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Abstract 

Chemotherapy is one of the most important treatments for cancer therapy. However, chemotherapy resistance is a 
big challenge in cancer treatment. Due to chemotherapy resistance, drugs become less effective or no longer effec-
tive at all. In recent years, long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) 
has been found to be associated with the development of chemotherapy resistance, suggesting that MALAT1 may 
be an important target to overcome chemotherapy resistance. In this review, we introduced the main mechanisms of 
chemotherapy resistance associated with MALAT1, which may provide new approaches for cancer treatment.
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Introduction
Over the past few decades, chemotherapy, as a supple-
ment to surgical treatment, has become the treatment of 
choice for patients with advanced cancer, reducing tumor 
residue and preventing tumor recurrence. Numerous 
studies have shown that combined chemotherapy can sig-
nificantly improve the prognosis of tumor patients [1, 2]. 
According to its cytotoxic mechanism, chemotherapy can 
be divided into the following six categories: (1) alkylation 
agents, such as cyclophosphamide; (2) anti-metabolites, 
such as 5-fluorouracil (5-FU) and methotrexate, which 
can inhibit DNA synthesis; (3) antibiotics, such as doxo-
rubicin and mitomycin C; (4) DNA topoisomerase inhibi-
tors, such as etoposide, which can prohibit transcription 

and replication; (5) mitosis inhibitors, such as paclitaxel 
and vincristine (VCR); (6) platinum-based drugs, such as 
cisplatin (DDP) and oxaliplatin (OXA), which can induce 
DNA-platinum adducts to block DNA repair [3–6]. 
Chemotherapy affects the cell cycle by inducing DNA 
breakdown and blocking DNA repair, which in turn leads 
to tumor cell death. Although chemotherapy is effective, 
intrinsic and acquired chemotherapy resistance remains 
a huge challenge in cancer therapy.

Chemotherapy resistance is a condition in which a dis-
ease becomes resistant to chemotherapy drugs. Once 
chemotherapeutic resistance occurs, the drug becomes 
less effective or no longer effective at all. For example, 
the recurrence rate of ovarian cancer (OC) increased to 
70% due to DDP resistance, resulting in a 5-year survival 
rate of less than 50% [7]. The mechanism of chemother-
apy resistance in cancer can be explained as follows: (1) 
increasing the ability of DNA damage repair; (2) influ-
encing drug transport and metabolism, and affecting 
drug kinetics; (3) evading cell cycle checkpoint; (4) inhib-
iting cells apoptosis, and protecting cells from death; (5) 
promoting epithelial-mesenchymal transition (EMT); (6) 
altering the autophagy system of tumor cells; (7) modu-
lating properties of cancer stem cells (Fig.  1). However, 
the exact mechanism remains to be studied.
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Previous studies have focused on the mechanism of 
protein-coding genes in cancer chemotherapy resistance 
[8, 9]. However, protein-coding genes account for only 
about 2% of the human genome and most of the rest are 
untranslated genes, which has attracted wide attention 
in recent years. The transcription products of untrans-
lated genes are called non-coding RNAs (ncRNAs), and 
long ncRNAs (lncRNAs) are one of them. LncRNAs are 
greater than 200 nucleotides in length and are initially 
thought to be transcriptional noise. However, emerging 
evidence suggests that lncRNAs play important roles in 
chemotherapy resistance of cancer [10–13].

MALAT1 was first identified in non-small cell lung 
cancer (NSCLC) patients and was upregulated in tumors 
with a high metastatic tendency [14]. MALAT1 gene is 
encoded on human chromosome 11q13.1, which has a 
high evolutionary conservation [15]. MALAT1 is approx-
imately 8.7 knt and is transcribed by RNA polymerase II 
(Pol II) (Fig.  2) [15]. Abnormal expression of MALAT1 
has been reported to be associated with the occurrence, 
progression, metastasis and chemotherapy resistance of 
cancers [16–19]. MALAT1 has been shown to be asso-
ciated with various human diseases, including neoplas-
tic and non-neoplastic diseases, such as oral squamous 
cell carcinoma, psoriasis, recurrent miscarriage, major 
adverse cardiac and cervical events [20–24]. Moreover, 
MALAT1 has been found to be a potential therapeutic 

target for cancer. For example, a recent study revealed 
that targeting the MALAT1/PARP1 (poly ADP-ribose 
polymerase 1) / LIG3 (DNA Ligase 3) complex resulted 
in DNA damage and apoptosis in multiple myeloma [25]. 
In addition, it has been proved that targeting MALAT1 
also played a significant role in the treatment of gyneco-
logical cancer [26]. Previous studies have shown that 
MALAT1 affected cancer through multiple mechanisms. 
Therefore, we suspect that MALAT1 also plays a crucial 
role in chemotherapy resistance.

