lower panels we take
nχ = 30,Λ = 4 TeV, tan β = 1,mH,H+,HA

= 2 TeV.

considered field range |hi|, |χi| < Λ, hence it can be relaxed by decreasing Λ, or by relaxing
the constraint on additional minima. Note, the lower bound on µh is simply defined
by our scan range. In agreement with analytical estimates (cf. eq. (2.19)), the maximal
temperature grows as √nχ. Notably, nχ ∼ 10 permits SNR such that EWSB is delayed
until the TeV scale, presenting a new scale at which one might realize EW baryogensis.

4 Generating the first-order electroweak phase transition

Famously, Sakharov enumerated the conditions for successful baryogenesis5 [60]:

i) Baryon number B violation,
5These criteria, while providing a general framework are not strictly necessary conditions, with Spon-

taneous Baryogenesis of Cohen & Kaplan [59] providing an example which does not conform to these
requirements.
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ii) Violation of C and CP symmetries,

iii) A period of out-of-equilibrium dynamics.

EWBG is highly attractive since phase transitions can lead to a departure from equilibrium
and EW sphalerons are a natural source of B violation. Notably, in the Standard Model the
EW phase transition to the broken phase is via a smooth crossover, and thus is inadequate
to satisfy Sakharov (iii). Moreover, while the CKM matrix presents CP-violating phases
these are too small to account for the magnitude of the observed baryon asymmetry.

In section 3 we have demonstrated that the EW symmetry can stay broken starting
from some TeV-scale temperature down to zero-temperature. However, to ensure appro-
priate out-of-equilibrium dynamics, successful models of EW baryogenesis require that the
phase transition be strongly first-order, which now can potentially happen at T � 130GeV.
The criteria for the strength of the first order phase transition is typically taken to be [61]

hΣ
T

> 1 , (4.1)

for all relevant temperatures after the transition. Baryon asymmetries generated in models
which do not satisfy this requirement will typically be aggressively washed-out via sphaleron
processes [62].

For the purpose of demonstration we will use a simple, although probably not the most
minimal, manner to obtain a first-order EW phase transition at high temperature. To this
end we add a set of symmetry-restoring (SR) superfields ψ transforming under their own
U(nψ), and which produce a thermal correction to the Higgs potential with a minimum at
hΣ/T < 1. This minimum will dominate at high temperatures, while at lower temperatures
the Higgs fields will transit to the minimum generated by the SNR states χ with hΣ/T > 1.

To introduce this new ‘layer’ of fermions we add the following terms to the superpo-
tential

δW = µψ(ψ1.ψ2) + cψh
Λ (ψ1.ψ2)(Hu.Hd), (4.2)

such that the new fermions and scalars have masses

|mψ̃|
2 = 1

2(m2
ψ+ +m2

ψ−) =
∣∣∣∣µψ + cψh

Hu.Hd

Λ

∣∣∣∣2 → ∣∣∣∣µψ − cψhhuhd2Λ

∣∣∣∣2 . (4.3)

The resulting thermal correction to the light Higgs mass reads

VSR = −cαsαh2
light

nψcψhµψ
Λ

T 2

4 . (4.4)

In order for the new states to push the Higgs VEV towards the origin, one must choose
cψhµψ/Λ to be negative. At the same time, to ensure that the ψ fields do not affect the
Higgs field evolution at temperatures below the phase transition, so not to disrupt the SNR
mechanism, we will choose mψ to be much greater than mχ.

Figure 6 (left) presents one such example with the Higgs potential featuring a transition
between minima induced by ψ and χ fields. Figure 6 (right) shows the corresponding
thermal evolution of hΣ/T with a strongly first-order phase transition; the horizontal line
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Figure 6. Left panel: an example model in which the Higgs potential in the hu = hd direction
has a single minimum at zero temperature (black), two minima at T = 500GeV (orange), and a
single minimum at T = 550GeV (green). Right panel: the evolution of hΣ(T ) in this model with
two coexisting minima and a phase transition at T ' 500GeV marked by the dotted line. For both
panels we take nχ = nψ = 10, tan β = 1, mH,H+,HA

