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Abstract
Background  Clear cell renal cell carcinoma (ccRCC) is common in urinary system tumors. Cuproptosis is a non-
apoptotic cell death pathway. Copper binds to fatty acylated mitochondrial proteins and activates various forms of 
cell death. LncRNA LINC02154 is significantly highly expressed in cells and tissues of many types of tumors, and the 
risk signature of LINC02154 in some tumors has been validated for effectiveness.

Methods  We constructed a risk prognostic signature by obtaining differentially expressed long noncoding RNAs 
(lncRNAs) associated with ccRCC outcomes and cuproptosis from The Cancer Genome Atlas (TCGA). We used TCGA 
to construct training and testing sets to analyze the risk signature and the impact of LINC02154, and we performed 
relevant survival analyses. Tumor mutational burdens were analyzed in different LINC02154 expression groups and 
risk score groups. We next analyzed the immune microenvironment of LINC20154. We performed LINC20154-related 
drug sensitivity analyses. We also investigated the cellular function of LINC02154 in the ACHN cell line and performed 
CCK-8 assay, EdU, wound-healing assay, and Transwell assay. The essential genes FDX1 and DLST of cuproptosis were 
detected by western blot.

Results  We demonstrated that LINC02154’s impact on outcomes was statistically significant. We also demonstrated 
the association of different ages, genders, stages, and grades with LINC02154 and risk models. The results showed a 
significant difference in tumor mutation burden between the groups, which was closely related to clinical prognosis. 
We found differences in immune cells among groups with different levels of LINC02154 expression and significant 
differences in immune function, immunotherapeutic positive markers, and critical steps of the immune cycle. The 
sensitivity analysis showed that differential expression of LINC02154 discriminated between sensitivity to axitinib, 
doxorubicin, gemcitabine, pazopanib, sorafenib, sunitinib, and temsirolimus. This difference was also present in the 
high-risk group and low-risk group. We demonstrated that the proliferation and migration of t ACHN cells in the 
LINC02154 knockdown group were inhibited. The western blot results showed that the knockdown of LINC02154 
significantly affected the expression of FDX1 and DLST, critical genes of cuproptosis.
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Background
Renal cell carcinoma (RCC) includes papillary RCC, clear 
cell RCC (ccRCC), and chromogenic RCC, with ccRCC 
accounting for 70% of all kinds of RCC [1]. A high cancer-
related death rate is associated with ccRCC, primarily due 
to metastasis [2]. Surgical treatment is the best means of 
early treatment [3]. The process of ccRCC is often occult, 
failing surgical treatment to achieve adequate results [4]. 
For these reasons, nearly 30% of ccRCC patients have 
already metastasized at the time of diagnosis, whereas the 
prognosis of metastatic ccRCC is very poor [5]. There has 
been a significant improvement in survival with immune 
checkpoint blockade therapy and combination regimens 
for patients with ccRCC [6]. Therefore, we hope to iden-
tify a biomarker that can help diagnose ccRCC early, 
provide a basis for treatment, and improve outcomes. 
Tsvetkov et al. found a way of cell death that differs from 
apoptosis, autophagy, pyroptosis, and iron death, among 
others; this pathway (cuproptosis) leads to cell death by 
copper induction [7]. The redox activity of copper par-
ticipates in several enzymes’ biochemical and regula-
tory functions in many organisms [8]. Copper deficiency 
induces cell death via the associated biological functions 
of copper-binding enzymes and excessive accumulation 
of copper [9]. Mitochondrial metabolism is associated 
with respiratory sensitivity during cuproptosis, lipidated 
tricarboxylic acid (TCA) enzyme levels are increased 
in TCA cycle-active cells, and the fatty acyl moiety acts 
as a copper binder. These processes mediate aggrega-
tion of lipidated proteins, loss of Fe-S-containing clus-
ter proteins, induction of HSP70, and, ultimately, acute 
proteotoxic stress [7]. FDX1 (Ferredoxin 1) and DLST 
(Dihydrolipoamide S-Succinyltransferase) play a crucial 
role in cuproptosis and affect the process of cupropto-
sis [7]. Non-coding RNA (ncRNA) is an area of intense 
interest in the medical community, and its rich biological 
functions stimulated enthusiasm for research and expec-
tations for applications. ncRNAs are cancer biomarkers, 
and deregulated ncRNA expression has been observed in 
several cancers [10]. Common ncRNAs include microR-
NAs, long ncRNAs (lncRNAs), and circular RNAs. Of 
these, lncRNAs have been intensely studied in cancer 
research. LncRNAs include intronic lncRNAs, inter-
genic lncRNAs, sensory lncRNAs, antisense lncRNAs, 
and bidirectional lncRNAs, according to their relative 
positions with coding genes [11]. LncRNA-related signa-
tures have been widely used in various tumors, such as 
head and neck squamous cell carcinoma [12]. LncRNAs 