A large number of studies have found that there exists 
a high correlation between MALAT1 and chemotherapy 
resistance. However, there are few reviews on MALAT1 
and chemotherapy resistance. Therefore, it is necessary 
to investigate the mechanism of MALAT1 in chemother-
apy resistance to explore new tumor therapeutic targets.

In this review, we discussed the functions and mecha-
nisms of MALAT1 in cancer chemotherapy resistance.

Biogenesis and functions of MALAT1
Biogenesis of MALAT1
MALAT1, a ubiquitously expressed gene, is located on 
human chromosome 11q13 and mouse chromosome 19qA 
[27, 28]. Furthermore, the expression level of MALAT1 
is quite high, even comparable to several protein-coding 
genes such as GADPH [28]. MALAT1 is similar to mRNA 
that encodes the protein and is synthesized by RNA Pol 

Fig. 1  Molecular mechanisms of MALAT1 in chemotherapy resistance. Molecular mechanisms of (A) DNA repair pathway, (B) drug efflux pump 
regulation, (C) cell cycle regulation, (D) apoptosis regulation, (E) EMT promoting, (F) autophagy regulation, and (G) stemness
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II. The transcript of MALAT1 is about 7 kb in human and 
6.7 kb in mice [29, 30]. MALAT1 lacks a poly(A) tail at the 
3’ end, which differs from the typical cleavage and polyade-
nylation mechanism [31]. Instead, ribonuclease (RNase) P 
cuts the original transcript of MALAT1 into a mature 7 kb 
transcript, and into a much smaller transcription fragment 
at the 3’ end [29–32]. The RNase P cleaves MALAT1 at 
nt7518 to produce the 5’ end of small RNA and the 3’ end 
of mature MALAT1. The 3’ end of mature MALAT1 is a 
highly conserved triple helix structure, distinct from the 
conventional poly (A) tail. It is composed of one A-rich 
tract and two U-rich motifs encoded by the genome 
[33]. Due to the unique triple helix structure at its 3’ end, 
MALAT1 has high stability and is not easy to cut [34]. 
Moreover, the natural antisense transcript TALAM1 also 
promotes the stability of MALAT1 through a feedforward 

positive regulatory loop [35]. Unlike other Pol II-produced 
RNAs, which are transported to the cytoplasm for fur-
ther processing immediately after transcription, mature 
MALAT1 transcripts are enriched in nuclear speckles 
in human and mice [30, 36]. The location of MALAT1 
suggests that MALAT1 is involved in physiological and 
pathological processes [37, 38]. However, knockdown of 
MALAT1 in mice does not cause phenotypic changes [34]. 
The possible reason is that MALAT1 has no obvious effect 
under normal conditions. Short fragments are cleaved 
and processed by RNase Z and CCA-adding enzymes to 
form a 61-nt-lncRNA, called MALAT1-associated small 
cytoplasmic RNA (mascRNA), which is then folded into 
a tRNA-like cloverleaf structure and transported into the 
cytoplasm (Fig. 3) [31]. However, the functions and effects 
of mascRNA remain to be further studied.

