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1 Introduction

The AdS/CFT correspondence or Gauge/Gravity duality [1] sets up a radical equality [2, 3]
between quantum field theories and string theory in one higher dimension (some relevant
reviews include [4–6]). In particular, since it is a duality, we can obtain valuable insight
into the strong coupling regime on the one side from the other. Much effort has gone into
exploring whether such a duality can be useful to understand the phases and properties
of QCD [7], which is a strongly interacting field theory at low energies. Calculations from
the gravity side seem to generically capture phenomenologically relevant features such as
Regge behavior of Hadron spectra [9], low shear viscosity [10, 11] and consequent elliptic
flow [12] which are hard to obtain from first principles QCD. There is also a large body of
work on the properties of strongly interacting condensed matter [13, 14] using holographic
methods of which QCD at finite density is but a special case. Openings into the large
literature on QCD related explorations of the holographic correspondence can be found in
the reviews/theses [7, 15–18]. A useful resource with many references is the webpage at
nLab.1

The major research directions in AdS/QCD can be divided into the following categories:
a bottom-up approach based on phenomenology, a top-down approach based on stringy
considerations and a first principles approach based on dualities which depend critically
on supersymmetry.

The latter approaches, especially those in which both sides of the duality are clearly
identified, have shown that many of the properties of strongly interacting gauge theories are
indeed recoverable from holographic calculations such as confinement and condensates [19],
hard scattering [20] and partonic substructure [21], Regge features [22] etc. including recent
efforts [23] to obtain a finite temperature phase diagram for this system.

The former directions are more phenomenologically oriented and incorporate various
heuristic features that seem to be implicated in obtaining the relevant features of 4D QCD
like theories. For instance, inclusion of black holes to model finite temperature [3], branes
with various couplings to introduce fundamental matter [24], chiral symmetry [25, 26],
radially varying dilaton [27, 28] to capture running coupling and linear confinement, etc.

Among the top-down approaches, a well developed set of studies are the Witten-Sakai-
Sugimoto models [29]. This approach (reviewed in [16]) works in the ten dimensional
spacetime produced by D4-branes with probe D8 branes representing massless chiral quark
degrees of freedom (masses can be introduced through [30–32]). For another set of studies
approaching QCD, starting with the Klebanov-Strassler duals [33] and introducing branes,
see [34]. On the other hand, the V-QCD model [35] (reviewed in the thesis [15]) operates in
five spacetime dimensions, incorporates running coupling, space filling branes representing
chiral quarks and a host of other features. In this theory, multi-parameter potentials are
tuned to capture QCD physics and have been considerably developed and applied to model
the interiors of neutron stars [17, 36, 37]. The above models fall into the soft-wall [38] class
of models [39]–[50]. In contrast, the hardwall models approximate QCD by a segment of
AdS-type spaces with parameters, boundary conditions and other features chosen to best fit

1Webpage at nLab: https://ncatlab.org/nlab/show/AdS-QCD+correspondence.
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low energy phenomenology [38]. Some further explorations of the hardwall models can be
found in [51]–[55]. Nevertheless, it is perhaps fair to say that a fully consistent, predictive
model for QCD is very much work in progress.

Even this very brief introduction gives a glimpse of the richness of the holographic
correspondence and the optimism and excitement that underlies these studies. A funda-
mental understanding of holography will consolidate these studies and perhaps even make
contact with QCD proper.

An important shortcoming of nearly all these approaches is a lack of methods to
estimate the reliability of the predictions from these models — at least partly because both
sides of the duality are not precisely known. These issues are generic to all 5D models.
In the Witten-Sakai-Sugimoto models [31] on the other hand, the high temperature phase
is unreliable because for T > ΛQCD ∼ MKK , Kaluza-Klein modes must be taken into
account. Further, the naive idea for quark masses gives mq ≈MKK .

A second reason is that, in many cases, for phenomenologically interesting values of the
parameters, the bulk calculations can be expected to receive significant corrections. There
are many sources for these corrections: higher derivative corrections, string loop effects,
additional fields including a variety of scalar fields (moduli). Several of these have been
explored in the literature giving rise to a rich variety of phenomena. This causes difficulty
in identifying the precise dual of a QCD-like theory (with fundamental quarks, chiral
symmetry breaking, etc). Hence it is important to have control systems to understand the
limits of the present calculations.

A general issue at finite chemical potential is sources of Baryon number which are
non-Abelian configurations of D-branes. This is because while the non-Abelian DBI action
is accurate only up to O(α′4F 4), these configurations involve fields for which higher order
terms are as significant as the ones being retained. It is difficult to take into account the
masses and polarization effects of these D-branes ([64] is a recent effort in this direction).

In the present work, we add to this exploration by studying a hardwall model that is ten
dimensional, includes probe D7-branes [24], and takes into account the effect of the shape of
the brane on hadron spectra [56] as detailed in the following sections. The key difference in
our work is using separate hard cutoffs for the bulk and the branes, which leads to explicit
breaking of scale invariance in the bulk. This idea, albeit in 5D has been explored recently
by [55]. Introducing quarks via D-branes can lead to large deformations of both the bulk
geometry and of the D-branes, especially in regions where the branes change their shape
significantly. The second cutoff for the D-brane allows us to excise these regions, thereby
maintaining control over bulk calculations. However, we also take into account the effect
of the excluded regions via modified boundary conditions dictated by phenomenology much
in the way renormalization conditions fix parameters in terms of experimental data in the
usual QFT. In particular, this could enable us to handle non-Abelian deformations of the
DBI action by hiding them behind the IR-cutoff but nevertheless including their effects via
boundary conditions.

A second advantage of working in 10-D with D7-branes is that the precise gauge
theory is known and controlled. Further, several deformations of this parent theory have
been studied — most notably the Polchinski-Strassler and Klebanov-Strassler [33] families.

– 2 –
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This allows us to test these computations against field theory calculations, including those
obtained from lattice gauge theory approaches [77] when those become available. On
the gravity side, fully backreacted geometries have been proposed [73], including at finite
temperature [23]. Thus, corrections to the predictions obtained from the gravitational side
are controllable and can be compared with predictions for the phases of the dual field
theory.

After explaining how the hardwall idea can be made to work in a full ten dimensional
AdS setting, we describe how cutoffs are to be modified in the presence of D7-branes.
Because of branes, several new parameters are introduced into the hardwall model apart
from the bulk IR-cutoff rg: a dimensionless DBI normalization parameter b, a brane IR-
cutoff ρm and the quark mass parameter mq.

Given this data, we subsequently identify all the candidate classical solutions of the
cutoff models in section 3. Section 4 discusses the finite temperature phases of this system
at zero and nonzero quark masses. We also study how the phase diagram varies with
the parameter b = λ

4π2
Nf

Nc
and the ratio rm

rg
. In obtaining the phase diagram, we only

need to consider differences in Helmholtz free energies. In section 5, we use counterterms
prescribed by the holographic renormalization procedure to obtain finite free energies and
other thermodynamic quantities in the various phases. This allows us to identify order
parameters as well. Section 6 translates the phase diagram into QCD units by using
phenomenology to fix the numerical parameters of our model. We conclude with a summary
of the results and discuss future directions for exploration.

2 The hard wall model in 10D

To begin with, we describe how the hard wall calculations of [38] can be uplifted to 10D
AdS5×S5. We may expect that the phase diagram is not affected but the way this occurs
is somewhat interesting.

We start with the full 10-D IIB string theory low energy effective action in Lorentzian
signature with only a 5-form field strength as appropriate to a situation containing only
D3-branes:

SIIB = 1
2κ2

10

∫
d10x

√
|g|
(
e−2Φ(R+ 4(∇Φ)2)− 1

2.5! |F5|2
)

(2.1)

We add boundary terms and counter terms in an upcoming section, but for obtaining
equations of motion, (2.1) is sufficient. Here 2κ2

10 = (2π)7g2
s(α′)4.

We can see that 10-Dimensional AdS5 × S5 metric written as:

ds2 = r2

L2 (−dt2 + d~x2) + L2

ρ2 + y2

(
dρ2 + ρ2dΩ2

3 + dy2 + y2 dθ2
)

(2.2)

with the usual radial coordinate r being obtained as r2 = y2 + ρ2, and the AdS5 black
hole ×S5

ds2 = r2

L2 (−fdt2 + d~x2) + L2

ξ2

(
dρ̃2 + ρ̃2dΩ2

3 + dỹ2 + ỹ2dθ̃2
)

(2.3)
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where r2 =
(
ξ2 + r4

0
4ξ2

)
, ξ2 = ρ̃2 + ỹ2, and the blackening factor

f =

(
1− r4

0
4ξ4

)2

(
1 + r4

0
4ξ4

)2 (2.4)

together with a five form field strength,

Fµµ2µ3µ4µ5 = εµµ2µ3µ4µ5
4r3

L4 , (2.5)

and a vanishing dilaton Φ = 0, are solutions of equations of motion. To avoid confusion
with the AdS coordinates y, ρ, we label the black hole coordinates as ỹ, ρ̃. The horizon in
these new coordinates is defined by ξ = r0/

√
2. The UV boundary is at r →∞ which, at

fixed y(ρUV ), ỹ(ρ̃UV ) means ρUV , ρ̃UV → ∞. The AdS radius L4 = 4πgs(α′)2Nc is fixed
from the quantization condition that

∫
S5 ∗F = 2πµ3Nc.

The hardwall approach requires us to compute the on-shell Euclidean action

SEIIB = − 1
2κ2

10

∫
d10x

√
|g|
(
e−2Φ(R+ 4(∇Φ)2)− 1

2.5! |F
E
5 |2

)
= 1

2κ2
10

∫
d10x
√
g

8
L2 (2.6)

with a truncated integration range for the AdS radial coordinate. The Lagrangian density
is evaluated to be the same as in 5-D with the entire contribution coming from the five form
since the total curvature of AdS5×S5 vanishes. Thus, upon comparing the on-shell action
for thermal AdS and AdS black hole geometries, we obtain a first order phase transition
identical to the 5-D hardwall analysis of [38].

We now introduce quark degrees of freedom by adding D7-branes represented by the
DBI action to (2.1) involving the pull back Kab = P [g]ab of the background metric to the
world volume:

SDBI = −Nfµ7

∫
d8σ

√
−det(P [g]) (2.7)

where Nf represents the number of quarks, µ7 = 1
gs(2π)7l8s

is the tension of the D7-brane.
Therefore, the total Euclidean action we will work with is:

SE = − 1
2κ2

10

∫
d10x

√
|g|
(
R− 1

2.5! |F
E
5 |2

)
+Nfµ7

∫
d8σ

√
det(P [g]). (2.8)

Following [24], the D7-branes are chosen to wrap an S3 in the S5 part of the geometry and
to be parallel to the boundary directions for Poincare invariance. Finally, these D-branes
also extend along a radial direction of the entire spacetime.

The low energy dynamics is that of an N = 2 supersymmetric gauge theory with Nf

hypermultiplets in the fundamental representation [24]. These models have been studied
in [56]–[59] — the novelty in our work being the hardwall cutoffs.