have been widely confirmed to significantly impact bio-
logical characteristics such as the proliferation and inva-
sion of tumors [13]. The lncRNA LINC02154 showed 
high expression in cells and tissues in hepatocellular 
carcinoma patients with poor survival; experiments 
demonstrated that it enhanced the invasion, migration, 
and proliferation of hepatocellular carcinoma cells [14]. 
LINC02154 has also been used to construct signatures 
that predict the outcomes of some tumors. A signature 
composed of seven immune-related lncRNAs predicted 
outcomes in laryngeal squamous cell carcinoma and 
facilitated the selection of clinical chemotherapeutic 
medications [15]. A novel signature consisting of four 
lncRNAs containing LINC02154 predicted outcomes in 
laryngeal cancer and regulated immunity, tumor apop-
tosis, metastasis, and invasion [16]. We, therefore, aimed 
to determine whether LINC02154 influences outcomes 
through pathways in ccRCC.

Methods
The download of clinical data and gene expression profiles
We utilized the ‘DEseq2’ R software package to obtain 
1109 prognostically relevant lncRNAs, 3086 differen-
tially expressed lncRNAs, and 484 cuproptosis-related 
lncRNAs in ccRCC (https://portal.gdc.cancer.gov/). We 
obtained gene expression profiles from 538 relevant 
samples from TCGA-KIRC and clinical data from 611 
ccRCC patients from TCGA. We used log2 (exp + 1) 
and (adjusted. P-value < 0.05) to normalize differentially 
expressed gene data.

Construction of ccRCC prognostic signature for 
cuproptosis-related lncRNAs
We used univariate Cox analysis and LASSO-penalized 
multivariate Cox analysis to construct ccRCC prognostic 
signature and then constructed the calculation formula 
of risk score as follows: (coefficient lncRNA1 × expres-
sion of lncRNA1) + (coefficient lncRNA2 × expression 
of lncRNA2) + ν + (coefficient lncRNAn × expression 
lncRNAn). This formula was used to calculate the risk 
score of each sample, which was divided into high- and 
low-risk groups according to the median. The individual 
genes of interest were divided into high-expression and 
low-expression groups according to the median expres-
sion level of their samples.

Conclusion  Finally, we demonstrated that LINC02154 and our constructed risk signature could predict outcomes and 
have potential clinical value.

Keywords  Clear cell renal cell carcinoma, Cuproptosis, Computational biology, Robust model, Risk signature, Immune 
microenvironment, Drug sensitivity
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Prognostic analysis of single genes and validation of risk 
score model
We generated Sangerbox (http://sangerbox.com/) risk 
charts and performed Kaplan-Meier and receiver oper-
ating characteristic analyses. Conditional survival rates 
were analyzed in the high-expression and low-expression 
groups of single genes or in high-risk and low-risk groups 
of risk scores to determine the validity and reliability of 
single genes or risk models.

Correlation analysis of tumor mutation burden (TMB) with 
individual genes or risk score models
We downloaded TMB-related data from our samples 
from TCGA, and we analyzed the relativity between vari-
ous TMB data and individual genes or risk scores using 
the R package TMBcor.

Analysis of the immune microenvironment associated with 
a single gene or risk signature
We used the ESTIMATE algorithm to calculate the 
stromal and immune scores based on gene expression 
profiles. Single sample gene set enrichment analysis (ssG-
SEA) was used to quantify tumor-infiltrating immune 
cell subsets between different groups and to assess 
their immune functions. We also tested the relationship 
between single genes and our risk score and immune 
checkpoints. We used the pheatmap and riskImmCor 
packages in R to identify single genes and the correla-
tion of risk scores with critical steps of the immune cell, 
immune process, and cancer immune cycle.

Sensitivity analysis of therapeutic means
The R package pRRophetic was used to identify com-
monly used medications for ccRCC according to the gene 
expression matrix. The package ggpubr was used to draw 
boxplots for sensitive targets to compare the differences 
in sensitivity in various expression groups of LINC02154 
and the high-risk and low-risk signature groups.