Fig. 2  Schematic location of MALAT1. MALAT1 is located at 11q13.1, between LINC02736 and SNRPGP19. Its transcription products include 
MALAT1, mascRNA, and TALAM1 (the natural antisense RNA of MALAT1)
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Biological functions of MALAT1
Collecting studies have found that MALAT1 can regu-
late biological function through intermolecular inter-
actions. (1) Regulating gene transcription. In multiple 
myeloma (MM), the transcription factor Sp1 can be 
recruited by MALAT1 to promote the secretion of 
TGF-β by binding to latent transforming growth 
factor-β binding protein-3 [39]. (2) Regulating RNA 
splicing. MALAT1 can interact with the splicing fac-
tors of serine- and arginine-rich splicing factor (SRSF) 
1, SRSF2, SRSF3 and other SR proteins, affect the dis-
tribution of splicing factors in the nuclear speckle 
domains, and regulate the alternative splicing of pre-
mRNAs [40]. (3) Regulating protein activity. MALAT1, 
as a splicing factor proline-and glutamine-rich (SFPQ) 
bound competitor, will accelerate the dissociation of 
PTBP2 from the SFPQ/PTBP2 complex, enhance the 
function of PTBP2, and promote the proliferation and 
migration of tumor cells [41]. (4) Regulating epige-
netic change. MALAT1 can recruit the suppressor of 
variegation 3–9 homolog 1 to MyoD-binding loci and 

cause the trimethylation of histone 3 lysine 9, which 
suppresses the transcriptional activity of MyoD [42]. 
(5) Regulating the nuclear and cytoplasmic transport 
of proteins. During cell division, MALAT1 alters the 
transport of the nucleus to the cytoplasm by binding 
to an abundant nuclear factor heterogeneous nuclear 
ribonucleoprotein C protein [43]. (6) Acting as a com-
petitive endogenous RNA (ceRNA). Collecting studies 
have found that MALAT1 alters a series of life activities 
by acting as a ceRNA [44–46]. MALAT1 competitively 
sequestered miR-23b-3p and attenuated the inhibitory 
effect of miR-23b-3p on ATG12, thereby increasing the 
expression of ATG12 and promoting autophagy asso-
ciated chemotherapy resistance of gastric cancer (GC) 
cells [44]. Moreover, MALAT1 can act as a ceRNA to 
inhibit miR-181c-5p, leading to berberine mediated 
inhibition of HMGB1 in poststroke inflammation [45]. 
MALAT1 regulated mTOR-mediated Tau hyperphos-
phorylation by acting as a ceRNA sponge of miR-144 in 
hippocampal cells [46]. Because MALAT1 extensively 
affects life activities and cell phenotypes through the 

Fig. 3  Biogenesis of MALAT1. The original MALAT1 is transcribed by RNA Pol II, and then cleaved by RNase P to form mature MALAT1 and a smaller 
RNA. The mature MALAT1 localizes to the nuclear speckles, while the smaller RNA is further processed into mascRNA by RNase Z and CCA-adding 
enzymes and transported into the cytoplasm
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above multiple pathways, it is possible that MALAT1 
affects tumor chemotherapy resistance through the 
above mechanisms.

Mechanisms mediating chemotherapy resistance 
related to MALAT1 in cancers
MALAT1 associated with DNA damage repair pathway
To maintain genomic stability, normal cells can repair 
DNA damage caused by internal oxidative stress, exter-
nal radiation, and cytotoxic drugs. If normal processes 
are blocked, the genome of cells may become unstable, 
leading to the development of tumors. There are two 
main molecular pathways to repair damaged DNA: 
homologous recombination (HR) pathway and non-
homologous end junction (NHEJ) pathway [47, 48]. 
However, some cancer cells evade chemotherapy by 
enhancing their DNA repair abilities, leading to chemo-
therapy resistance [49].

Recent studies have shown that MALAT1 affected 
many factors involved in DNA repair (Fig. 1A, Table 1). 
In MM, MALAT1 enhanced the NHEJ pathway by bind-
ing to PARP1 and LIG3, two key molecules in this path-
way. Researchers found that anti-MALAT1 induced DNA 
damage and reduced drug resistance to bortezomib, mel-
phalan, and doxorubicin, suggesting that MALAT1 may 
induce the development of resistance by enhancing DNA 
damage repair [25]. MALAT1 is not only involved in the 
NHEJ pathway, but also the HR pathway. In NSCLC, 
researchers found that targeting MALAT1 could induce 
DNA damage even when the NHEJ pathway was blocked. 
MALAT1 sponged miR-146a and miR-216b to protect 

BRCA1, functioning as a ceRNA. As BRCA1 was a key 
upregulation factor in the HR pathway, upregulation of 
BRCA1 expression led to enhancement of the HR path-
way. Finally, MALAT1 overexpression resulted in DDP 
resistance in NSCLC cells [50].