2.1 Cut-offs

The hardwall approach to modeling the physics of QCD requires us to impose cutoffs on the
ranges of integration of the bulk radial coordinate. The total action involves two separate

– 4 –
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contributions from the bulk gravity fields and those fields which are restricted to the world
volume of the D7-branes. The gravity part, which can be said to capture the contribution
of pure glue to the free energy is defined with an IR-cutoff rg. This breaks the conformal
symmetry of the AdS geometry, and so we can interpret rg as being a proxy for ΛQCD.
This cutoff can be translated into physical units by computing an observable such as the
glueball mass [54].

The new feature in our work is the introduction of a second IR-cutoff rm for the brane
world volume which restricts the extent ρm of the brane world volume in the radial AdS
direction via r2

m = ρ2
m + y(ρm)2, a relation which is applicable if the spacetime is thermal

AdS. This relation uses the solution y(ρ) of the DBI equations of motion and so the cutoff
ρm varies dynamically with the shape of the brane. Further, given the shape y(ρ), the IR-
cutoff rm can be translated into, for instance a meson mass, by studying the fluctuations
of the brane degrees of freedom. We will refer to rm loosely as meson mass, while rg will
be similarly termed the glueball mass.

Thus, we have a dimensionless ratio rm
rg
, which can be tuned to bring the model closer

to QCD. In this work, only those cases where rm
rg

> 1 are considered, i.e., where the
brane is embedded in a geometric background; but we wish to emphasize that in our work,
we keep rm fixed rather than the quantity ρm. If a cutoff ρm is imposed on the world
volume coordinate, the shape of the D-brane is unaffected by the cutoff coordinate, and a
completely different story ensues.

Once we fix an IR-cutoff rm in the AdS geometry, the appropriate cutoff for the D7-
branes in the black hole geometry is determined from

r2
m = ỹ(ρ̃m)2 + ρ̃2

m + r4
0

4(ỹ(ρ̃m)2 + ρ̃2
m) . (2.9)

by using the solution ỹ(ρ̃) for the shape of the D7-brane in the black hole background.
Determining the phases of the theory requires us to compare the various classical so-

lutions. To ensure that the solutions being compared are candidate phases for the same
underlying theory, we need to ensure that the non-normalizable modes of the various fields
are equal on the UV-cutoff surface (because these translate into sources for various oper-
ators of the field theory). In addition to this, the periodicity of the thermal circle in the
AdS geometry β′ is determined by the Hawking temperature βH [38]. We can understand
this as follows. We can rescale the time coordinates of both geometries so that the time
circle has the same periodicity, say unity. In this case, the gtt component of the two metrics
become

gAdS
tt = β′2

z2 gBHtt = βH
2

z2 f(z). (2.10)

The AdS/CFT dictionary requires us to equate the non-normalizable mode of all the bulk
fields at the UV-cutoff surface. Thus, we get the condition

β′ = βH

√
1− r4

0
Λ4 (2.11)

– 5 –
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where we perform a Fefferman-Graham expansion on the metric to identify these modes.
The insight in [38] is the observation that the term subleading in the cutoff can play a
significant role. We will drop the suffix on the Hawking temperature in what follows.

Imposing the IR-cutoffs leads to the model breaking conformal invariance. However,
the absence of a radially varying dilaton suggests that the β-function of QCD still vanishes.

In thermal AdS geometry, the relationship between the UV-cutoff Λ on the radial
coordinate and the UV-cutoff on ρ is

ρ2
UV = Λ2 −m2

q (2.12)

In the black hole geometry however, the UV-cutoff ρ̃UV is determined by the equation

Λ2 = m2
q + ρ̃2

UV + r4
0

4(m2
q + ρ̃2

UV ) . (2.13)

=⇒ ρ̃2
UV ≈ Λ2 −m2

q −
r4

0
4Λ2 (2.14)

It turns out that the subleading term above plays an important role similar to the sub-
leading term in the temperature relation (2.11).

At the UV-cutoff surface, we demand that, in the two geometries, the D-brane shapes
match y(Λ) = ỹ(Λ) = mq.

3 Solutions/saddle points

In this section, we describe various classical solutions that could represent the phases of the
dual theory at finite temperatures. Most of these solutions have already been considered
in the literature ([24, 56] for instance) — we present them in detail for completeness and
ease of reference.

3.1 Thermal AdS

Since the D7-branes are point-like in the y1,2 plane, the action has a rotational U(1) R-
symmetry in this plane. We assume that the D7-brane is located at y2 = 0 and in what
follows, we will denote y1 as simply y. The pull back metric on the D7-brane embedded in
the Thermal AdS geometry is:

ds2 = r2

L2 (−dt2 + d~x2) + L2

ρ2 + y2

(
dρ2(1 + y′2) + ρ2dΩ2

3

)
(3.1)

where ρ, y have dimensions of length. y is a function of ρ and determines the shape of the
D7-brane. Its non-normalizable mode at the UV boundary determines the mass of quarks
and the normalizable mode accounts for a quark condensate related to the spontaneous
breaking of the U(1) R-symmetry by the solution ansatz [56]. This will lead to a Goldstone
boson in the boundary theory.

The action (2.8) in this geometry can be evaluated to be:

SEAdS = a
β′

β

[
4
∫ Λ

rg

drr3 + b

∫ ρUV

ρm

dρρ3
√

1 + y′2

]
(3.2)

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
1
6
8

where we have defined boundary theory parameters

a = Ω5V3
κ2

10
= N2

c V3
4π2L8 (3.3)

b = µ7NfΩ3κ
2
10

Ω5
= λ

4π2
Nf

Nc
(3.4)

and λ = 4πg2
YMNc = 4πgsNc.

In thermal AdS background, the shapes of the branes are given by the equation

y′ = c3√
ρ6 − c6 (3.5)

where c3 is an integration constant proportional to the quark condensate 〈q̄q〉. Since a
string stretching from the D7 at y = mq, r = Λ to the D3-brane at y = 0, r = Λ has length
y(Λ) = mq, the mass of this string is

Mq = mq

2πα′ = mq

√
λ

2πL2 . (3.6)

which we identify with the physical quark mass. Here 1
2πα′ is the tension of a fundamental

string. We take the variation of the action (3.2) with the physical quark mass to find the
condensate σ as

σ = µ7Ω32πα′c3 (3.7)

3.2 Cutoff D-branes

Once we introduce a cutoff rm, we have new possibilities. The first is a family of D-branes
which end on the cutoff surface with varying values of ym = y(ρm) given by

y(ρ) =mq −
c

2 3 1
4
F

(
cos−1

(
2−
√

3
)
,
1
4
(
2 +
√

3
))

+ c

2 3 1
4
F

cos−1


(√

3− 1
)
ρ2 + c2(

1 +
√

3
)
ρ2 − c2

 , 1
4
(
2 +
√

3
) (3.8)

where F is the elliptic integral defined by

F (φ, β) =
∫ φ

0

dθ√
1− β2 sin2 θ

(3.9)

We show the various possible shapes of the branes in figure 1 where the black solid arc
represents the cutoff and the red, yellow and green curves represent the above solutions.
The value of c is fixed by the geometrical IR-cutoff relation y2(ρm) + ρ2

m = r2
m and can be

negative. For large enough mq, we can see that there are no D7-branes that end on the
cutoff surface. The limiting value of mq occurs when ρm = c, whence we get a quadratic
equation for c. The discriminant of this equation should be positive which gives us an
upper bound

m2
q

r2
m

< 1 +
√

3
12

[
F

(
cos−1(2−

√
3), 1

4(2 +
√

3)
)]2
∼ 1.49153 (3.10)

– 7 –



J
H
E
P
0
2
(
2
0
2
3
)
1
6
8

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

y

Brane-shape

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

y

Brane-shape

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

y

Brane-shape

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

y

Brane-shape

Figure 1. D-branes embeddings in AdS.

When this condition is satisfied, we have brane solutions for a range of c — at either ends
of this range ρm = c (and hence y′(ρm) =∞), but in any case — all these branes terminate
on the cutoff surface.

Secondly, we have the “Hairpin branes” that bend over before the cutoff surface, that
is to say, where c > rm, as shown by blue dotted curve in figure 1. For such branes, we
must have y′(ρmin) = ∞ in order that there is no conical singularity in the y1, y2 plane.
Then, a pair of such branes can be smoothly joined producing a configuration which is
symmetric under y1 → −y1. In this case we have only one possible brane since the quark
masses fix the condensate mq ∼ 0.7c uniquely and thereby the turning point ρm = c.

Finally, we can also have D7-branes which end at ρ = 0. At this point, the S3 shrinks
to zero size and the D7 effectively terminates. In 10-D, this occurs at r = ym > rm.
However, when the branes end at ρ = 0, they must do so horizontally, i.e., y′(0) = 0 —
since otherwise the induced metric on the D7-branes will have a conical defect. In this
case, higher derivative terms in the brane action can be expected to play a significant role
and must be included from the get go. However, if we start at ρ = 0, with y′(0) = 0 —
then we can have only straight (or flat) branes in AdS. Thus, for a given quark mass, we
have a single D7-brane configuration of this type which is shown as the straight dotted line
in figure 1.

In summary, we have three possibilities at a given mq. A straight brane y(ρ) = mq, a
Hairpin brane with the turning point fixed by mq ∼ 0.7c and a family of branes ending on
the cutoff surface with varying ym with negative and positive values of c.

In the absence of the cutoff scale rm, the scale of the D7-world volume fluctuations
is set by the quark mass mq independent of ΛQCD i.e., rg. In QCD, the meson masses
are determined by chiral symmetry breaking and mq, whereas in all probe-brane situations

– 8 –
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Figure 2. Extendend brane shape.

without a cutoff, the masses are of the form mq

gY M (mq) [78]. In our model for the D7-branes
which end on the cutoff, the condensate c3 is not entirely determined by the quark mass
mq. For a given mq there are several solutions and the minimum energy configuration
dynamically picks out the value of c (as a function of rm). In section 6, we will fix the
value of rm by comparing with actual meson masses — thus phenomenology will relate
ΛQCD and rm. In a more complete scenario, the bulk geometry and brane configurations
behind the cutoff will determine the relation between ΛQCD and rm.

3.3 Chiral symmetry

As seen from the above figure, the branes which end on y1 = 0 or the branes which end on
the cutoff surface have a non-trivial profile and hence the condensate c3 6= 0.

We can introduce a second set of D7-branes antipodally in the y1−y2 plane which will
lead to a SU(Nf )U × SU(Nf )D flavour symmetry arising from the two sets of D7-branes.
In the figure 2, these embeddings are shown as straight black lines, in the presence of the
IR-cutoff rm shown as a red arc. The world volume of the lower brane is taken to be
oppositely oriented to the upper one (i.e., these form a brane antibrane pair).

On the other hand, the configurations of D7-branes which end on the cutoff surface
(shown in blue) can be interpreted in a manner very similar to the D8−branes of the Sakai
Sugimoto model [29], provided we “complete” the brane embedding by attaching a second
D7-brane as shown. We suggest that in a more complete treatment, these branes form a
hairpin like configuration (shown as the dotted line), and the separate flavor symmetries
SU(Nf )U × SU(Nf )D are broken to a diagonal SU(Nf ) subgroup which is suggestive of
chiral symmetry breaking in QCD if we identify U → L and D → R where L,R are
chirality labels. This is supported by the orientation reversal on the lower half arising from
the joining.