Cell culture and transfection
ACHN human renal cell adenocarcinoma cells were 
provided by the Cell Bank of the Chinese Academy of 
Sciences (China). ACHN cells were cultured in MEM 
(Procell) containing 10% fetal bovine serum (FBS) (Gibco) 
at 37 ℃ and 5% CO2. Small interfering RNA (siRNA) for 
reducing LINC02154 expression was obtained from JTS-
BIO Co (China). The sequence of Si-LINC02154 is as fol-
lows: sense:ACCACAUUCUUUGUUGCCUGCAGUA; 
antisense: UACUGCAGGCAACAAAGAAUGUGGU. 
Cells were transfected with siRNA using Lipofectami-
neTM3000 (Invitrogen, USA) according to the manufac-
turer’s guidelines.

Quantitative real-time PCR (qRT-PCR)
We used RNAiso Plus (Takara Biotechnology, Dalian, 
China) to extract total RNA from cells and then reverse 
transcribed to synthesize cDNA using Prime Script 
RT Master Mix (Takara Biotechnology, Dalian, China) 
according to the instructions of the manufacturer. qRT-
PCR was performed using the Sybr Premix Ex Taq 
TMKit (Takara Biotechnology, Dalian, China) and Light-
CyclerTM 480 II system (Roche, Basel, Switzerland). 
Primer sequences were as follows: Forward primer: 
ACTGCGCCACCTCTGATATG; Reverse primer: 
GACCCACTGATTGTGCCTGA.

Cell proliferation assay
We plated ACHN cells in 96-well plates, and 2000 cells 
were added to each well after counting. The Cell Count-
ing Kit-8 (CCK-8) Assay Reagent (Bimake, USA) was 
added to each well, and the assay was performed accord-
ing to the manufacturer’s instructions. Absorbance 
values at 450 nm were measured on an automated micro-
plate reader (Bio-Rad).

EdU assay
We plated ACHN cells in 24-well plates. According to 
the manufacturer’s instructions, cells were treated with 
reagents from the EdU assay kit (Beyotime Biotech-
nology, China). We used a fluorescence microscope 
(Olympus Corporation, Japan) to obtain images, and the 
number of different fluorescent cells was counted using 
ImageJ software. The proportion of proliferating cells was 
then calculated.

Cell migration assay
We used 8-µm pore Transwell chambers in 24-well plates 
(Corning Costar, Corning, NY, USA); 600 µL of medium 
containing 10% FBS were placed into each well of a 
24-well plate, and 200 µL of FBS-free medium contain-
ing 10,000 suspended cells were added to each chamber. 
After 48  h of incubation at 37  °C in 5% CO2, cells sus-
pended in the chambers were washed out with phos-
phate-buffered saline, and cells adhering to the bottom 
membrane were stained using crystal violet. Images were 
obtained at 10X magnification using an inverted micro-
scope (EVOS XL system, AMEX1200; Life Technologies 
Corp, Bothell, WA, USA), and cell counts were per-
formed using Image J.

Wound-healing assay
When the density of ACHN cells reached more than 90% 
in six-well plates, we scratched an artificial wound in the 
middle of the well using a 200-µL pipette tip. FBS-free 
medium was added to each well after washing with phos-
phate-buffered saline. Images were taken at 10x using the 
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inverted microscope as previously described. After incu-
bation for 24 h, images were retaken.

Western blot
After washing the cells with PBS, we treated the cells 
with RIPA lysate containing 1% PMSF, extracted the 
protein, and then determined the protein concentration 
using the bicinchoninic acid assay kit. We used PAGE 
and polyvinylidene fluoride membranes for electropho-
resis and transfer. We used FDX1 (1:1000, 12592-1-AP, 
proteintech, China), DLST (1:1000, 11,954, CST, USA), 
GAPDH (1:1000, 5174, CST, USA), antibodies for incu-
bation at 4 ° C. Following overnight washing with TBST 
three times, membranes were incubated with secondary 
antibodies for one hour at 37 ° C. The EasySee Western 
Blot kit (Beijing Genetically Modified Biotechnology Co., 
Ltd., Beijing, China) was then used for imaging, and the 
chemiluminescence system (Bio-Rad), California, USA) 
was used to acquire images.