In all, abnormally high expression of MALAT1 
enhances the DNA repair ability of cancer cells through 
the above pathways, leading to drug resistance.

MALAT1 involved in drug efflux pump function
Reducing intracellular drug concentration is a major and 
direct way to obtain chemotherapy resistance in tumor 
cells, which is associated with drug efflux system, such as 
ATP-binding cassette (ABC) membrane transporter pro-
teins [19, 20]. ABC proteins can affect pharmacokinetics 
by altering the transport of various drugs. Therefore, the 
overexpression of ABC protein is the main cause of mul-
tidrug resistance. Multidrug resistant protein 1 (MDR1), 
multidrug resistance like protein 1 (ABCC1 or MRP1), 
multidrug resistance associated protein 2, and ABC sub-
family G2 are relatively common and well-known ABC 
proteins [51–53].

A large number of studies have shown that MALAT1 
altered drug distribution by regulating the ABC proteins 
(Fig.  1B, Table  2). In glioblastoma, si-MALAT1 down-
regulated the expression of ZEB1, MDR1, MRP5 and 
LRP1, enhancing the sensitivity to Temozolomide (TMZ) 
[54, 55]. Conversely, overexpression of MALAT1 led to 
resistance to TMZ. However, the exact mechanism by 
which MALAT1 affects the expression of these proteins is 
still being investigated. It was found that overexpression 

Table 1  MALAT1 associated with DNA damage repair pathway

Cancer type Expression Related drugs Target Related genes or 
pathway

References

Myeloma upregulation bortezomib, melphalan and 
doxorubicin

/ PARP1/LIG3  [25]

Lung cancer upregulation cisplatin miR-146a and miR-
216b

BRCA1  [50]

Table 2  MALAT1 involved in drug efflux pump function

Cancer type Expression Related drugs Target Related genes or pathway References

Glioma upregulation temozolomide / ZEB1  [54]

Glioma upregulation temozolomide / p53  [55]

Lung cancer upregulation cisplatin / STAT3/MRP1 and MDR1  [56]

Ovarian cancer upregulation cisplatin / Notch1  [57]

Leukemia upregulation multidrug resistance miR-335-3p ABCA3  [58]

Colorectal cancer upregulation 5-fluorouracil miR-20b-5p ABC, BCRP, MDR1, and MRP1  [59]

Oral squamous carcinoma upregulation cisplatin / PI3K/AKT/m-TOR  [60]
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of MALAT1 upregulated the expression of MRP1 and 
MDR1 by activating STAT3, thus promoting DDP resist-
ance in NSCLC [56]. Another study pointed out that 
MALAT1 upregulated ABCC1 expression by activating 
Notch1, enhancing DDP resistance in OC cells [57]. In 
addition, MALAT1 was found to be involved in ABCA3 
regulation by downregulating miR-335-3p in the multi-
drug resistant group of childhood acute lymphoblastic 
leukemia, which may lead to chemotherapy resistance 
[58]. In colorectal cancer (CRC), suppression of MALAT1 
restrained cell progression by downregulation of the 
expression of ABC, MDR1, MRP1, and breast cancer drug 
resistant proteins through targeting miR-20b-5p, result-
ing in drug resistance of cancer cells to 5-FU [59]. In oral 
squamous cell carcinoma (OSCC), MALAT1 developed 
the DDP resistance of OSCC by upregulating P-glycopro-
tein expression [60].

Through these pathways, MALAT1 enhances the func-
tion of drug efflux pump in tumor cells, reduces intracel-
lular drug concentration, and leads to drug resistance of 
tumors.

MALAT1 involved in cell cycle regulation
To ensure the quality and integrity of DNA replication, 
there is a mechanism in the cell cycle to solve the abnor-
mal events that occur during DNA replication, which is 
known as the cell cycle checkpoint. The cell cycle check-
point system consists of many molecules, including 
upstream protein kinases such as Ataxia telangiectasia-
mutated and ataxia telangiectasis and Rad3 related, and 
downstream checkpoint proteins such as CHK1, CHK2, 
BRCA, and p53 [61, 62]. Cancer cell resistance to chemo-
therapy may be due to defects in factors associated with 
cell cycle checkpoints [63].