Developing this idea further, an important question relevant to QCD, is whether we
have spontaneous breaking of chiral symmetry as represented by a nonzero condensate in
the chiral limit mq → 0. This does not occur in our model. At mq = 0, the lowest energy
D7-brane embedding is a straight brane in the AdS background which ends on the cutoff
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surface without any condensate. Thus, even if we regard SU(Nf )U ×SU(Nf )D as the chiral
symmetry, it does not break spontaneously in this model.

We also note that this model has a rotation symmetry in the y1 − y2 plane, which
defines an R-symmetry of the field theory. A nonzero quark mass leads to each set of
D7-branes breaking this rotation symmetry. When the two branes are conjoined, this leads
to a single Goldstone boson, whereas when the two branes are distinct, we will obtain a
pair of Goldstone bosons. Unfortunately, this symmetry is also not broken spontaneously
in the massless limit.

In the forthcoming sections, rather than refer to these two classes of branes as chirally
symmetric and broken phases, we will speak instead of quarks being confined or deconfined.
This is because as long as there is no horizon on the brane world volume, the meson
masses computed from the quasiparticle energy eigenvalues will be real. On the other
hand, when the branes have a worldvolume horizon, the mesons will become worldvolume
quasinormal modes and hence acquire a temperature dependent width. We also note
that for chiral quarks transforming differently under the flavour symmetries SU(Nf )U ×
SU(Nf )D, additional ingredients are necessary.

3.4 D7-branes in the AdS black hole geometry

Similarly, we can embed the D7-brane in the AdS-black hole background with the pull back
metric:

ds2 = r2

L2 (−fdt2 + d~x2) + L2

ξ2

(
dρ̃2(1 + ỹ′2) + ρ̃2dΩ2

3

)
(3.11)

where ξ2 = ỹ2 + ρ̃2. The on-shell action in black hole geometry is:

SEBH = aβ

[
4
∫ Λ

rg

drr3 + b

∫ ρ̃UV

ρ̃m

dρ̃ρ̃3
(

1− r8
0

16ξ8

)√
1 + ỹ′2

]
(3.12)

Because of the presence of potential terms, straight y = constant D7-branes are not possible
in the black hole geometry. If the hard wall cutoff on the bulk geometry is such that
rm > rg > r0, the cutoff surface hides the horizon. Secondly, if rm > r0 > rg, a black hole
horizon is visible in the cutoff bulk geometry though the D7-branes do not see the horizon.
Finally, if r0 > rm > rg, D7-branes can end on the horizon.

In any case, near the UV-boundary ρ̃ ∼ Λ̃, the branes approximately satisfy

ỹ′ ∼ c3

ρ̃3 (3.13)

defining the condensate c3. The full solution and, thus, the value of the condensate is deter-
mined by the IR boundary conditions, as we discuss below. The cutoff ρ̃m is dynamically
determined by the cutoff relation (2.9) which we reproduce below

r2
m = ỹ2

m + ρ̃2
m + r4

0
4(ỹ2

m + ρ̃2
m) . (3.14)

The above relation implies that 2ρ̃2
m = r2

m +
√
r4
m − r4

0 − 2ỹ2
m which cannot be satisfied

for large quark mass r2
m +

√
r4
m − r4

0 − 2ỹ2
m < 0 or for high temperature r0 > rm. In the
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Figure 3. D-branes in BH geometry for r0 < rm.

former case, the branes in the black hole geometry end at ρ̃ = 0. In this case, we need that
ỹ′(0) = 0 from the requirement that there will be no world volume conical singularity for
the D7-brane. In the latter case, when r0 > rm, the branes either bend over to end up at
ỹm = 0, end on the horizon of the black hole or if the mass is large enough, terminate at
ρ̃ = 0.

3.4.1 Low temperature

In this subsection, we consider the case when the temperature is smaller than the IR-cutoff
rm > r0. The equations of motion show that the trivial solution y(ρ) = 0 still exists. We
find non-trivial solutions for y(ρ) numerically, for different initial conditions ỹm = ỹ(ρ̃m),
by using a Newton-Raphson routine which adjusts the initial slope ỹ′(ρ̃m) so that we obtain
the correct quark mass ỹ(Λ) = mq. Figure 3 shows all possible D7-brane for a fixed IR
cut-off rm and horizon r0, and varying the quark masses mq = y(Λ). The black arc is
the IR-cutoff, and the red arc represents the horizon which is covered by the cutoff. The
Hairpin D-branes (blue dashed lines) which bend over before the cutoff occurs for relatively
larger values of the quark mass. For larger quark masses, we also have “straightish” branes
in the black hole geometry, which end on the y−axis at ρ̃ = 0. Note that there are solutions
which start at the IR-cutoff with a value greater than the quark mass (green curves).

3.4.2 High temperatures

When the temperature r0 > rm, the D7-branes in the black hole geometry are somewhat
different since in this case the cutoff radius rm is behind a horizon.

These different possibilities are shown in figure 4. It is now possible for the D7-brane
to end on the horizon of the black hole at ỹ2 + ρ̃2 = r2

0/2. From the equations of motion, we
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Figure 4. D7-brane in BH geometry for r0 > rm.

can obtain a regularity condition for the embedding at the horizon, ỹ′ = ỹ
ρ̃ . This implies

that we have only one such D7-brane configuration for a given quark mass. These are
shown in green in the figure. In this case, we find that the Hawking temperature of the
world volume metric on the D7-brane matches with that of the bulk. Thus, we can say
that the quark and the gluon degrees of freedom are in thermal equilibrium.

We can also have solutions that terminate on the ρ = 0 surface — and thus the world
volume S3 collapses to zero size. As before, we will require ỹ′(0) = 0 for such branes and
hence we have a single solution of this type. These are the blue colored curves in the figure
and we refer to them as the “straightish” branes.

Finally, we can also have Hairpin branes which bend over before the horizon and
intersect the x-axis and are shown in red in the figure.

It is important to point out that for the D7-branes which end on the horizon of the
black hole, the worldvolume fluctuations will be quasinormal modes, that is to say, the mode
energies will acquire imaginary parts. Stated in boundary terms, the ‘mesons’ now acquire
a lifetime which depends on the temperature. For convenience, we will refer to this situation
as meson ‘melting’ although that term is more properly used when the quasiparticle peak
in the spectral function disappears.

4 Phase transitions at finite temperature

In this section, we will discuss the phase diagram of this system in detail. This requires us
to compare the Helmholtz free energy of the various configurations we have discussed.

The action when evaluated on the solutions described earlier, has UV-divergences com-
ing from the upper limit of integration. Thus, it is not immediately interpretable as free
energy. However, for the purpose of computing the phase diagram, we can take differences
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in the on-shell action between various solutions to determine the thermodynamically pre-
ferred configuration. The differences are guaranteed to be finite because UV-divergences
in field theories are independent of temperature. On the gravity side, this translates into
identical cutoff dependence of the on-shell action when evaluated on the various solutions.

Recall that we have two dimensionless parameters: the ratio rm
rg
≥ 1 and the coefficient

b = λNf

4π2Nc
. In this section, we will present our study of the phase diagram for a few values

of these parameters.

4.1 Zero quark mass

The equations of motion of the D-branes (in the probe limit) admit a solution y(ρ) = 0 in
both thermal AdS and black hole geometries. These solutions represent the introduction
of zero mass quarks into the dual boundary field theory since the D3-D7 strings have zero
length.

The possible configurations, in this case, are the trivial solution and the nontrivial
solutions of the form (3.8), with c < 0 and mq = 0. However, the latter solutions turn out
to have larger free energy and are ignored in the following.

Given the two cutoffs, we have three possible scenarios in the black hole geometry

• r0 < rg < rm : In this case, the bulk has rg as IR-cutoff while the IR-cutoff is rm for
the DBI action.

• rg < r0 < rm : In this case, the bulk has r0 as its IR-cutoff. The IR-cutoff for the
DBI is rm. On the brane coordinate, this can be written as ρ̃2

m = (r2
m+

√
r4
m − r4

0)/2.

• rg < rm < r0 : In this case, the black hole horizon acts as the IR-cutoff for both
systems.

We now consider these in turn.
When the bulk geometry is that of thermal AdS, the total Euclidean on-shell ac-

tion (3.2) is

SEAdS = aβ′
([

Λ4 − r4
g

]
+ b

4
[
Λ4 − r4

m

])
(4.1)

= aβ

(
Λ4 − r4

g −
r4

0
2 + b

4

(
Λ4 − r4

m −
r4

0
2

))
(4.2)

where we have used the relation (2.11) between β′ and β. We observe that if we interpret
that on-shell action as free energy, the r4

0 temperature dependence indicates a nonzero
entropy. This is at odds with the traditional association of a horizon with entropy.

For the first case r0 < rg < rm, the on-shell action (3.12) for branes embedded in the
black hole geometry evaluates to:

S1 = aβ

(
Λ4 − r4

g + b

4

(
Λ̃4 + r8

0
16Λ̃4

−
(
ρ̃4
m + r8

0
16ρ̃4

m

)))
(4.3)

= aβ

(
Λ4 − r4

g + b

4
(
Λ4 − r4

m

))
(4.4)
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For the range rg < r0 < rm, we obtain S2 as:

S2 = aβ

(
Λ4 − r4

0 + b

4(Λ4 − r4
m)
)

(4.5)

Finally, when the black hole horizon become larger than rm, we get S3:

S3 = aβ

(
Λ4 − r4

0 + b

4
(
Λ4 − r4

0

))
(4.6)

For a given r0, we take the differences in the on-shell action of the AdS and Black hole
configurations.

S1 − S = aβ

(
1 + b

4

)
r4

0
2 ; r0 < rg (4.7)

S2 − S = aβ

(
r4
g + r4

0

(
b

8 −
1
2

))
; rg < r0 < rm (4.8)

S3 − S = aβ

(
r4
g + b

4r
4
m −

r4
0
2

(
1 + b

4

))
; rm < r0 (4.9)

We see that if 0 < b ≤ 4
(

1− 2 r4
g

r4
m

)
, we obtain a possible phase transition in the region

rg < r0 < rm. Positivity of b requires rm
rg

> 2 1
4 ∼ 1.19. When these two conditions are

satisfied, the phase transition occurs at a temperature

Tcg = 23/4rg
πL2(4− b)1/4 (4.10)

This transition which depends only on rg deconfines the gluons while the quarks remaining
bound in mesons. The critical temperature is independent of the brane cutoff rm. How-
ever, the possibility of this transition does depend on the ratio rm

rg
. As we increase the

temperature further (r0 ≥ rm), we see a horizon appearing in the D7-brane world volume
beyond a temperature

Tcq =
(8r4

g + 2br4
m)1/4

πL2(4 + b)1/4 (4.11)

depending on the brane cutoff rm. For r0 = rm (when case II and III both become possible)
and if b = 4

(
1− 2 r4

g

r4
m

)
, both critical temperatures become equal.

However, even if the conditions for the first transition are not satisfied, as we increase
the temperature for any b > 0, we always obtain a transition in the region r0 > rm > rg,
when S3 becomes the lowest free energy configuration (compared to the AdS embeddings).
The temperature is given by the same formula (4.11). This is a simultaneous deconfine-
ment/melting transition of the quarks and gluons — since the branes now end on the
horizon. Therefore, we denote this temperature by Tc.

4.2 Finite Quark mass transitions

We now move to non-zero current quark mass, that is to say, for non-zero y field profiles.
We will find the solutions numerically and determine the on-shell action using numeri-
cal integration techniques. For a given temperature and quark mass, we then determine
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which of the various branes and backgrounds represents the least action configuration (after
including the gravity terms that represent the glue contribution).