Results
Construction of ccRCC prognostic risk signature by 
cuproptosis-related genes and differentially expressed 
genes
We obtained 1109 lncRNAs with close relativity in 
the outcomes of ccRCC, 3086 differentially expressed 
lncRNAs, and 484 cuproptosis-related lncRNAs from 
TCGA using the R package. We obtained nine genes by 
intersecting the three lncRNAs (Fig.  1A). We used uni-
variate Cox analysis to identify nine genes significantly 
associated with prognostic levels in ccRCC and then per-
formed LASSO-penalized multivariate Cox analysis of 
these nine genes. Finally, we established a risk prediction 
signature consisting of four genes (Fig.  1B and C). The 
specific calculation formula was as follows:

Risk score =-0.0147356703938245 
* AC009053.3 + 0.101615765203553 * 
AL365356.5 + 0.0724570066296659 * 
LINC02154 + 0.0254437556729956 * AC004817.3.

Using statistical analysis, we discovered that these four 
genes significantly differed in expression levels between 
ccRCC and normal tissues (Fig.  1D and E). We corre-
lated the four selected genes with cuproptosis genes and 
found that the risk signature was correlated with DLST 
and ATP7B (Fig. 1F). Using TCGA, we constructed train-
ing and testing sets to validate the reliability of our risk 
signature.

We found a statistically significant difference in five-
year overall survival (OS) between the high- and low-risk 
groups distinguished by the risk signature in the train-
ing, testing, and full sets (Fig.  2A-C). We measured the 
area under the curve (AUC) to validate the impact of the 
risk signature on survival. In the training set, the area 
under the ROC curve was 0.64 for one-year OS, 0.66 

for three-year OS, and 0.67 for five-year OS (Fig. 2D). In 
the testing set, the AUC was 0.73 for one-year OS, 0.72 
for three-year OS, and 0.72 for five-year OS (Fig. 2E). In 
the full set, the AUC was 0.66 for one-year OS, 0.67 for 
three-year OS, and 0.68 for five-year OS (Fig. 2F). Heat-
map analysis showed that there were significant differ-
ences in the expression levels of these four genes used 
to construct the risk signature in the high-risk and low-
risk groups, whether in the training, testing, or full sets 
(Fig. 2G-I).

We performed single-gene survival analysis on the four 
genes in the risk signature in the full set and found that 
the expression differences independently affected sur-
vival (Fig. 3A-D).

We performed the same single-gene survival analy-
sis on the four genes in the training and testing sets and 
obtained the same results as the full set. All four genes 
independently and significantly affected survival (Supple-
mentary Figures S1 and 2). Univariate and multivariate 
Cox regression analyses showed that age, grade, stage, 
and risk score independently predicted outcomes in 
ccRCC (Table 1). Next, we wanted to build a nomogram 
combining clinical parameters and risk scores, thereby 
improving the predictive efficiency of the model. The pre-
dictive efficiency of the nomogram can be improved by 
excluding non-significant clinical parameters (Gender).

We built a nomogram based on the information of 
clinical parameters (Age, Grade, Stage) and risk score for 
prediction of prognosis (Supplementary Figure S8A), and 
calibration was for identification of accuracy and reliabil-
ity (Supplementary Figure S8B). The AUCs demonstrated 
a better efficiency of the nomogram than the risk model 
and each clinical parameter (Supplementary Figure S8C).

We analyzed the proportions of age, gender, stage, 
and grade in the high- and low-expression groups of 
LINC02154 (Fig. 4A-D) and found that expression levels 
of LINC02154 varied across ages, genders, stages, and 
grades (Fig. 4E-H).

We then found significant correlations between our 
constructed risk signature and age, gender, stage, and 
grade (Supplementary Figure S3). We divided patients 
into groups according to their grade (Grade 1 + Grade 2 
and Grade 3 + Grade 4) and assessed risk signature scores 
in each group. The risk scores were significantly associ-
ated with patient outcomes in both groups (Fig. 5A and 
B). We then divided patients into groups according to 
the stage (Stage 1 + Stage 2 and Stage 3 + Stage 4) and 
evaluated the risk signature score in each group. Our risk 
model significantly correlated with outcomes (Fig.  5C 
and D). We then divided patients into groups accord-
ing to age (60 years or older and less than or equal to 60 
years) and assessed the risk signature score in each group. 
The risk model significantly correlated with the outcomes 
(Fig.  5E and F). We then grouped patients according to 
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Fig. 1  Selection of cuproptosis-related lncRNAs. A Relationship and number of prognostic lncRNAs differentially expressed lncRNAs and cuproptosis-re-
lated lncRNAs. B Least absolute shrinkage and selection operator coefficient spectra of nine ccRCC prognostic genes. C Optimal lambda. D, E Differential 
expression levels of these four genes in ccRCC versus normal tissues. F Correlation of four selected genes with cuproptosis key genes
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gender and assessed outcomes in high-risk and low-risk 
groups. Our risk model significantly correlated with out-
comes (Fig. 5G and H).