There is growing evidence that MALAT1 has a regu-
latory role in the cell cycle that reduces the sensitiv-
ity to chemotherapy (Fig.  1C, Table  3). For instance, it 
was found that MALAT1 promoted TMZ resistance 
in glioblastoma multiforme (GBM) cells. MALAT1 
promoting the thymidylate synthase by downregulat-
ing miR-203, resulting in TMZ resistance, which was 
demonstrated by an increased percentage of cell popu-
lation in G0/G1 phase [64]. Moreover, suppression of 

MALAT1 downregulated the expression of Cyclin D1 
and CDK, and upregulated the expression of p53, p21, 
and p27, resulting in an increase of sensitivity of hepa-
tocellular carcinoma (HCC) cells to 5-FU [65]. In addi-
tion, MALAT1 silencing greatly blocked the cell cycle of 
chronic myeloid leukemia (CML) cells and inhibited cell 
proliferation by releasing the sponging effect on miR-
328, which attenuated the chemotherapy resistance of 
CML cells to imatinib [66]. Another study pointed out 
that MALAT1 was overexpressed in head and neck squa-
mous cell carcinoma (HNSCC) cells. Downregulation of 
MALAT1 resulted in cell cycle arrest in G(2)/M phase 
and enhanced sensitivity of HNSCC cells to DDP [67].

In conclusion, the abnormal increase of MALAT1 can 
lead to the dysregulation of cell cycle, and then lead to 
the generation of drug resistance.

Apoptosis‑related MALAT1 regulating chemosensitivity
Apoptosis is a complex programmed cell death process 
that can be triggered by caspase-mediated external or 
internal pathways, involving a variety of signaling path-
ways. Besides, the caspase-cascade system plays a crucial 
role in the induction, transduction, and amplification of 
intracellular apoptotic signals [68]. Moreover, caspases 
are also regulated by numerous molecules and pathways, 
influencing the apoptosis. Through the action of these 
regulators, apoptosis will be affected, and the cell pheno-
types (such as chemotherapy resistance) will be altered 
accordingly [69].

Recent studies have fully revealed that MALAT1 was 
related to apoptosis and may lead to chemotherapy 
resistance (Fig. 1D, Table 4) [70]. For example, in NSCLC, 
polyphyllin I inhibited the expression of MALAT1, 
resulting in the inactivation of STAT3 signaling path-
way and apoptosis in gefitinib-resistant cancer cells 
[71]. Another research group reported that inhibition of 
MALAT1 had also been found to alter apoptosis through 
the IKKα/NF-κB pathway, thereby boosting the sensitiv-
ity of cancer cells to 5-FU in HCC [65]. In cervical cancer, 
overexpression of MALAT1 was found to upregulate the 
expression of p-PI3K, p-AKT, and BRWD1, promoting 
DDP resistance [72]. Similarly, in GC cells, overexpres-
sion of MALAT1 can upregulate p-PI3K, p-AKT and 

Table 3  MALAT1 involved in cell cycle regulation

Cancer type Expression Related drugs Target Related genes or pathway References

Glioma upregulation temozolomide miR-203 thymidylate synthase  [64]

Hepatocellular cancer upregulation 5-fluorouracil / IKKα/NF-κB  [65]

Leukemia upregulation imatinib miR-328 /  [66]

Head and Neck Squamous 
Cell Carcinoma

upregulation cisplatin / /  [67]
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p-STAT3, which also contributed to DDP resistance by 
altering apoptosis [73].

In general, the high expression of MALAT1 regulates 
apoptosis-related genes and molecules, affects cancer cell 
apoptosis, and triggers cancer drug resistance.

MALAT1 associated with EMT‑related chemosensitivity
EMT is a process that alters the transform of polarized 
epithelial cells to motile mesenchymal cells characterized 
by the loss of E-cadherin through the activation of one or 
several factors such as SNAIL, SLUG, ZEBs, and TWIST 
[74, 75]. During EMT, epithelial cells lost their epithelial 
phenotype such as cell polarity and connection to the 
basement membrane and acquired a mesenchymal phe-
notype such as higher migration and invasion, resistance 
to apoptosis and degradation of the extracellular matrix. 
EMT is therefore a mechanism for tumor metastasis. In 
addition, recent studies have shown that multiple factors 
in EMT play an important role in the development of 
chemotherapy resistance.