In the thermal AdS background, the total action is

S = aβ′
(

Λ4 − r4
g + b

∫ √Λ2−m2
q

ρm

dρρ3
√

1 + y′2
)

(4.12)

= aβ

(
−r4

g −
r4

0
2 + b

(
−r

4
0
8 +

∫ √Λ2−m2
q

ρm

dρρ3
√

1 + y′2
))

(4.13)

where, in the second line, we have to drop divergent terms coming from the bulk as in the
minimal subtraction scheme. This integral can be evaluated in terms of Gauss Hypergeo-
metric functions, and we get the following expression for the action after taking the limit
Λ→∞

S = a

(
−r4

g −
r4

0
2 + b

(
−ρ

4
m

4 2F1

(
−2

3 ,
1
2; 1

3; k
6

ρ6
m

)
− r4

0
8

))
(4.14)

For this on-shell action to be interpreted in boundary terms, we need to use renormalization
conditions to translate the various parameters appearing above into physical quantities.

4.2.1 Ground state as a function of quark mass
Before proceeding to finite temperature, we discuss the properties of this system at zero
temperature as we vary the quark mass. At zero temperature, the on-shell gravitational
action, regarded as the ground state energy of the boundary theory, involves two contri-
butions. One comes from the bulk gravitational degrees of freedom and depends on rg,
while the other is the D7-brane contribution depending on the cutoff rm. However, since
the background remains the same, the difference is independent of rg, and the nature of
the ground state is controlled only by rm. Secondly, in this probe approximation, the con-
tribution of the D-brane involves the coupling constant b, only as an overall multiplication
factor. Thus, we could say that the properties of the ground state are entirely controlled
by the meson mass via its proxy rm. In particular, if we associate the bulk cutoff rg with
ΛQCD, the phase changes in the quark sector are not affected by rg so long as rg < rm.

For a given value of mq and cutoff rm, the shape of the brane maybe characterized by
the condensate parameter c. The minimum energy condition picks out a particular value
of c(mq, rm) for a given value of mq and rm. In QCD, the chiral condensate defined as
〈ψ̄ψ〉 ≡ C3 is a function C(mq,ΛQCD) with the property that C(0,ΛQCD) 6= 0. If we relate
c ∼ C, then the minimum energy condition determines the chiral condensate as a function
of ΛQCD and mq.

However, we find that when mq = 0, the minimum energy configuration is a straight
brane ending on the cutoff surface. This means that c(0, rm) = 0 which is translated, in
boundary terms, as the absence of spontaneous breaking of the chiral symmetry. This is
in contrast to other holographic QCD models [8, 56, 79], where we see that, at mq = 0,
the minimum energy, stable branes acquire a nontrivial profile leading to a condensate. It
is interesting to note that in all the cases with symmetry breaking, we have a nontrivial
dilaton profile as well suggesting that conformal symmetry breaking alone does not trigger
chiral symmetry breaking in the massless limit.
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Figure 5. The black dotted line is a visual representation of the energy of the straight brane (it
should be a point at ρm = 0) while each colored line represents all brane configurations ending on
the rm surface. Different colors are shown for different quark masses (with yellow being the smallest
and red being the largest).

For a given mq < rm, as shown in figure 1, we have a family of solutions ending on the
cutoff surface (including a straight brane y = mq). In figure 5, we plot the DBI energies
of the cutoff branes in AdS for various quark masses shown by the colored curves. The
horizontal axis is the IR-cutoff which varies between 0 < ρm < rm. From the expression
for the action (4.13), it is obvious that any curvature in the shape of the brane caused by
the condensate c3 increases the free energy. However, somewhat surprisingly, we find that
the lowest energy configuration in AdS is a curved brane that ends on the cutoff surface
at an angle. This is because a curved brane has a smaller integration range along the ρ
coordinate. Therefore, for low values of mq/rm, we have a minimum energy configuration
(see figure 5) representing a brane that ends on the cutoff surface. However, for large values
of mq (at fixed rm), we see that there is no minimum. Thus, there is a value m1

q when the
minimum disappears (the magenta curve, say).

If mq > rm, apart from branes that end on the cutoff surface, there is also a straight
brane ending at ρ = 0 whose energy is visually represented as the black dotted line in the
figure. In this case, we should compare the energy of the D-branes at the minima with the
straight brane to determine the nature of the ground state.

From the figure, we can make the following observations.

• As we increase mq, the value of the minimum energy becomes equal to the energy of
the straight brane. The inset zooms in on the comparison, clearly showing that at the
value of mq corresponding to the blue curve, the energy of the curved brane equals
that of the straight brane. For larger masses than this critical value, which occurs at
m∗q/rm = 1.12644, the straight brane is the lower energy configuration. Thus, as a
function of the quark mass, the ground state undergoes a qualitative change — while
the energy itself changes smoothly.
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• The order parameter for this transition can be taken to be the condensate c3 that
appears as the normalizable mode of y. For the straight branes, c = 0, while the
curved branes that end on the cutoff surface all have non zero values for c.

• For large values of mq > m1
q , the minimum in free energy disappears. However, m1

q

is always greater than m∗q . This is also clearly visible from the inset — which shows
a clear minimum which will persist for larger values of mq.

Thus, beyond the critical value m∗q , the minimum energy configuration changes abruptly
from a curved brane ending on the cutoff to a straight brane. However, we note that even
though the valuem1

q occurs well above this transition value m∗q , the presence of a dynamical
scale like m1

q could be relevant in the phase diagram of other holographic models for QCD.
It may be appropriate to point out here that if we were to impose the cutoff on the

world volume ρ coordinate, then for a given quark mass, in AdS space, the straight branes
are always the lowest free energy configurations.

4.2.2 Nonzero temperatures

In order to identify the phases at nonzero temperature, we use numerical techniques. As
discussed in section 3, we have various possible brane configurations in the thermal AdS
as well as in the black hole geometry. Therefore, to find the lowest free energy configu-
ration among all the possibilities, we first determine the lowest free energy brane in each
background. We then compare the two least energy configurations for various values of
the temperature. These phase transitions depend on quark mass as well as the parameters
b, rm/rg and will be studied in detail in what follows. We first analyze the phase structure
for a fixed value of the IR-cutoff of the D7-brane rm =

√
5 and determine the bulk IR-cutoff

rg according to the ratio rm
rg
.

The story of branes in the AdS background continues to nonzero temperatures as well.
This is because the only effect of temperature on the free energy of these solutions is an
overall factor that arises from β′. Thus, as shown in figure 6(a), for low values of mq, the
curved branes (labeled Th AdS(C)) have lower free energy compared to the hairpin branes
(labeled Th AdS(B)).

However, at a larger temperature, we have other configurations with D7-branes em-
bedded in the black hole background. In the black hole background, the total action is

SEBH = a

[
−r4

m + b

∫
ρ̃m

dρ̃ρ̃3
(

1− r8
0

16ξ8

)√
1 + ỹ′2 − br

4
0
8

]
(4.15)

where we have to drop UV divergent terms.
For low quark masses, the minimum free energy occurs for a positive condensate and

for ym < mq, see figure 6(b). The hairpin branes BH(B) have higher energy in this
case as well. For large quark masses mq = 2.7, as shown in the figure 7(a), the straight
branes are the lowest free energy configurations in both thermal AdS and in the black hole
geometry, figure 7(b), where the labels B,S,C refer to the hairpin, straight, and cutoff
branes, respectively.
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Figure 6. Energies of various branes: b = 0.5,mq = 1.7.
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Figure 7. Energies of various branes: b = 0.5,mq = 2.7.

The zero quark mass study suggests that we should study the system for at least one
value of b in the range b > 4

(
1− 2 r4

g

r4
m

)
and one in the range b < 4

(
1− 2 r4

g

r4
m

)
. Therefore,

in figure 8, we plot the difference in free energy, now including the bulk background contri-
bution as well, between the minimum energy black hole embedding and the corresponding
minimum free energy thermal AdS embedding. The two panels show the effect of vary-
ing the parameter b which multiplies the DBI term in the free energy. The first panel in
figure 8(a) shows that the AdS embedding describes the phase in the range r0 < rg. But
once r0 > rg, there is a critical temperature Tcg after which the difference turns negative,
showing that the cutoff branes in the black hole background have lower free energy. There-
fore, as pointed out in section 4.1, the gluons deconfine even though quarks are bound in
mesons. The mesons ‘melt’ freeing the quarks at the higher temperature Tcq as found in
zero mass case. This latter transition does not appear in the figure.

In the second panel figure 8(b), the difference in the on-shell action increases until
r0 = rg, indicating that the AdS embedding has lower free energy. As soon as r0 > rg,
the difference starts to decrease and eventually becomes negative in the region r0 > rm,
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Figure 8. Phase transition.

stating that the black hole embedding with a horizon brane is preferred over the thermal
AdS. This suggests that the deconfinement transition for gluons is simultaneous with the
mesons ‘melting’ temperature Tc. Note that the presence of the kink in the blue curve
indicates a transition within the black hole geometry between curved branes ending on the
cutoff and branes ending on the horizon, but this has no effect on the phase diagram which
is determined by the lowest free configuration alone.

4.3 Phase diagrams

The considerations of the previous section assemble into the phase diagram shown in fig-
ure 9. For small values of mq well below the horizontal blue dotted line, as the temperature
is increased, we see that a transition occurs (red curve) from curved branes in the AdS
background to a curved brane with a horizon on its world volume. For large values of mq

though, full deconfinement occurs in two stages. The gluons first deconfine, represented
by the changed background, but the quarks remain bound in mesons as indicated by the
straightish branes in the black hole geometry. This transition is indicated by the green
line in the phase diagram. At much higher temperatures, the brane ends on the horizon
of the black hole which means that the brane modes will now become quasinormal with
a temperature dependent imaginary part, as indicated by the magenta line. However, as
shown in the inset, for values of mq just below the blue line, we have a new possibility
where the curved branes in AdS give way to straight branes in the black hole background
(brown curve).

This produces two triple points (vertices in the figure). The change in the ground state
from curved branes at low mq to straight branes at large mq is independent of temperature
and the value of b as it involves the comparison of two branes in the same background.
Likewise, the magenta line is associated with the comparison of the branes in the black
hole background and therefore is neither affected by b nor by the ratio rm

rg
. As we vary

b, the phase diagram is qualitatively unchanged, but for the changes in slopes, as shown
in the various panels in figure 9. We point out that there is no phase transition in the
rg < r0 < rm region as the ratio is rm

rg
< 2 1

4 .
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Figure 9. Phase Diagram for rm

rg
= 1.0468.

For an intermediate value of the ratio ( rm
rg

= 1.288), and for smaller b, we see new
possibilities represented by dotted lines in the first three panels of figure 10 in agreement
with the analysis presented in section 4.1 for zero quark mass. Firstly, for low quark
masses, we have new transitions in the rg < r0 < rm region. The red dotted line represents
a transition between the branes ending on the cutoff surface in the AdS geometry and
the branes ending on the cutoff surface in the black hole geometry (with the horizon
behind the cutoff). Increasing the temperature further then leads to another first order
transition, shown as the vertical dotted dashed red line (present only in the first two panels
of figure 10). Once the horizon r0 becomes greater than or equal to the brane IR-cutoff
rm, then a horizon can appear in the world volume of the D7-brane as well. The brown
dotted line joining the first pair of vertices is a coexistence curve between branes ending on
the cutoff surface in AdS and straightish branes in the black hole background. The dotted
magenta line joining the second and third vertices represents a transition between curved
branes ending on the cutoff and straightish branes — both in the black hole geometry. As
b increases, we see that the red lines draw closer and eventually merge partially, (third
panel of figure 10) leading to the appearance of a new vertex (triple point). Increasing b
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Figure 10. Intermediate value rm

rg
= 1.288.

further removes the region in the middle range of temperature due to the coalescing of the
two triple points.