We validated the correlation analysis of these sub-
clinical groupings in the training and testing sets and 
achieved similar results as in the full set (Supplementary 
Figures S4 and 5).

Correlative analysis of tumor mutation burden
We analyzed TMB in the high LINC02154 expression 
group and low LINC02154 expression group and found 
a significant difference in the TMB ((Fig. 6A and B). We 
also found a positive relationship between LINC02154 
expression and TMB (Fig.  6C). We performed survival 
analysis in the high and low tumor mutation load groups. 
We found that the high TMB group had significantly 
worse outcomes than the low TMB (Fig.  6D). We then 

Fig. 2  Prognostic differences by risk scores. A-C Kaplan-Meier analysis showed significant differences in five-year overall survival between high-risk and 
low-risk groups in the training, testing, and full sets. D-F Receiver operating characteristic curves for overall survival at 1, 3, and 5 years in the training, 
testing, and full sets. G-I Risk scores were ranked from low to high to obtain patient and expression heatmaps for four genes in The Cancer Genome Atlas 
training, testing, and full sets
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created four groups according to TMB: H-TMB + high 
LINC02154, H-TMB + low LINC02154, L-TMB + high 
LINC02154, and L-TMB + low LINC02154. We per-
formed survival analysis and found that high TMB and 
high LINC02154 predicted poor survival (Fig. 6E).

We analyzed the correlation between our risk signature 
and TMB and found significant differences between the 
high-risk and low-risk groups and TMB (Supplemen-
tary Figure S6A and B). Our risk signature also posi-
tively correlated with TMB (Supplementary Figure S6C) 
survival analysis showed that high tumor mutation load 
preconditioned poor survival outcomes (Supplementary 
Figure S6D). We then created four groups according to 
the level of tumor mutation load and the level of risk: 

H − TMB + high-risk, H − TMB + low-risk, L − TMB + high-
risk, and L − TMB + low-risk. We performed survival 
analysis and found that high tumor mutation load or high 
risk predicted poor survival outcomes (Supplementary 
Figure S6E).

Analysis of the immune microenvironment
We performed a correlation analysis of the immune 
microenvironment in the high LINC02154 expres-
sion group and low LINC02154 expression group and 
obtained a heat map of expression (Fig. 7A). LINC02154 
expression significantly correlated with immune cell 
expression. We scored and compared immune function 
according to the expression of LINC02154 and found that 

Table 1  Univariate and multivariate Cox regression analyses of age, gender, grade, age, and risk score
Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

lower upper lower upper
Age 1.03 1.01 1.04 2.18E-05 1.03 1.01 1.04 6.08E-05

Gender 0.97 0.71 1.33 0.8675 0.89 0.64 1.24 0.6315

Grade 2.26 1.84 2.77 4.43E-15 1.11 0.27 4.63 0.0040

Stage 1.86 1.63 2.13 2.46E-20 1.66 1.36 2.02 4.33E-11

RiskScore 4.52 3.08 6.62 1.07E-14 7.71 3.04 19.56 2.74E-07

Fig. 3   A single-gene survival analysis was performed on all four genes in the risk signature in the full set
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the immune function of the high LINC02154 expression 
group was more active than that of the low LINC02154 
expression group (Fig.  7B). We performed enrichment 
scoring against key steps of immunotherapy and found 
that LINC02154 had a positive relationship with the posi-
tive markers in immunotherapy (Fig. 7C). We also found 
a positive correlation between critical steps in the tumor 
immune cycle and LINC02154 (Fig. 7D). We performed 
a correlation analysis of immune checkpoints. We 
found that CD276, CAIR1, CD28, CD44, CD86, CD80, 
TNFSF4, LGALS9, and PDCD1LG2 were significantly 
higher in the high LINC02154 expression group than in 
the LINC02154 expression group (Fig. 7E).

We performed correlation analysis for the immune 
microenvironment and found significant differences 
between the high-risk group and low-risk group of the 
risk signature using an expression heat map (Supple-
mentary Figure S7A). We compared immune function in 
the high-risk and low-risk groups according to the risk 
signature and found that immune function was more 
active in the high-risk group than in the low-risk group 

(Supplementary Figure S7B). We performed enrichment 
scoring of critical immunotherapy steps and found that 
our risk signature positively correlated with positive 
markers associated with immunotherapy and critical 
steps of the tumor immune cycle (Supplementary Fig-
ure S7C and D). We performed a correlation analysis of 
immune checkpoints and found that PDCD1, TMIGD2, 
TNFSF14, TNFRSF18, CD44, LGALS9, and LAG3 were 
significantly higher in the high-risk group than in the 
low-risk group (Supplementary Figure S7E).