Studies have shown that MALAT1 regulated EMT, 
thereby promoting EMT-induced chemotherapeutic 
resistance (Fig.  1E, Table  5). In CRC, MALAT1 knock-
down enhanced E-cadherin expression and inhibited 
OXA-induced EMT, which may be a promising thera-
peutic target for CRC patients [76]. Li et  al. [54] dem-
onstrated that EMT and MALAT1 overexpression were 
associated with TMZ in drug-resistant GBM cells, sug-
gesting that MALAT1 was involved in EMT-induced 
chemotherapy resistance. MALAT1 regulated EMT by 
upregulating ZEB1, making GBM cells resistant to TMZ. 
In OSCC, MALAT1 expression was higher in DDP-
resistant cells. Further evidence suggested that MALAT1 

was involved in EMT process through upregulation of 
P-gp and activation of PI3K/AKT/m-TOR signaling path-
way, leading to DDP resistance [60]. In HCC, MALAT1 
interacted with miR-140-5p to enhance the expression of 
Aurora-A, leading to EMT and the formation of chemo-
therapy resistance to sorafenib [77].

Therefore, MALAT1 can also induce drug resistance of 
cancer cells by promoting the EMT.

Autophagy‑related MALAT1 associated 
with chemosensitivity
Autophagy is a basic process of degradation and reuse of 
cell components that is highly conserved in all eukary-
otes. Autophagy is not only a "recycling" biological func-
tion, but also affects the response to infection, embryonic 
development and cellular variation, and directly affects 
the occurrence and development of tumors, as well as 
drug response and drug resistance [78–80]. The primary 
purpose of autophagy is to stabilize the intracellular envi-
ronment. In normal cells, autophagy can reduce the risk 
of cancer. Paradoxically, autophagy is an important cause 
of chemotherapy failure in cancer cells [81].

In recent years, more and more studies have found 
that MALAT1 was strongly related to the regula-
tion of autophagy in cancer cells (Fig.  1F, Table  6). In 
HCC, MALAT1 played a key role in the development 
of chemotherapy resistance by regulating autophagy. 
HIF-2α upregulated MALAT1 expression, which can 
act as a ceRNA of miR-216b to regulate autophagy, 
leading to 5-FU resistance [82]. Similarly, MALAT1 
affected autophagy of GC cells through a variety of 
pathways, leading to tumor drug resistance. Hu et  al. 
[44] revealed that MALAT1 targeted miR-23b-3p and 

Table 4  MALAT1 associated with chemosensitivity by altering apoptosis

Cancer type Expression Related drugs Target Related genes or 
pathway

References

Lung cancer upregulation gefitinib / STAT3  [71]

Hepatocellular cancer upregulation 5-fluorouracil / IKKα/NF-κB  [65]

Cervical cancer upregulation cisplatin / PI3K/AKT  [72]

Gastric cancer upregulation cisplatin / PI3K/AKT  [73]

Table 5  MALAT1 associated with chemosensitivity via regulating EMT

Cancer type Expression Related drugs Target Related genes or pathway References

Colorectal cancer upregulation oxaliplatin miR-218 EZH2  [76]

Glioma upregulation temozolomide / ZEB1  [54]

Oral squamous cell carcinoma upregulation cisplatin / PI3K/AKT/m-TOR  [60]

Hepatocellular cancer upregulation sorafenib miR-140-5p Aurora-A  [77]
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reduced its inhibition of autophagy related gene (ATG) 
12, leading to autophagy and chemotherapy resistance 
to 5-FU, DDP and VCR in GC. Another study pointed 
out that MALAT1 induced chemotherapy resistance of 
GC cells to DDP by inhibiting miR-30b and promoting 
ATG5 expression [83]. Moreover, it has been reported 
that propofol promotes DDP sensitivity by inhibiting 
autophagy in GC through MALAT1/miR-30e/ATG5 axis, 
suggesting that MALAT1 induced autophagy-associated 
chemotherapy resistance of GC cells to DDP [84].

In summary, MALAT1 overexpression affects the 
autophagy of cancer cells and leads to drug resistance.