We observe that the positions of the green line shift towards lower temperatures as we
increase rm

rg
. The locations of the vertices change with variations in both b and rm

rg
.

Increasing the ratio ( rm
rg

= 1.809) further leads to a qualitatively similar phase diagram
as shown in figure 11. For b = 0.5 and b = 1, we see that there are the same first order
phase transitions in the region rg < r0 < rm as they were in the intermediate value of the
ratio. However, the temperature and masses at the phase transition have changed.

It can be checked that the phase diagrams are invariant when we rescale rg, rm, and
mq by a common factor.

5 Counterterms and order parameters

In the preceding sections, we obtained the phase diagram by considering the difference
in the free energies of various classical solutions of the gravity equations. In considering
differences, the divergent terms were canceled, and this was adequate for the purpose of
finding minimum free energy configurations.
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Figure 11. Large Ratio rm

rg
= 1.809.

The procedure of holographic renormalization gives a systematic method to remove
divergences by adding specific counterterms to the gravitational action. The counterterms
are constructed using various tensors made out of the bulk fields and have to be local in
the bulk gravitational theory. This results in finite values for the free energy and other
thermodynamic quantities (for a detailed introduction to the procedure of holographic
renormalization, see [60]).

If we view the holographic renormalization procedure merely as a renormalization
scheme in the boundary theory, then we expect that the phase diagram is not modified.
However, we can then expect to obtain sensible thermodynamic quantities and equations of
state from the finite free energy so obtained. Further, the phase diagrams of the previous
section can be restated in field theory terms provided we identify suitable order parameters.
One obvious order parameter is the entropy. For a second order parameter, we will use the
normalizable mode of the y field which is the condensate.

The total bulk action including the various counterterms in a full holographic treatment
takes the form

SEren = SEIIB + SEDBI + SEGH + SEct1 + SEct2 + SEct3 (5.1)
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where the individual terms are described briefly below.

SEIIB = − 1
2κ2

10

∫
d10x

√
|g|
(
R− 1

2.5! |F
E
5 |2

)
(5.2)

SEDBI = Nfµ7

∫
d8σ

√
det(P [g]) (5.3)

SEGH = − 1
κ2

10

∫
d9x
√
γK (5.4)

SEct1 = − 1
κ2

10

∫
d9x

√
γ

L
(1− p) (5.5)

SEct2 = −Nfµ7

∫
d7σ

√
γ2L

4 (5.6)

SEct3 = Nfµ7

∫
d7σ

√
γ2y

2

2r2 (5.7)

The action has many terms which require some discussion, especially in this new context
of cutoff geometries. For details pertaining to the D-brane counterterms, see [61].

• The Gibbons-Hawking term SGH is needed for the well-definedness of the variation
principle because, at the UV-cutoff r = Λ, we should not restrict derivatives of the
bulk metric.
This term is evaluated on the surface r = Λ. γ is the induced metric on the surface,
K is the trace of extrinsic curvature. The relative sign between SIIB and SGH is
fixed using the direction of normal at UV boundary.

• Both SIIB and SGH are separately divergent when evaluated on solutions. Sct1 is a
counterterm which cancels the above divergences as we take the limit Λ→∞, p = 4
is the AdS5 boundary dimension.

• The D-brane action SDBI also produces divergences near UV boundary which are
canceled by Sct2 and Sct3. In these terms, γ2 is the brane metric on the cutoff
surface. We can evaluate these terms either in terms of the ρ coordinates or in terms
of the r coordinates. They remove, entirely, the divergent term in the DBI action.
In this case, while the AdS action turns out to be independent of temperature, the
black hole action includes a finite piece coming from the counterterms.

• There is the possibility of including a finite counterterm Sct4 that is required to ensure
supersymmetry at zero temperature in AdS space. In our case, we are using a cutoff
geometry and therefore the vanishing ground state energy is not a requirement.

Sct4 = −α y(Λ)4 (5.8)

However, even if we include this term, it will not affect the phase diagram since it
cancels when we compute differences at fixed quark mass mq = y(Λ).

Note that the counterterms do not depend on the details of the solutions in the interior of
AdS, only the boundary values matter. The holographic renormalization scheme will differ

– 23 –



J
H
E
P
0
2
(
2
0
2
3
)
1
6
8

from a minimal subtraction scheme by finite parts. Since there are two boundaries in the
cut-off geometry, the IR cut-off can also contribute boundary terms with a sign opposite to
the boundary term at UV. However, we propose that the IR-cutoff should not be treated as
a boundary. Experimentally, we find that including the boundary contributions from the
IR-cutoff removes even the high temperature phase transition of [38]. Thus, we propose that
the IR-cutoff should not be regarded as a boundary. Rather, this surface should be joined
smoothly to another geometry to produce a complete spacetime. The IR-cutoff can be
visualized as a surface which hides strong curvature/coupling effects. For our purposes, we
imagine that the effects of this interior region are so as to determine the IR boundary values
of the bulk fields in terms of physical quantities such as masses of the mesons/glueballs.

Before we discuss the situation, including D-branes, it is of some interest to ask what
happens to the phase transition of [38] in the holographic renormalization scheme. The
various terms in the full action evaluate to be:

√
−g = L2r3ω5 R = 0 |FE5 |2

2.5! = 8
L2 (5.9)

√
γ = r4L

√
fω5 K = 1

2L
√
f

(8f + rf ′) (5.10)

As a result, we find that the free energy of the AdS bulk is F = −ar4
g while the black hole

free energy evaluates to F = −a(r4
g −

r4
0
2 ) when rg > r0 and F = −a r

4
0
2 for rg < r0. The

second term in the latter case arises from the temperature dependence in the counterterms.
Note that, in this scheme, the subleading terms in β′ which are important in the hardwall
model do not change anything since the total action is finite. Nevertheless, it is easy to see
that the phase transition observed in [38] occurs at the same temperature r0 = rg2

1
4 .

In the upcoming sections, using

√
−det(P [g]) = ω3ρ3

√
1 + y′2 ; √

γ2 = rω3ρ3

L
(5.11)√

−det(P [g]) = ω3ρ̃3
(

1− r8
0

16ξ8

)√
1 + ỹ′2 ; √

γ2 = ω3ρ̃3ξ

L

(
1− r8

0
16ξ8

)
(5.12)

we obtain a finite contribution to the free energy from the D-brane in the AdS and black
hole geometry, respectively. It is to be noted that the √γ2 terms are evaluated on the
cutoff surface r = Λ.

5.1 Zero quark mass case

Having discussed the various parts of our action (5.1), we first evaluate the free energies
for the simple case, y = 0. In this case, all quantities can be determined analytically.
However, it is necessary to carefully consider the subleading terms that come from the
relation between Λ and ρ̃UV (2.13). The UV-finite on-shell action can then be directly
interpreted as the Helmholtz free energy S = βF by dropping the integral over the time
circle.
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Thermal AdS: with p = 4 since rm = ρm for y = 0, we get our free energy as:

FAdS = −a
[
r4
g + br4

m

4

]
(5.13)

is actually independent of temperature. Thus, the entropy vanishes consistent with the
absence of any horizons which could have been the repositories of said entropy.

Black hole: in the black hole background, for rg < r0 < rm, the bulk terminates at r0
and the brane cuts off at rm. We study three cases as mentioned in section 4.1. These
three cases are in the same order as in that section and we will verify that we get the same
phases by using the renormalized free energy.

For r0 < rg < rm, the bulk and brane cutoff at rg and rm, respectively. The free
energy is:

FBH1 = a

[
r4

0
2 − r

4
g −

b

4

(
ρ̃4
m + r8

0
16ρ̃4

m

)]
. (5.14)

Here the IR-cutoff evaluates to ρ̃m =
√

r2
m+
√
r4

m−r4
0

2 for y = 0.

FBH1 = a

[
r4

0
2 − r

4
g −

b

4

(
r4
m −

r4
0
2

)]
. (5.15)

The difference (5.15)–(5.13),

FBH1 − FAdS = a
r4

0
2

[
1 + b

4

]
(5.16)

is always positive and we see that there is no phase transition. In this region, the Thermal
AdS embedding has a lower free energy.

For rg < r0 < rm, the bulk and the brane have cutoff at the black horizon r0 and rm,
respectively. Thus, the free energy for branes in the black hole background evaluates to:

FBH2 = −a
[
r4

0
2 + b

4

(
r4
m −

r4
0
2

)]
(5.17)

Taking the difference (5.17)–(5.13),

FBH2 − FAdS = a

[
r4
g + r4

0

(
b

8 −
1
2

)]
(5.18)

In this region, there is the phase transition as described in section 4.1. The conditions for
the phase transition to happen are also the same. When conditions are satisfied and phase
transitions occur, we get the same critical temperature Tcg, at which the gluons deconfine
while the quarks remain bound.

For rg < rm < r0, the bulk and the brane has a cutoff at the black horizon. Thus, the
action evaluates to:

FBH3 = −ar
4
0
2

[
1 + b

4

]
(5.19)
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Taking the difference (5.19)–(5.13),

FBH3 − FAdS = a

[
r4
g + b

4r
4
m −

r4
0
2

(
1 + b

4

)]
(5.20)

For b < 4(1−2 r4
g

r4
m

), this difference is always negative. The black hole has a lower free energy
density. Thus, as soon as r0 ≥ rm, the quarks are freed. The temperature is denoted as
Tcq. Somewhat remarkably, we see that the differences are identical to the analysis in
section 4.1 provided we omit the overall β factor.

For zero quark mass, we conclude that if the conditions given in section 4.1 are satisfied
we see the phase transition in the region rg < r0 < rm. The critical temperature is Tcg
for the deconfinement of the gluon and Tcq for quark deconfinement (Tcg < Tcq). If the
conditions are not satisfied, we see that there is no phase transition in the rg < r0 < rm
region. However, in the rg < rm < r0 region, the quarks and gluons deconfine together,
and the phase transition temperature is Tc.

5.2 Finite quark mass

For finite quark masses, we have analytical solutions for the free energy in the case of AdS
embeddings of the D-brane.

F = −a
(
r4
g − b

(
−ρ

4
m

4 2F1(−2
3 ,

1
2; 1

3; c
6

ρ6
m

)
))

(5.21)

In this expression, c is determined in terms of the quark mass and the cutoff rm by the con-
dition y2(ρm)+ρ2

m = r2
m. It is clear that the free energy is independent of the temperature

r0. Special cases are obtained when the condensate c3 vanishes.
For black hole embeddings with rg < r0, the total free energy is dominated by a r4

0
term coming from the bulk

F = −r
4
0
2 − b f(r0,mq, rm) (5.22)

where the first term gives the contribution of the bulk gravity (or gluons). We focus our
attention on the second term that arises from the DBI part of the action. As we shall see,
it allows us to make qualitative distinctions between the phases in terms of quark degrees
of freedom.