Medication sensitivity analysis
We performed a medication sensitivity analysis of 
axitinib, doxorubicin, gemcitabine, pazopanib, sorafenib, 
sunitinib, and temsirolimus, which are commonly used 
medications for ccRCC. We found that the sensitivities 
of pazopanib, sorafenib, sunitinib, and temsirolimus in 
the low-expression group of LINC02154 were signifi-
cantly higher than those in the high-expression group 
(Fig. 7F-L). This finding suggests that the expression level 
of LINC02154 might guide clinical use. We performed 

Fig. 4  The relationship between age, gender, stage, grade, and LINC02154. A-D Different proportions of age, gender, stage, and grade were observed 
between the high LINC02154 expression group and the low LINC02154 expression group. E-H Expression levels of LINC02154 across ages, genders, 
stages, and grades
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a sensitivity analysis of doxorubicin, gemcitabine, pazo-
panib, sorafenib, sunitinib, and temsirolimus in the 
high- and low-risk groups and found that there were sta-
tistically significant differences in medication sensitivity, 
especially the sensitivities of doxorubicin, gemcitabine, 
and sorafenib, which were significantly higher in the 
high-risk group than in the low-risk group. For suni-
tinib, sensitivity was significantly higher in the low-risk 
group than in the high-risk group (Supplementary Figure 
S7F-K).

Knockdown of LINC02154 significantly inhibited the 
proliferation and migration of ccRCC cells and affected 
cuproptosis
We performed functional experiments against 
LINC02154 in ACHN cells. First, we designed siRNA 
strands targeting LINC02154 and measured knockdown 
levels using qRT-PCR (Fig.  8A). We then performed a 
CCK-8 assay to measure viability and found ACHN via-
bility was significantly decreased after transfection with 
siRNA (Fig. 8B). We also performed EdU assay. We found 

that proliferation after the knockdown of LINC02154 
was significantly decreased (Fig.  8C). Knockdown of 
LINC02154 resulted in a statistically significant decrease 
in the wound-healing rate of ACHN cells (Fig. 8D). Tran-
swell assays showed a statistically significant decrease in 
the cell migration after LINC02154 knockdown (Fig. 8E). 
Western blot experiments showed that knockdown of 
LINC02154 upregulated the expression of cuproptosis 
critical genes FDX1 and DLST(Fig. 8F).

Discussion
Changes in tumor energetics and biosynthetic metabolic 
pathways are essential for tumor research. In ccRCC, 
there is a reprogramming of glucose and fatty acid metab-
olism and changes in the metabolism of the tricarboxylic 
acid cycle, tryptophan, arginine, and glutamine; for these 
reasons, the exploration of the mechanisms and factors 
influencing metabolism in ccRCC are promising [17]. 
LncRNAs regulate processes such as energy metabolism 
in cancer, and a deep understanding of lncRNA-medi-
ated cancer metabolic reprogramming can be beneficial 

Fig. 5  The relationship between age, gender, stage, grade, and patient prognosis. A-B In the full set, the grade was significantly associated with out-
comes. C-D In the full set, the stage was associated with the outcome significantly. E-F In the full set, age was associated with outcome significantly. G-H 
In the full set, gender was associated with outcome significantly
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Fig. 6  The relationship between different LINC20154 expression levels, tumor mutation burden, and patient survival outcomes. A Tumor-associated 
gene mutation burden in samples from the high LINC02154 expression group. B Tumor-associated gene mutation burden in samples from the low 
LINC02154 expression group. C Positive relationship between LINC02154 expression and tumor mutation burden. D Survival analysis of high and low 
tumor mutation burden groups. E Survival analysis of H-TMB + high LINC02154 group, H-TMB + low LINC02154 group, L-TMB + high LINC02154 group, and 
L-TMB + low LINC02154 group
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Fig. 7  LINC02154 immune microenvironment associated analysis and drug sensitivity analysis. A Relationship between LINC02154 expression type and 
immune molecular typing. B Analysis of immune function in high LINC02154 and low LINC02154 expression groups. C Correlation analysis between 
LINC02154 and positive markers related to immunotherapy. D Analysis of the correlation between LINC02154 and critical steps of the cancer immunity 
cycle. E Immune checkpoint analysis of high LINC02154 and low LINC02154 expression groups. F-L Susceptibility analysis was performed separately for 
axitinib, doxorubicin, gemcitabine, pazopanib, sorafenib, sunitinib, and temsirolimus in high LINC02154 expression group and low LINC02154 expression 
group
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Fig. 8  Functional experiments against LINC02154 in ACHN cells. A Relative expression levels of LINC02154 after transfection with the corresponding 
siRNA. B CCK-8 assay was used to detect the effect of LINC02154 on ACHN cell proliferation. C The effect of LINC02154 on ACHN cell proliferation was 
examined by EdU assay. D Wound-healing assay was used to test the effect of LINC02154 on ACHN cell migration. E The Transwell assay was used to test 
the effect of LINC02154 on ACHN cell migration. F Western blot indicated that FDX1 and DLST were significantly upregulated in the LINC02154-Si group 
relative to the LINC02154-NC group