= 2 TeV, µχ = 0.77 TeV, µψ = 1.5 TeV,
µH = 150 GeV,Λ = 2 TeV, cχh = 3.7, cχ = −0.2, cψh = −4.7. We take the alignment limit in the
Higgs sector and the MSSM superpartners to be above the scale Λ.
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Figure 7. Bounce action S3/T dependence on the temperature (blue line) computed using the
package FindBounce [63]. The tunneling rate starts dominating over expansion at S3/T ' 140 (red
line).

indicates hΣ/T = 1; since the phase transition proceeds above this line it is considered
strongly first order, and hence is suitable for EWBG.

A critical feature of a first order phase transition is that it occurs via bubble nucleation.
As the thermal bath temperature falls below the critical temperature of EWPT, the bubble
nucleation rate Γn(T ) becomes non-zero and begins growing. The phase transition to the
broken phase occurs at temperature Tn such that Γn(Tn) overcomes the Hubble rate H(Tn);
the typical expectation for this to happen is

S3
T

∣∣∣∣
T=Tn

∼ 140, (4.5)

where S3 is the O(3) symmetric bounce action defining the bubble nucleation rate [64, 65].
We numerically compute the bounce action S3/T dependence on the temperature using
the Mathematica package FindBounce [63] for the model of figure 6. The temperature
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evolution of S3/T for this model is shown in figure 7. Notably, this confirms that tunneling
starts dominating over expansion at S3/T ' 140, which occurs at approximately 500GeV.
Details the bubble nucleation can impact the efficiency of the asymmetry generation [66].

Figure 6 identifies one viable combination of parameters for a strongly first-order phase
transition. We next present some non-exhaustive numerical scans for the viable parameter
space in which the EWPT is strongly first-order. Specifically, we scan around the successful
example point for two different values of tan β = 1, 3. As discussed in section 3.2, deviations
from tan β = 1 typically leads to a reduction in the negative Higgs mass correction, in order
to compensate for this we increase nχ and nψ to 30 in order to maintain SNR for our scans
with tan β = 3.

Starting with tan β = 1 and nχ = nψ = 10 in figure 8 we present scans in the cχh-
cψh plane, and the cχh-µψ plane, keeping other parameter values the same as those in
figure 6. We scan cχh over the range (1, 5), for cψh we scan over (−1,−5), and for µχ/GeV
over (200,800). Green points indicate parameter values that pass all of our requirements,
namely a strong-first order phase transition occurring at temperatures above 400GeV. Grey
points indicate parameter values for which SNR is achieved in excess of 200GeV, but the
phase transition is not appropriate for EWBG. Let us now discuss qualitatively how the
requirement of strong first order EWPT limits the available parameter space with respect
to the space with SNR requirement only. Before starting it is important to mention that at
relevant temperatures the ψ states’ mass is typically much larger than the temperature and
therefore the simple high-T expansion can not be used to analyse the analytic properties
of the phase transition. The thermal barrier needed for the phase transition is formed as
a result of the thermal correction induced by the ψ states δV ∝ exp(−mψ(h)/T ), which
grows with h (where h is the direction in the hu−hd plane along which the phase transition
occurs), and the falling correction induced by the χ fields δV ∝ −cχh(µχ/Λ)h2. When the
value of |cψh|, controlling the Higgs-ψ coupling decreases with respect to the benchmark
value, so does the corresponding thermal correction, thus the thermal barrier disappears.
In order to reintroduce the barrier, the temperature has to be raised, however this may lead
to the temperature during the phase transition being larger than the value of the Higgs
VEV in the broken minimum, hence the h/T > 1 condition of strong first order phase
transition is not satisfied. This results in the lower bound on |cψh| in the left panel of
figure 8. Furthermore, the decrease of cχh with respect to the benchmark value suppresses
the negative contribution to the Higgs potential compared to the ψ-induced effect, which
then makes the barrier too large, or turns the true minimum to a metastable one. To
weaken the relative effect of the ψ fields the temperature has to be lowered, however we
require it to be at least 400GeV. As a result, cχh is limited from below as can be seen
in the right panel of figure 8. Finally, if we decrease the value of µχ, the position of the
minimum of the thermal potential induced by the χ states, h2