In the case where the branes end on the cutoff surface within the black hole background
(i.e. r0 > rg), we obtain a family of solutions with different starting slopes on the cutoff
surface. Therefore, following the thermal AdS computations, the condensate is dynamically
determined by identifying the minimum free energy solution. For such branes, based on
the observations of section 3, it is natural to consider the ratios mq

rm
and r0

rm
. This is because

the latter is always less than unity for these branes, and further we have an upper limit for
mq

rm
for such branes to exist. Thus, we may write a series for the free energy

F = F0

(
b,
mq

rm

)
r4
m + F2

(
b,
mq

rm

)
r2

0 r
2
m + F4

(
b,
mq

rm

)
r4

0 + F6
r6

0
r2
m

+ . . . (5.23)
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Figure 12. Free Energy of cutoff branes in black hole background.
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Figure 13. The free energy of D7-branes ending on the horizon.

We have not studied these fitting functions in detail in this work. However, figure 12
shows the numerically determined free energies (dots) shown with the best fit polynomials
determined by the above logic. For these cutoff branes, the DBI contribution is seen to
be increasing in temperature. However, the total free energy decreases with increasing
temperature since the bulk contribution contributes negatively.

Since the branes that end on the horizon are not straight, we have a nonzero condensate,
but it is not an independent parameter being determined by the condition ρ̃y′ = y at the
horizon. Consequently, the only independent dimensionful parameters are mq and r0.
Hence, the free energy can be fitted to a high temperature series of the form

F = F (b,mq/r0)r4
0 = F4(b)r4

0 + F2(b)r2
0m

2
q + F0(b)m4

q + F−2(b)
m6
q

r2
0
. . . (5.24)

Odd powers have been omitted by noting that the action has a discrete symmetry under
y → −y. Using the numerically determined free energy, we find that retaining up to quartic
order produces an excellent fit, with the coefficients F0 ≈ b

8(5
4m

4
q + r2

mm
2
q), F2 = b

8 and
F4 = −1

2(1 + b
4). In contrast to the cutoff branes, the free energy of these decrease with
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Figure 14. Free Energy of straightish branes in black hole background.

increasing temperature. We draw attention to the observation that the quadratic term in
temperature is also proportional to m2

q .
Finally, we have the straightish branes where the S3 in the world volume shrinks to

zero size. In this case, we have mq, r0 as the independent dimensionful parameters. Due
to the gravitational potential, these branes are also not straight and therefore we have a
condensate. However, the condensate is determined in terms of mq, r0 by the zero slope
condition at ρ̃ = 0. As can be seen from figure 14 the free energy of the DBI part depends
only mildly on the temperature. For large enough quark masses the free energy contribution
from the DBI is similar to that of the straight branes in the AdS-background.

5.3 Entropy

In this section, we study the entropy of the various phases. There are two questions of
interest. Firstly, we are interested in using entropy as an order parameter in the phase
diagrams. Secondly, in holographic descriptions entropy is associated with the appearance
of horizons. In our case, we have the possibility of the horizon appearing on the world
volume of D-branes as well as in the bulk geometry. Therefore, a second point of interest
is whether world volume horizons of branes contribute to the entropy.

We start by noting that once we include counterterms, the free energies in the AdS
background are finite and independent of temperature. Therefore, the entropy which will
be determined as S = −∂F

∂T vanishes for these configurations.
In the black hole geometry, at zero quark mass, we can have branes ending on the cutoff

surface (when r0 < rm). For these branes, the entropy density is obtained by differentiating
the free energy of the preceding section

s2 = N2
c π

2T 3

2

(
1− λNf

16π2Nc

)
; Tcg < T < Tcq (5.25)

Since λNf

16π2Nc
< 1 entropy density is always positive and entropy is an increasing function

of temperature. However, surprisingly, we have a negative brane contribution to the en-
tropy even though the branes do not have a horizon in their world volume. This negative

– 28 –



J
H
E
P
0
2
(
2
0
2
3
)
1
6
8

1.8 1.9 2.0 2.1 2.2

-5

-4

-3

-2

-1

r0

s

Entropy Density

Figure 15. Entropy of cutoff branes in black hole geometry.
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Figure 16. Entropy of branes ending on the horizon.

contribution continues to non-zero quark masses as shown in figure 15. Perhaps in this sit-
uation, the D7-brane behaves like a gas of mesons instead of a gas of fermions. We hasten
to point out that even though the DBI contribution to the total entropy is negative, the
total entropy (including the bulk) does turn out to be positive (this is easily seen from the
total free energy curve (12)). This suppression of the quarks occurs in the phase between
the dotted red line and the quark deconfinement in the phase diagrams of the previous
section. These phases occur only for sufficiently small b which prevents the total entropy
from turning negative.

From our free energy computation, we know that at high temperature, branes that
end on the horizon are preferred. For these branes, the entropy density is

s3 = N2
c π

2T 3

2

(
1 + λNf

16π2Nc

)
; Tc < T (5.26)

In a similar manner, we can find the entropy density for the finite quark masses. Figure 16
shows entropy density as a function of temperature for various quark masses. These curves
are presented in increasing order of quark mass, with yellow being the lowest. From the
fitting form of the free energy given in the previous section, the entropy density is evaluated
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to be
sBH = N2

c π
2T 3

2

(
1 + Nf

4Nc

(
λ

4π2 −
M2
q

T 2

))
(5.27)

which includes both bulk and brane contributions. Different from the zero mass case is the
presence of the linear term in temperature which will translate into a linear term in specific
heat. Note that this term is also proportional to M2

q and that the entire free energy is
independent of rm, which we interpret to mean the absence of any meson contribution.

For the straightish branes, the contribution coming from the DBI to the entropy is
negligible, as is clear from figure 14.

In summary, the AdS phases are characterized by zero entropy. In the black hole
background, we always have net positive entropy. However, the straightish branes for large
quark masses hardly contribute to the entropy.

5.4 Condensate

From the viewpoint of the open strings, the field y is on par with the gauge fields Aµ that
live on the brane world volume. For instance, under T-duality, these two transmute into
each other. Thus, we can identify the normalizable and non-normalizable modes of the
y-field by comparing with those of the gauge field. For a gauge field, near the boundary
ρ = Λ of AdS, a Frobenius series analysis gives

A0(ρ, x) = µ(x) + . . .+ q(x)ρ2−d + . . . (5.28)

leading to the interpretation of µ as the chemical potential and q as the associated ex-
pectation value of the charge density operator. The Frobenius series for y (3.5), takes the
form

y(ρ, x) = mq(x) + . . .− c3

2ρ2 (5.29)

and so by analogy, we see that the constant value of y — the quark mass mq is the non-
normalizable mode and the constant c3 multiplying ρ−2 is the vacuum expectation value of
a dimension 3-operator in the field theory. This can be regarded as the expectation value of
a fermion bilinear [56] in 3+1-dimensions. However, this should not be regarded as being
related to the chiral condensate because the D7-branes do not introduce chiral fermions.

For AdS embeddings, identifying the lowest free energy branes fixes the slope y′ on the
cutoff surface rm > r0. However, this lowest free energy configuration is the same for any
temperature since upon adding counterterms, free energy is independent of temperature.
Thus, for a given value of the quark mass mq, the condensate is constant in the AdS phases.

In figure 17 shown below, we plot the condensate as a function of temperature for
cutoff branes in the black hole background. We find that the condensate is nearly constant
at low quark masses (left panel) compared to the larger values. This happens because,
as noted earlier, the minimum free energy brane configurations end on the cutoff surface
r = rm at nearly the same angular position for various r0. However, for the branes ending
on the black hole horizon, the condensate always increases with temperature, see figure 18.
By fitting, we can identify a logarithmic increase with temperature for low quark masses
although this is not as clear for larger masses (right panel).
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Figure 17. Condensate for cutoff branes in the Black hole background.
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Figure 18. Condensate of horizon ending branes.
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Figure 19. Condensate vs temperature for straightish branes in black hole geometry rm

rg
= 1.288.

Finally, we plot the condensate as a function of temperature for the straightish branes
in the black hole geometry for different values of mq. The least value (mq = 2.7) is shown
in yellow, while the highest value (mq = 3.2) is shown in red. The log-log plot shown in
figure 19 clearly shows that the condensate is a power law as a function of the temperature
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Figure 20. Condensate as a function of Mass.

with an approximate exponent c ≈ r2.6
0 . This behavior of the condensate captures the

qualitative difference between the straightish branes in the black hole geometry and the
curved branes.

On the other hand, if we plot the behavior of the condensate at fixed temperature as
we vary the quark mass [56], we get the following curves. The first two panels of figure 20
suggest that the dependence of the condensate on the quark mass seems to be qualitatively
the same in both AdS and black hole geometry. The condensate vanishes at very small
masses as discussed earlier because we minimize the energy as a function of the condensate.

The straightish branes in the black hole geometry, on the other hand, show a qual-
itatively different behavior with the quark mass, decreasing to zero with large mass as
depicted in the last panel. This is understandable from the bulk since for large mq, the
brane is far from the black hole’s gravity and hence is essentially straight. This behavior
is similar to that obtained in the D4-D6 case [8].

It will be interesting to correlate the behavior of the condensate with that of entropy,
but we will not discuss this further in this paper.
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Figure 21. Phase diagram.

5.5 Phase diagram revisited

In this section, we will see that all the phases of the preceding section are fully described
by these two order parameters. We have described the different phases (or solutions) in
the language of the bulk gravity in section 4.3. The various phases that have appeared can
be summarized by the following list.

• Phase I- Zero entropy, finite condensate describe curved branes in AdS background
ending on a cutoff surface.

• Phase II- Zero entropy, zero condensate — these correspond to straight branes in the
AdS background.

• Phase III- Finite entropy, finite condensate — brane ending on the IR-cutoff rm in a
black hole background.

• Phase IV- Finite entropy, finite logarithmic condensate — this situation corresponds
to branes ending on the black hole horizon.

• Phase V- Finite entropy, power law condensate is applicable to straightish branes in
the black hole background.

Thus, considering the following figure, for instance, we can describe the phases entirely
in boundary terms using the characterization discussed above. In the phase diagram,
as we increase the mass, the nature of ground state changes across the horizontal blue
dotted line; the condensate changes from non-zero to zero while the entropy remains zero.
Similarly, in crossing the magenta line (at high temperature) we again transit from a
logarithmic condensate to a small (and vanishing) condensate at large quark masses as
seen in figure 20. These transitions involve comparing two different branes in the same
gravitational background, and hence the transitions are independent of b ∼ Nf

Nc
λ.

As we increase the temperature, for small fixed mq, the entropy changes from zero to
non-zero in crossing the dotted red glue deconfinement line. The condensate remains finite
and hardly changes as shown in figure 17 because the entropy of the cutoff branes does not
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Figure 22. Phase diagram for varying the ratio rm

rg
and fixed b.

vary significantly with temperature. As we increase the temperature further, the entropy
jumps again, and the quarks become unbound. This transition is shown by the red dotted
dashed line in the phase diagram. In the high temperature phase, the condensate increases
with temperature, see figure 18.

From the various phase diagrams shown in section 4.3, based on the discussions in
the preceding section, it is clear that as we increase the temperature, the entropy always
increases for any fixed value of the quark mass. This is in spite of the observation that in
the Phase III, the quarks lead to a decrease in entropy!