 



Page 13 of 15Shen et al. BMC Cancer          (2023) 23:160 

for the diagnosis and treatment of cancer [18]. Copper 
increases mitochondrial protein fatty acylation, regulates 
carbon entry into the TCA cycle, and binds dihydroli-
poamide S-acetyltransferase (DLAT) to promote disul-
fide-dependent aggregation of fatty acylated DLAT [19]. 
Ferredoxin 1 (FDX1) is a lipid-acylation effector, contrib-
uting to the accumulation of toxic lipid-acylated DLAT 
and cuproptosis. FDX1-dependent degradation of Fe-S 
cluster proteins might facilitate cuproptosis [19]. We, 
therefore, analyzed lncRNAs associated with ccRCC out-
comes, differentially expressed lncRNAs, and cupropto-
sis-associated lncRNAs and established a risk prediction 
signature constituted by four genes. According to the risk 
signature, survival analysis of the high and low groups 
revealed significant differences. Survival analysis of the 
four single genes showed that all independently and sig-
nificantly predicted survival outcomes. Based on the lit-
erature, we focused on LINC02154 for in-depth analysis. 
LINC02154 and the risk signature were analyzed sepa-
rately in subclinical groupings of age, gender, stage, and 
grade, and all showed significant differences. TMB can 
identify patients who may respond to immune check-
point blockade and discern the type and extent of TMB 
variants across tumor types and histologies [20]. High 
TMB is associated with the appearance of tumor neoan-
tigens on HLA molecules on the surface of tumor cells 
with a high probability [21]. Therefore, we speculated that 
a high TMB might predict a higher effectiveness of tar-
geted therapy. Our TMB analysis of LINC02154 showed 
a significant difference in TMB between the high and low 
LINC02154 expression groups, with high LINC02154 
expression often predicting higher TMB and high TMB 
predicting poorer survival. In the same way, we applied 
the risk signature and found that a high-risk score pre-
dicted a high TMB and poor survival. The tumor immune 
microenvironment is essential for identifying immune 
modifiers of cancer progression and developing cancer 
immunotherapies [20]. We performed a heat map analy-
sis of the immune microenvironment and related assess-
ments of immune function against LINC02154 and found 
that high expression of LINC02154 changes the immune 
microenvironment and makes the immune function 
more active. LINC02154 can be positively correlated with 
positive markers in immunotherapy and key steps of the 
immune cycle, which predicts that LINC02154 can play a 
role in immunotherapy. Analysis of immune checkpoints 
showed that CD276, CAIR1, CD28, CD44, CD86, CD80, 
TNFSF4, LGALS9, and PDCD1LG2 were more highly 
expressed in the high LINC02154 expression group than 
in the low LINC02154 expression group. We also per-
formed an associated immune microenvironment analy-
sis for the risk signature and found a similar trend to 
LINC02154. Regarding immune checkpoints, PDCD1, 
TMIGD2, TNFSF14, TNFRSF18, CD44, LGALS9, and 