MALAT1 involved in the stemness‑related chemosensitivity
Cancer stemness is the phenotype like normal stem cells 
such as plasticity and self-renewal ability, and the can-
cer cells with these properties are known as cancer stem 
cells, which is recognized to be one of the important 
causes of chemotherapy resistance [85, 86].

Recent studies have shown that MALAT1 was involved 
in the cancer stemness (Fig.  1G, Table  7). In GC cells, 
MALAT1 acted as a stabilizer of SOX2 mRNA by bind-
ing to it directly, resulting in stemness and chemother-
apy resistance to DDP [87]. In esophageal squamous 
cell carcinoma, MALAT1 directly bound to Yes-associ-
ated protein (YAP) and enhanced the transcription and 
expression of YAP, developing the stemness and resist-
ance to DDP [88]. In OC, MALAT1 acted as a co-acti-
vator of YAP, inhibiting its translocation, promoting the 
expression of YAP and thereby enhancing the effect of 
YAP, which contributes to the stemness and chemother-
apy resistance in OC to DDP [89].

As described above, MALAT1 can also contribute to 
cancer resistance to chemotherapeutic drugs by enhanc-
ing the stemness of cancer cells.

Conclusion and future perspectives
With the use of chemotherapy, the prognosis of can-
cer patients has improved dramatically, which is a huge 
advancement in cancer treatment. However, the devel-
opment of chemotherapy resistance is becoming an 
important reason for chemotherapy failure. At present, 
lncRNAs have been proved to be important regulatory 
factors involved in numerous life activities. LncRNAs 
are specific in many respects and are equally expressed 
in terms of chemotherapy resistance. MALAT1, which 
has been studied the most, plays an important regula-
tory role in tumor development. MALAT1 has been 
a molecule of interest since its discovery as a predic-
tive biomarker for lung cancer metastasis [90]. Current 
studies show that MALAT1 is a potential target not 
only for cancer therapy, but also for overcoming can-
cer resistance. Therefore, targeting MALAT1 treatment 
may not only be effective against tumor therapy itself, 
but also make chemotherapy more effective, which 
may contribute to the complex therapy of cancers and 
improve the prognosis of cancers. As an important 
adjuvant to chemotherapy, immunotherapy has devel-
oped rapidly in recent years. Chemotherapy com-
bined with immunotherapy has been widely used, and 
MALAT1 has been found to play an important regu-
latory role in immunotherapy. For instance, MALAT1 
inhibited the immune response to cancer by enhancing 
immune escape and immunosuppressive effects, poten-
tially leading to failure of immunotherapy and poor 

Table 6  MALAT1 associated with chemosensitivity via regulating autophagy

Cancer type Expression Related drugs Target Related genes or 
pathway

References

Hepatocellular cancer upregulation 5-fluorouracil miR-216b /  [82]

Gastric cancer upregulation 5-fluorouracil, cisplatin, 
vincristine

miR-23b-3p ATG12  [44]

Gastric cancer upregulation cisplatin miR-30b ATG5  [83]

Gastric cancer upregulation cisplatin miR-30e ATG5  [84]

Table 7  MALAT1 associated with chemosensitivity via regulating stemness

Cancer type Expression Related drugs Target Related genes or 
pathway

References

Gastric cancer upregulation cisplatin / SOX2  [87]

Esophageal cancer upregulation cisplatin / YAP  [88]

Ovarian cancer upregulation cisplatin / YAP  [89]
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prognosis [91, 92]. Therefore, it is urgent to explore the 
mechanism and influence of MALAT1 in immunother-
apy, which may provide new targets and approaches for 
cancer therapy. In addition, some lncRNAs can medi-
ate chemoresistance through immune pathways. For 
example, lncRNA PCAT-1 can induce KRAS-related 
chemoresistance through immunosuppression [93]. 
Although there is no conclusive evidence, based on 
the widespread expression of MALAT1 in the immune 
system and its multiple effects, we speculate that 
MALAT1 may also influence chemotherapy resistance 
by affecting the immune system. However, research 
on the effect of MALAT1 in the chemotherapy resist-
ance and immunotherapy of cancers is still at the nas-
cent stage. Substantial basic research and clinical trials 
are needed before these molecular approaches can be 
applied to the clinic. Due to the extensive regulatory 
roles of MALAT1, it will provide new targets for cancer 
prevention and treatment in the future.
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