We conclude this section with a brief summary of the effect of varying the ratio rm
rg

and
the parameter b. Figure 22 shows the effect of varying the dimensionless ratio rm

rg
keeping

b = 1 and rm =
√

5. As we increase the ratio, the temperature required to deconfine the
gluons and/or quarks decreases. If we interpret the radial direction as an energy scale of the
boundary theory, increasing rm

rg
amounts to keeping a smaller fraction of the quark degrees

of freedom. Plausibly, this is the reason for the decrease in the transition temperature.
Finally, we discuss the role played by the parameter b which, in field theory terms,

is given by (3.4). Thus, increasing b is equivalent to increasing the coupling between the
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gluons and the quarks. Thus, it is unsurprising that the glue deconfinement temperature
is unaffected by b since our study can be viewed as being in the quenched quark approx-
imation. At low values of b, when the quarks and gluons deconfine separately, the quark
deconfinement occurs when r0 = rm. At larger values of b, both deconfine together and
this transition temperature depends on b.

6 Physical units

In this section, we describe one method to translate the dimensionless parameters of the
preceding into physical units. The bulk cutoff rg can be related to the glueball mass
spectrum if we study the fluctuations of the metric, dilaton or the other bulk supergravity
fields. The Gauge/Gravity duality relates the two point function of bulk fields to the
two point functions of boundary operators. The graviton field is related to a spin two
color-neutral operator in the boundary theory and by the spectral theorem, the two point
function of such an operator will have a pole at the mass of the lightest particle state that
can be created by such an operator. This was studied by [54] in a recent paper where the
author attempted to fit the known glueball spectrum to hardwall AdS computations in five
dimensions (a recent review comparing holographic results to lattice can be found in [62]).
Using linearized Einstein’s equations in thermal AdS, the author fit the computed glueball
masses to lattice data which fixed the IR-cutoff zg in physical units. For Dirichlet and
Neumann boundary conditions, the author determined a best fit value of 1

zg
= 250MeV

and 1
zg

= 290MeV, respectively as best fit to the glueball spectrum. However, using an
average of the lowest glueball masses gives 1

zg
∼ 330MeV, 1

zg
∼ 435MeV for Dirichlet and

Neumann boundary conditions, respectively. We can use the same numerical values in our
10-D hardwall model by simply considering only s-wave graviton fluctuations on the S5

part of the spacetime.
The cutoff ρm on the brane world volume coordinate can be determined by computing

the mass of mesons similar to the work of [25]. The key difference in our case is the
presence of the background field y(ρ). We will outline this calculation below, since it
involves features that are unique to the 10-D embedding of the D7-branes.

6.1 Vector mesons

We start with the DBI action for the D7-brane in AdS5 × S5 background.

S = −Nfµ7

∫
d8σ

√
−det(P [g]µν + 2πα′Fµν). (6.1)

We will study the fluctuations of the Vector field around the zero Vector field background
and determine the location of the poles in the two point function which gives us the mass
of the particles in the dual field theory. Since the background vector field Aν is zero, we
denote the fluctuations δAν as aν and the field strength as f . The equation of motion is
easily obtained as

∂µ

(√
−detP [g]P [g]µσP [g]νλfσλ

)
= 0. (6.2)
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In this equation, P [gµν ] depends on the profile of the D-brane y(ρ). The vector fields aµ
are functions of all the world volume coordinates. Since we are interested in the lowest
vector meson modes, we will assume that aµ are constant on the S3. Because we are
interested in the vector mesons, we will consider only fluctuations in aµ, µ = 0, 1, 2, 3 and
use Lorentz gauge ∂µaµ = 0 which has the most general Lorentz invariant solution of the
form aµ = (qµqν − q2gµν)aν(r).

We can then simplify (6.2) to get,

ρ3
√

1 + y′2

(
L2

ρ2 + y2

)2

q2aν(q, ρ)− ∂ρ
(

ρ3√
1 + y′2

∂ρaν(q, ρ)
)

= 0, (6.3)

where, aν(q, ρ) is the Fourier Transformation of aν(x, ρ). In comparison with [25] say, the
difference is the presence of the profile y of the D7-brane which forms an effective open-
string metric for the modes on the world volume. The above equation, for any component
a(ρ) of vector field aν(ρ), defines a Sturm-Liouville problem for the eigenvalues q2 = −m2

ρ

(mρ is the ρ-meson mass), with boundary conditions and normalization given by

∂ρa(ρm) = 0 a(ρUV ) = 0 2
∫ Λ̃

ρ̃m

dρ

√
−detP [g]

(ρ2 + y2)2 a(ρ)2 = 1. (6.4)

It should be noted that both the differential operator and the normalization conditions
depend on the shape of the D-brane via both y(ρ) as well as y′(ρ). Determining the
eigenvalues allows us to fix rm in terms of the ρ−meson mass in the following manner.
The above equation explicitly involves four parameters mq, c, rm and ρm and two other
parameters λ, L which are not manifest.

mq is fixed in terms of the physical quark mass by using Mq = mq

√
λ

2πL2 provided we
know λ and L. The value of the AdS radius L is fixed by the glueball mass via L = rgzg.
In [36], λ was estimated to be 10.74 using the form of the free energy at zero temperature
and comparing with a gas of quarks. We use this value in what follows, but also point out
options.

In our case, the two flavor branes have been assumed to be coincident. Therefore,
we take the physical quark mass to be the average of the up- and down quark masses
Mq = 3.55 ± 0.5. Using these, the numerical value of mq is determined to be mq = 0.06.
Setting Nc = 3 and Nf = 2, the parameter b = λ

4π2
Nf

Nc
≈ 0.18.

Knowingmq, and for a given value of rm, the parameter c is fixed by the condition r2
m =

y(ρm)2 + ρ2
m at the IR-cutoff. We then vary ρm to find the minimum energy configuration

of D7-brane for the fixed mq. This still does not fix the parameter rm which can now be
varied until the meson spectrum is suitable. In our work, we use the mass of the lowest
rho-meson to fix rm.

The results of these calculations are as follows.
For 1

zg
= 250MeV, the ratio is determined to be rm

rg
= 1.29062 for which the con-

ditions described in section 4.1 are satisfied. In this case, the relevant phase diagram is
approximately the one shown in figure 10(a) because b = 0.18. In this phase diagram, we
need to set mq on the y-axis to be equal to mq = 0.06. Thus, we can say that the gluons
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deconfine first at a temperature Tcg = 95.737MeV followed by the melting of the quarks
at temperature Tcq = 102.704MeV.

However, for 1
zg

= 290 MeV and rm
rg

= 1.11263, the relevant phase diagram changes
significantly to figure 9(a). In this case, the quarks and gluons deconfine together at a
critical temperature Tc = 110.403MeV.

These conclusions are not robust though. Changing λ ≈ 50 will make b ≈ 1 which will
lead us to consider the phase diagrams shown in figure 22. Interestingly, we find that as we
decrease the value of bulk IR-cutoff zg, the dimensionless ratio rm

rg
can even go below unity.

This happens if we use the values 1
zg
∼ 330MeV, 1

zg
∼ 435MeV set by the mean glueball

mass [54]. For the special case of the ratio being unity, we recover the phase transition
temperature Tc ∼ 122MeV found in [38]. The numerical value of λ used in [36] will vary
with the compactification manifold (such as Klebanov-Strassler geometries [33]) which will
give different volume factors. More importantly, varying dilaton which models running
coupling will also play a significant role [48].

In our calculation L was fixed by the glueball spectrum — but we can fix L using
the meson spectrum or any other dimensionful observable. In the AdS case, this does not
change the results because of the scaling symmetry present in the underlying background.

6.2 Pseudoscalar meson and GOR relation

Similarly, we can study the fluctuations of the worldvolume scalar field φ, which is a
pseudoscalar particle from the 4D viewpoint (the parity properties are determined from
the 10D string theory). This scalar is special since it will be the Goldstone boson of the
spontaneously broken U(1)R rotation symmetry which is an axial U(1)A symmetry of the
boundary 4D theory [8]. Solutions with quark masses lead to explicit breaking of this
rotational symmetry, while it is also possible to find solutions with zero quark masses but
nonzero profiles (and hence nonzero condensate) corresponding to spontaneous symmetry
breaking. Because of these reasons, we can expect the masses of these fluctuations to satisfy
a GOR relation. However, we remind the reader that the minimum energy condition fixes
the condensate c3 dynamically for a given mq and prevents symmetry breaking in the
massless limit.

If we do not impose the minimum energy requirement, for a given mq (including
mq = 0), there is a family of solutions with varying condensates c. By keeping c fixed, we
can study the GOR relation for the breaking of U(1)A:

M2
η f

2
η = NfMqσ (6.5)

with σ ∼ c3(3.7).
The action up to quadratic order for the fluctuations δφ is,

S = −µ7Nf

∫
d8σ

√
−detG̃ Gφφ

2 ∂aδφ∂
aδφ (6.6)

The equation of motion we get from action (6.6) is

∂a

(√
−detG̃Gφφ∂aδφ

)
= 0 (6.7)
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We are interested in the lowest mass modes. Therefore, we will not consider the S3 direc-
tions and parametrize the fluctuations as δφ = e−ikxϕ(ρ). We can re-write the equation as

∂ρ

(
ρ3y2√
1 + y′2

∂ρϕ

)
+ ρ3y2L4

r4

√
1 + y′2M2ϕ = 0 (6.8)

where, we have defined the meson mass,

M2 = −k2 (6.9)

This is an eigenvalue equation that will determine the masses of the meson provided we
specify boundary conditions and normalization as

∂ρϕ(ρm) = 0 ϕ(ρUV ) = 0 2
∫ Λ̃

ρ̃m

dρ

√
−detP [g]

(ρ2 + y2)2 ϕ(ρ)2 = 1. (6.10)

Using the numerical values determined in the previous section, for physical quark mass
Mq = 3.55±0.5MeV, the mass of turns out to be 936.93MeV and 948.09MeV for Dirichlet
and Neumann boundary conditions, respectively which compares very well with the experi-
mental mass of η′-meson which is expected to correspond to the fluctuations of worldvolume
field φ [8].

We read off the “meson” decay constant from the normalization of the kinetic term
in the four-dimensional low-energy effective Lagrangian for these fluctuations (which, in
principle, depends on the shape of the brane). We compare (6.6) with

S = −
f2
η

2

∫
d4x∂µδφ∂

µδφ (6.11)

and find the decay constant,

f2
η = µ7NfΩ3

∫
dρ

ρ3y2L4

r4

√
1 + y′2 = NcNfλ

(2π)4L2 I. (6.12)

which depends on the quark mass and condensate via the shape of the brane y.
Using (3.7), (3.6), (6.12), we can rewrite the GOR relation in terms of dimensionless

bulk quantities:
q2I = m̂q ĉ

3 (6.13)

where q2 = M2
ηL

2, X̂L = X for X = {mq, c, y, ρ . . .}, I =
∫
dρ̂ ρ̂3ŷ2

r̂4

√
1 + ŷ′2 is a dimen-

sionless number. We find I for different values of mq and take the mean to fit the data
points.

We numerically solve the eigenvalue problem for fixed c3 to find the meson mass as a
function of quark mass mq. The GOR relation between the meson mass and quark mass
is satisfied, as can be seen from figure 23.
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Figure 23. Left panel is for c = −2, I = 0.061 and right corresponds to c = −1.5, I = 0.011.