LAG3 expression were higher in the high-risk group than 
in the low-risk group.Seaman et al. demonstrated that 
the cell surface protein CD276/B7-H3 is overexpressed 
in several cancers and tumor-infiltrating vessels; CD276 
antibody-medication conjugates (ADCs) equipped with 
conventional monomethyl auristatin E warheads could 
kill CD276-positive cancer cells but have little effect on 
tumor vasculature. Pyrrolobenzodiazepine-conjugated 
CD276 ADCs can kill cancer cells and tumor vasculature, 
eradicate large tumors and metastases, and improve OS 
[22]. CAIR-1/BAG-3 may serve as a multifunctional sig-
naling protein linking the pathways necessary for activat-
ing the EGF receptor tyrosine kinase signaling pathway 
to the Hsp70/Hsc70 pathway [23]. CD28 signaling plays 
a critical role in many biological processes of T cells, 
including cytoskeletal remodeling, cytokine production, 
survival, and differentiation and CD28 not only acts as 
an amplifier of TCR signaling but also can be the source 
of unique signals and regulates intracellular biochemical 
processes, including post-translational protein modifica-
tion and epigenetic changes [24]. CD44 is a non-kinase 
transmembrane glycoprotein, and its primary ligand is 
hyaluronic acid, which can be activated after binding to 
it, and then activate cell signaling pathways, promote cell 
proliferation, regulate the cytoskeleton, and enhance cell 
viability. CD44 is overexpressed in cancer stem cells, and 
a study suggested that alternatively spliced variants par-
ticipate in tumor progression [25]. CTLA-4 is a negative 
modulator of T cell immune responses, which shares two 
ligands (CD80 and CD86) with the stimulatory recep-
tor CD28. CTLA-4 captures its ligand from opposing 
cells by trans-endocytosis [26]. TNFSF4 was significantly 
upregulated in lung fibroblasts exposed to stress, and 
there was a negative correlation between TNFSF4 and 
tumor shrinkage after treatment with chemotherapeu-
tic agents [27]. Glioblastoma multiforme-derived exo-
some LGALS9 can play a significant regulatory role in 
tumor progression by inhibiting dendritic cell antigen 
presentation and cytotoxic T cell activation in CSF; if 
this inhibition is lost, it can lead to long-lasting systemic 
anti-tumor immunity [28]. Masugi et al. found a negative 
correlation between PDCD1LG2 expression and Crohn’s-
like lymphoid response in colorectal cancer, suggesting 
that PDCD1LG2 positive tumor cells may be involved 
in inhibiting the development of tertiary lymphoid tis-
sues during colorectal carcinogenesis [29].We performed 
susceptibility-related analysis and found that differen-
tial expression of LINC02154 affected the sensitivity 
of pazopanib, sorafenib, sunitinib, and temsirolimus. 
Moreover, there were significant differences in sensitiv-
ity to doxorubicin, gemcitabine, sorafenib, and sunitinib 
between the high- and low-risk score groups. Pazopanib 
is an oral angiogenesis inhibitor. A randomized, double-
blind, placebo-controlled phase III study investigated 
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the safety and efficacy of pazopanib monotherapy in 
cytokine-pretreated advanced renal cell carcinoma; the 
authors showed the efficacy of pazopanib in patients with 
advanced and metastatic RCC reflected improved tumor 
response and progression-free survival compared with 
placebo [30]. Sorafenib was the first multikinase inhibitor 
approved to treat RCC in the US and Europe [31]. Several 
studies demonstrated the efficacy of sunitinib in patients 
with metastatic RCC [32–35]. A phase III clinical trial 
showed that temsirolimus had a significantly better treat-
ment effect than IFN-α treatment in RCC patients with 
poor outcomes in terms of OS, progression-free survival, 
and tumor response [36].

In summary, we analyzed the role of LINC02154, a 
gene associated with cuproptosis-related lncRNAs, in 
ccRCC. A risk signature composed of four genes for 
ccRCC containing LINC02154 was constructed, which 
has clinical value for the outcomes of ccRCC and the 
judgment of the benefit of targeted therapy and neoad-
juvant chemotherapy. We also investigated the prolifera-
tion and migration of LINC02154 using cell, CCK-8, EdU, 
wound-healing, and Transwell assays. We found that the 
knockdown of LINC02154 inhibited the proliferation and 
migration of ccRCC cells. Many LINC02154-related data 
were analyzed using bioinformatics and experimentally 
verification; nevertheless, there were limitations, Except 
for TCGA, we did not find the expression information of 
LINC02154 in the RNA matrix of other patient cohorts, 
so we could not verify it in other patient cohorts. Besides, 
more in-depth animal experiments and clinical experi-
ments must be performed to promote the application of 
LINC02154 in clinical work.

Conclusion
We analyzed the related genes of copper death, con-
structed a cuproptosis-related prognostic risk signature 
from four lncRNAs, and validated the risk signature. 
LINC02154 was differentially expressed across ages, 
genders, stages, and grades. Various expression levels 
did affect outcomes and had a significant relationship 
with TMB and medication sensitivity. We performed 
cell function experiments and showed that LINC02154 
knockdown significantly predicted the proliferation and 
migration of ACHN cells. These findings suggest that 
LINC02154 can predict ccRCC outcomes and has poten-
tial clinical application value.
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