min ∝ µχΛ/cχ, decreases hence
it becomes harder to satisfy the h/T > 1 condition. This results in the lower bound on µχ
which can be observed in the right panel of figure 8. Figure 9 shows analogous scans but
taking tan β = 3 and nχ = nψ = 30, with other parameters fixed as in figure 6. The scans
leading to figures 8 and 9 were performed using the public package CosmoTransition [67].
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Figure 8. Fixing tan β = 1, nχ = nψ = 10. Left: we present non-exhaustive scans of the
cχh-cψh plane over the range cχh ∈ (1, 5) and cψh ∈ (−1,−5), we fix the other parameters to be
mH,H+,HA

= 2 TeV, µχ = 0.77 TeV, µψ = 1.5 TeV, µH = 150 GeV,Λ = 2 TeV, cχ = −0.2. Right:
we show scans of the cχh-µψ plane for cχh ∈ (1, 5), and µχ/GeV ∈ (200, 800) for the other parameters
we take mH,H+,HA

= 2 TeV, µψ = 1.5 TeV, µH = 150 GeV,Λ = 2 TeV, cχ = −0.2, cψh = −4.7.
For both panels green points indicate parameter values that pass all of our requirements, namely a
strong-first order phase transition at temperatures above 400GeV. Grey points indicate parameter
values for which SNR is achieved in excess of 200GeV, but the phase transition is inappropriate for
EWBG.

Figure 9. As figure 8 but for tan β = 3 and nχ = nψ = 30.
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5 CP violation in supersymmetric models

EW sphalerons allow for B violation, satisfying Sakharov (i), and in section 4 we identified
settings in which a strong first order EWPT occurs at temperatures approaching ∼ 1TeV,
as required to satisfy Sakharov (iii). Thus, it remains to discuss potential sources of CP
violation within the context of supersymmetric models as needed for Sakharov (ii).

The premise of EWBG is that complex phases in parameters lead to CP-violating in-
teractions of particles with the bubble walls formed by the first order phase transition, this
results in a CP-asymmetric charge density in proximity of the wall. This CP-asymmetry
diffuses ahead of the bubble wall and can be converted into other states through inter-
actions in the plasma, leading to an excess density of left-handed antiparticles compared
with their matter partners. The excess in left-handed states may then undergo sphaleron
processes which are unsuppressed outside the bubble, such that baryon number is pref-
erentially violated to create a net baryon density µBL [68]. Subsequently, this baryon
asymmetry is transported inside to the interior of the expanding bubble, where it remains
‘safe’ since sphaleron interactions are inactive in the broken phase. Once the phase transi-
tion completes the late stage baryon asymmetry η becomes fixed. The source of the leading
CP violation is an important detail in determining the details of the mechanism. We will
sketch some scenarios that we perceive as viable below, however, a complete analysis of
CP violating dynamics, leading to a computation of η, along with a comparisons to the
experimental constraints (in particular, electric dipole moments [69, 70]) is beyond the
scope of this work and requires a dedicated paper.

In identifying the source of CP violation it is important that it can be incorporated
into our present setting without disrupting the earlier successes of SNR and the first-order
nature of the EW phase transition. Moreover, one must ensure that this CP violation is
introduced in a fashion that satisfies experimental constraints. Notably, since in this setting
the EWPT takes place at higher temperatures the states which introduce CP violation can
be much heavier, which relaxes these experimental constraints.

A traditional method to introduce CP violation within the classic MSSM was via
relative phases between the EW gaugino mass terms M1,2 and the Higgsino µH term [71–
75]. These phases are of the form φi = Arg(µHMib

∗), with (i = 1, 2), where b is the Higgs
mass soft SUSY-breaking parameter. Further, to evade constraints from EDM experiments
one typically requires at least the first two sfermion generations to be very heavy, then the
leading constrains come from two-loop diagrams involving charginos. In the MSSM this
still leads to significant constraints on the parameter space [76, 77].

It was argued in [78] that the ideal setting for supersymmetric EWBG in MSSM-like
models required heavy sfermion masses mf̃ & 1TeV; relatively light pseudoscalar Higgs A0,
gauginos, and Higgsinos along with µH ∼ Mi (for i = 1 or 2; this is called the ‘resonant
neutralino/chargino baryogenesis funnel’ [41]); non-universal phases: φ1 6= φ2 and small
to modest tanβ. Note that unlike pre-LHC MSSM models of EWBG we do not require
a light (∼ 100GeV) stop, since this is primarily introduced to arrange for a strong first
order phase transition (which in our scenario is sourced via other fields). It should also be
noted that for tanβ & 20 the (s)bottoms and (s)taus alter the transport dynamics [78, 79],
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typically suppressing the final baryon asymmetry. Similarly, heavy pseudoscalar Higgs A0
generically lead to a suppression of the net B-number density generated at the EWPT [80].

Moreover, the analysis of [78] found that successful EWBG at the traditional critical
temperature Tc ∼ 100GeV could be obtained with µH ∼ Mi (for i = 1 xor i = 2), taking
M2 = 2M1 ∼ 100GeV–700GeV and MA ∼ 300GeV for relatively large (universal) CP
phases φ1,2 ' 0.3. This paper assumed EWSB at Tc ∼ 100GeV, while in our scenario we
consider Tc ∼ 500GeV, however as an initial proposal one might suppose to scale these
masses together, as a naive guess of an appropriate spectrum. Since the EWPT occurs
five-time higher in figure 6 (compared with traditional models), a similar scaling of the
particle spectrum would imply µH ∼ M1 ∼ 2.5TeV, M2 ∼ 5TeV and MA ∼ 1.5TeV.
Comparing to the spectrum of figure 6, the EFT cutoff and heavy Higgses were both taken
to be Λ = mH,H+,HA = 2TeV. Observe that the pseudoscalar Higgs masses are comparable,
and since the Higgsinos and Gauginos (which source the CP violation) lie above the EFT
cutoff Λ this is unlikely to strongly disrupt earlier successes of SNR and the strong first
order nature of EWPT. We note however that the µH in our EWPT scans is currently fixed
to 150GeV (cf. figure 8), and increasing the value much higher may require a corresponding
increase in nχ to maintain SNR. Thus, while encouraging, this certainly needs to be verified
with explicit calculations of the final baryon asymmetry.

Given a specific model the baryon asymmetry can be calculated by evaluating the
expression [81, 82]

η = 405Γsph
4π2vwg∗T

∫ ∞
0

dzµBL(z)exp
(
−Γsph

45z
4vw

)
, (5.1)

where vw is the wall velocity, Γsph ∼ 20α5
WT is the ‘weak’ EW sphaleron rate, g∗ is the

effective number of degrees of freedom. The exponential accounts for baryon number
relaxation in case that the wall is slowly moving. From inspection of this form we note
that the explicit Tc suppression cancels against the temperature dependency in Γsph.

Finally, we note that the addition of the new singlet states for SNR/SR leads to an
increase in g∗, it may also change the bubble wall velocity [83–86], both of which impact
η and should be carefully checked in a full model. We anticipate that viable scenarios can
be found for TeV-Scale Supersymmetric Electroweak Baryogenesis which reproduce the
observed baryon asymmetry, however they likely still require modest to large CP violating
angles, and as such a careful study comparing to EDM constraints will be necessary.

6 Discussion

High-temperature symmetry breaking can have important consequences for a number of
processes in the early universe. In particular, restoration or breaking of the electroweak
symmetry above the electroweak scale can substantially affect the mechanisms of baryon
asymmetry generation and their experimental tests. Here we have analysed the mechanisms
of high-temperature symmetry breaking in supersymmetric theories and discussed a new
way to overcome previously noted obstacles for symmetry breaking [42–45]. We applied
this mechanism to the supersymmetric extension of the Standard Model, showing that this
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can allow for a strong first order electroweak phase transitions, as required for electroweak
baryogenesis, at scales significantly higher than the electroweak scale.

Raising the EWBG temperature to higher scales allows one to increase the mass scale
of new physics involved in generating the asymmetry. However, the peculiar feature of our
model is that the upper bound on the SNR temperature scales as the square root of the
number of SNR states. As a result, assuming a moderate number of new states nχ, nψ ∼ 10,
the EWBG temperature only increases by about one order of magnitude, weakening the
potential signals of new physics at collider and CPV experiments and allowing one to evade
the currently existing tensions, but not to the extent which would make the new physics
completely undetectable at the foreseeable future experiments.

There are several further improvements to our analysis that could be performed. We
have assumed that all the superpartners of the SM states are too heavy to contribute to
the Higgs thermal potential, which is not necessarily the case. In particular, there can be a
situation when one of the stops is sufficiently light and contributes to SNR, taking part of
the work done by the SNR sector. Furthermore, our model can definitely be improved in
the part related to the electroweak phase transition. In particular, it would be interesting
to check if the SM superpartners or the heavy Higgs states can be used to generate the
first order phase transition without invoking ad hoc symmetry-restoring states as we did.

Our analysis concentrates on an effective field theory below some several-TeV scale Λ,
hence it can be important to analyse possible UV completions to it. In particular, for a
renormalizable UV-completion we expect the EW symmetry to get restored at temperatures
T & Λ.6 If the transition from the restored to the broken phase can be arranged to be
of the first-order, there might be no need for any additional physics to this end. We also
leave to future work the detailed analysis of the interplay between the baryon asymmetry
and the bounds from the electric dipole moments.
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temperatures at which higher-loop effects would be important.
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A Higher-order thermal corrections

To analyse higher-order thermal corrections to the Higgs and χ mass it is convenient to
perform several simplifications of the Lagrangian. First of all, for simplicity we absorb
cχh in 1/Λ. Furthermore, we will set to zero the parameters cχ and µh which are not
essential for SNR. Then, we use the fact that SNR requires nχµχ/Λ to be of order one
(see eq. (3.20)), which allows us to substitute µχ with Λ/nχ. Finally, we will not make a
distinction between Hu and Hd, assuming that we work in the alignment limit of 2HDM
and considering only the light physical Higgs boson which is contained in both Hu and Hd.
After having done this, the relevant scalar potential reads (neglecting order-one numerical
factors)

V =
[

1
n2
χ

Λ2|χi|2 + 1
nχ
|χi|2|H|2 + 1

Λ2

{
|H|2|χ1.χ2|2 + |χi|2|H|4

}]

×
∞∑

k1,k2=0

[
|χi|2

Λ2

]k1 [ |H|2
Λ2

]k2

. (A.1)

This parametric form of Lagrangian can be obtained explicitly by integrating out fields S1,2
with mass Λ, transforming as (2, n), (2̄, n̄) under SU(2)L × U(nχ) with a renormalizable
superpotential.

We would now like to estimate the size of various thermal corrections to the Higgs and
χ masses, counting the powers of nχ and T/Λ (which are expected to be respectively � 1
and� 1) that affect the loop series convergence. The powers of T are simply deduced from
dimensional analysis. The powers of nχ, besides coming from the operator coefficients, are
generated by the closed U(nχ) “color” lines. By inspecting various terms in eq. (A.1) we
conclude that the leading-loop corrections to the mass operators have the parametric form

δV
(1L)
T ∼ T 2|H|2 +

{
1
nχ

+ T 2

Λ2

}
T 2|χi|2. (A.2)

The first term is the one-loop SNR Higgs mass correction derived from the |χi|2|H|2 op-
erator in eq. (A.1). The first term in the brackets is generated at one loop from the
same operator |χi|2|H|2. The second term in the brackets is obtained at two loops from
dimension-six operators in the first line of eq. (A.1), and from dimension-two and -four
operators dressed respectively with k1 = 2 and k1 = 1 powers of |χi|2/Λ2. As one can see,
the one-loop thermal Higgs mass stays finite in the used large-nχ limit, as desired.

As for the higher-loop effects, we will just state the estimated expansion parameters for
the leading loop series. There are two distinct ways of forming the leading loop series; the
first manner is by using the same operator dressed with an increasing number of |χi|2/Λ2

factors, leading to the loop expansion parameter nχT 2/Λ2. The second series type is the
one formed by multiple insertions of the same operator, in which case the leading effect is
produced by the dimension-six operators in the first line of eq. (A.1). The corresponding
expansion parameter is also nχT 2/Λ2.
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As for the fermionic part of the Lagrangian, at two-derivative order it coincides with
the one of eq. (3.6), with cχ = 0. Higher-order thermal corrections induced by the corre-
sponding dimension-five operators with two fermions were studied in ref. [24], where it was
found that the series’ convergence requires nχT 2/Λ2 � 1.

All the higher-loop effects can therefore be suppressed if (up to numerical loop fac-
tors) nχT 2/Λ2 � 1, which is the same condition that is needed to suppress the two-loop
correction to the Higgs mass computed in appendix B.

Let us now comment on the dimension-six operator cχ|χi|2|χ1.χ2|2/Λ2 which we as-
sumed negligible so far. It turns out that a series of diagrams with multiple insertions of
this operator behaves as (cχn2

χT
2/Λ2)p. Using the requirements T & µχ and nχµχ/Λ & 1,

we see that the series does not converge unless the coefficient cχ is suppressed. As we have
mentioned earlier, a suppressed value of cχ is not a problem for SNR, and also there exist
UV completions which do not produce such an operator at tree level.

B Two-loop thermal corrections

In this section we present the two-loop corrections to the Higgs mass generated by the
dimension-six scalar and dimension-five fermion-scalar interactions. Corresponding dia-
grams are shown in figure 3. The relevant dimension-six operators are

L = −
c2
χh

Λ2 |Hi|2|χ1.χ2|2 −
c2
χh

Λ2 |χi|
2|Hu.Hd|2. (B.1)

The resulting two-loop correction to the Higgs potential is

δV (2L,χ) = {nχ + 2nχ}
c2
χh

Λ2 I
2
B(mχ)|Hi|2, (B.2)

with

IB(m) =
∫

d3p

(2π)3
1

2
√
p2 +m2 + T 2

2π2 ĨB[m2/T 2], (B.3)

where we are interested in the second part representing the pure thermal correction with

ĨB[x] =
∫ ∞

0
dk

k2
√
k2 + x2

1
e
√
k2+x − 1

. (B.4)

In the high-T limit we get ĨB[0] = π2/6. Overall, we obtain

δV
(2L,χ)
T |mi→0 ' {nχ + 2nχ}

(
c2
χh

Λ2

)(
T 2

12

)2

|Hi|2. (B.5)

As for the Higgs-χ̃ interactions, they come from

L = −χ̃1.χ̃2

(
µχ + cχh

Λ Hu.Hd

)
+ h.c. (B.6)
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The two-loop correction to the Higgs potential is (we apply mχ̃,mH → 0 limit from the
start)

δV (2L,χ̃) = −nχ
c2
χh

Λ2

(
2IB(0)IF (0)− IF (0)2

)
|Hi|2, (B.7)

with

IF (m) =
∫

d3p

(2π)3
1

2
√
p2 +m2 −

T 2

2π2 ĨF [m2/T 2], (B.8)

where we are interested in the second part representing the pure thermal correction with
the function

ĨF [x] =
∫ ∞

0
dk

k2
√
k2 + x2

1
e
√
k2+x + 1

, (B.9)

simplifying at low masses to ĨF [0] = π2/12. The final form of the fermionic correction is

δV
(2L,χ̃)
T |mi→0 '

5
4nχ

(
c2
χh

Λ2

)(
T 2

12

)2

|Hi|2. (B.10)

Overall, the leading two-loop thermal correction is

δV
(2L)
T |mi→0 '

{
17
4

1
144nχ

c2
χhT

2

Λ2

}
T 2|Hi|2. (B.11)
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