7 Reliability estimates

The computations of the preceding section need to be supplemented by an estimate of the
corrections, especially those that are likely to change the predictions substantially. In this
section, we show that such an estimate can be performed for the model studied in this
paper.

The gravity approximation we use is valid in the standard low curvature λ = g2
YMNc �

1 regime. This is the region of interest in the field theory in any case. Higher derivative
corrections are weighted by powers of 1

λ . String loop corrections are suppressed by 1
Nc

which makes our calculations reliable at large Nc.
However, there are other sources of systematic error. Firstly, we work in the probe

approximation which is reasonable only when the energy sourced by the D7-brane is small
compared to the background. We can estimate this by comparing the two sources

|F (5)|2 vs 2κ2
10NfT7

√
det(P[G] + 2πα′F) (7.1)

whose relative contribution to the free energy 5.1 is weighted by the parameter b = Nf

Nc

λ
4π2 .

Therefore the validity of the probe approximation requires b� 1.
Let us consider whether the phase transitions we have identified will be reliable. The

glue deconfinement transition which changes the background occurs, for zero mq, at Tcg =
8

1
4 rg

πL2(4−b)
1
4
≈ 8

1
4 rg

4πL2 (1 + b
16) and survive even if b � 1. On the other hand, the quark

deconfinement transition which occurs because of a change in the shape of the brane, takes

place in a fixed bulk geometry. As we can see from Tcq = (8r4
g+2br4

m)
1
4

πL2(4+b)
1
4
≈ 8

1
4 rg

4πL2 (1 + b
16(−1 +

r4
m
r4

g
), it also survives in the probe approximation. The possibility that there are separate

transitions depends on the ratio r4
m
r4

g
which is independent of the probe approximations and

also of the λ� 1 and Nc � 1 conditions.
At finite quark masses and low temperatures, the quark deconfinement transition will

involve comparing branes in thermal AdS background. Thus, this will not be affected by
the probe approximation. A similar argument applies to the black hole background.

The transition that is likely to be most affected is the transition where the background
changes. In this case, under the probe approximation, the phase transition will be decided
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by the free energy difference in the gravity backgrounds. The effect of the probe branes
can then be estimated as a shift in various quantities, such as the transition temperature
to first order in the parameter b.

Secondly, considering the profile of the D7-brane, we see that the derivative y′ becomes
large near the tip. While the Abelian DBI action remains sensible even for large y′, there
are higher derivative curvature type terms weighted by (α′)2R2. For these to be small, we
get the condition

1
λ

y4
m

r4
m

� 1 (7.2)

which is satisfied for large λ.
There is another sense in which the holographic calculations are likely to remain re-

liable. The different transitions are all characterized by a change in topology. While Tc
and other thermodynamic properties are likely to be corrected, the transitions themselves
will not survive only if some other configurations have lower free energy than the ones
considered.

Finally, this model differs from QCD proper in that there is no running coupling,
no spontaneous chiral symmetry breaking and it includes additional symmetries (SO(4)×
SO(2) R-symmetry), massless adjoint scalars and fermions together with other extra fun-
damental degrees of freedom. Corrections from these are unlikely to benign.

8 Discussion

In this work, we have presented a rich generalization of the hardwall model in ten dimen-
sions, by introducing a full DBI action in the 10D-IIB supergravity action to model the
quark degrees of freedom. Working in ten dimensions allows us the possibilities of changing
the compact part of the 10D-spacetime from S5 to other scenarios [34] which are closer to
QCD. This potentially enables a systematic exploration of universality classes and features
in the phase diagrams. Using the full DBI action has the consequence that the quark de-
grees of freedom see a different effective geometry given by the open-string metric K = P [g]
which depends on the shape of the embedding y. This shape degree of freedom allows us
to describe the phases geometrically and can motivate searches for other natural brane
embeddings including polarized branes as arising from the Dielectric effect [63] which are
likely to be important at finite densities [64]. Finally, our model is significantly different
from all previous work in the introduction of two distinct cutoffs for the DBI and the bulk
gravity parts of the action, the sole exception being the recent work [55]. This is likely
to be a key advantage since complex backreaction and Non-Abelian configurations deep in
the interior of the bulk can be hidden behind the IR-cutoff. Nevertheless, the effects of
this interior geometry can be incorporated by suitable IR boundary conditions which can
be fixed by using experiments as illustrated in this work.

In our work, we have shown to handle the IR-cutoff for the brane degrees of freedom
including several subtleties. It was pointed out that instead of imposing a cutoff rm,
introducing a cutoff on the ρ coordinate leads to an entirely different scenario. Perhaps
the difference arises because under scale transformations (RG in the boundary language)
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the y−fields mix with the ρ-direction. This difference needs to be understood better since
it can inform other such holographic constructions as well.

As discussed, rg leads to a glueball mass ∼ rg

L2 and thus can be related to ΛQCD.
The parameter rm decides the masses of the mesons and is related to the condensate c
by minimizing the energy. In particular, the relation between c and ΛQCD ∼ rg is being
indirectly determined by relating the mass of the meson to experiments. Thus we have a
handle on exploring the relationship between the condensate scale and ΛQCD which can be
explored systematically by considering other models which show chiral symmetry breaking
in the massless limit.

The most striking observation that emerged from the introduction of separate cutoffs
was that the deconfinement of gluons and the ‘melting’ of mesons can be separated and con-
trolled by the inequality 0 < b ≤ 4

(
1− 2 r4

g

r4
m

)
. The low temperature AdS phase is always

characterized by a condensate, but as the temperature increases a first order transition can
lead to either zero or non-zero condensate phases depending on the quark mass. Similar
observations have appeared earlier in the literature [8, 79]. In either case, the background
involves a black hole — which leads to a perimeter law for the Polyakov loop following
standard calculations. Only when the branes intersect the horizon, we can say that the
mesons undergo “melting”. The second distinct quark deconfinement transition leads to
a phase where even though the gluons are deconfined, the quarks are nevertheless bound
in hadrons. This separation of scales could be insightful in understanding the relation
between the axial anomaly and chiral and deconfinement transition in actual QCD [65–67].

A second remarkable feature was the change in the nature of the ground state for
large mq characterized by a vanishing condensate. The ratio mq

rm
of quark mass to pion

mass defines a critical value m1
q above which the transition will necessarily occur. This is

similar to the chiral transition in that at large masses, a condensate vanishes — in fact,
this transition is very similar to that in the Sakai-Sugimoto model once we allow ourselves
to “complete” the brane configurations behind the IR-cutoff.

The shape field y gives a deep insight into the boundary theory order parameters, the
condensate, and the entropy. It allows us to distinguish the quark phases topologically
depending on the vanishing of the thermal circle, the S3 or their nonvanishing. Boundary
conditions on the slope are natural in this geometric view. Finally, the background shape
y also affects the location of the meson poles and spectral density. Another somewhat
surprising observation that can be made is that the phase diagrams presented in section 4.3
bear a remarkable similarity to the phase diagrams obtained in [68, 69] which are those of a
Holographic superconductor by relating the quark mass of our work and chemical potential
in those studies.

By using the procedure of holographic renormalization, we have also been able to
characterize the various phases entirely in boundary terms. This allowed us to observe
qualitative differences in the phases in terms of the variation of entropy and the condensate
with temperature. In fact, careful consideration of the geometry of the solutions leads to
natural expansions of the free energy as a function of r0 and mq. For instance, in the
subsequent work [75], the author presents a particular form for the pressure of QCD —
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which seems to emerge quite naturally from the brane and bulk contributions. Fitting
the temperature dependence could lead to further understanding in terms of dependence
on quark masses and couplings. If we assume the presence of a Fermi surface, we can
identify the presence of fermionic (quark) degrees of freedom via linear terms in specific
heat. We have not undertaken this exercise in detail in this work. In the intermediate
phase where even though the gluons are deconfined, the quarks remain bound in mesons
and effectively lead to a decrease in entropy and thereby the specific heat. The coexistence
curves between various phases depend, in general, on all the parameters in the model.
Our results are likely to persist in IR-complete models since the various D-branes can be
characterized topologically by vanishing cycles.

This study appears to be the first to explore the phase diagrams as they depend on
the parameters b,mq and the ratio rm

rg
, which in the boundary language are related to

the ’t Hooft coupling, the quark mass, and the ratio of the meson mass to the glueball
mass. We have shown that the nature of the ground state changes at large mq marked by
a vanishing condensate. This transition is independent of temperature and independent of
the coupling b albeit, in the probe approximation. For the probe approximation to be valid,
we require the energy in D-brane embeddings to be small (compared to the contribution
from the five-form). Hence, the fact that the phase diagrams change upon changing rm

rg

can be taken to be an illustration that backreaction effects are going to be significant. This
can also suggest ways of improving the bulk models.

As discussed in the preceding section, the results are sensitive to the physical observ-
ables that are used to fix the IR boundary conditions and parameters. In fact, our work
opens the way for a controlled incorporation of multiple features in ten dimensions utilizing
the separate hardwall cutoffs can be used in conjunction with physical boundary conditions
to hide strong curvature and string coupling regions.

Firstly, to model the running of the QCD coupling, we can include the dilaton field [27]
in the background geometry and in the DBI action. In fact, various backgrounds with
varying dilaton such as the various soft wall models and the Witten-Sakai-Sugimoto models
fall into this class. The dilaton profile is also important to modeling confinement and
obtaining good meson/glueball spectra. An effective use of the IR-cutoff rg could aid in
separating various length scales (such as the KK scale from ΛQCD in the WSS models),
strong curvature α′ and strong coupling regions arising deep in the interior of the bulk
geometry. Secondly, multiple flavor branes and chiral symmetry can also be included
together with a judicious use of the second IR-cutoff rm. This also allows us to extend
this investigation to finite chemical potentials. In the context of the QCD phase diagram
at finite densities we may cite [7, 70–72]. Distributions of polarized branes representing
a gas of baryons can be hidden away behind the IR-cutoff in an attempt to avoid the
problems associated to Non-Abelian DBI actions. Simultaneous inclusion of both baryon
and isospin chemical [64] potentials are also quite simple via non-Abelian gauge fields
in the DBI as is the possibility of different current quark masses especially the strange
quark. The further advantage of working in ten dimensions is that there is a large body of
techniques to find solutions to the gravitational system which can take us beyond the probe
approximation. The D7-brane backreaction is controllable to some extent for one (due to
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linear growth of the dilaton in the UV), and the entire setup, at zero temperature, has a
well-defined supersymmetric dual. For instance, [73] presents a fully backreacted D3-D5-D7
geometry presenting, for our purposes, useful metric ansatz for more general explorations.
We note here that the AdS/CFT correspondence tells us that the energy density of the
boundary theory is obtained as the coefficient of a subleading term in the Fefferman-
Graham expansion of the bulk metric. Since the branes are being treated in a probe
approximation, the energy density obtained from the FG-expansion will not agree with
that obtained from thermodynamics −∂F

∂β . Thus, the probe approximation is not entirely
self-consistent and backreaction will contribute significantly [74]. Even if not, backreaction
effects can be estimated and robustness of conclusions can be tested by stability analysis —
because the ten dimensional description should be matched up to a complete string theory.

We can then attempt to fix the various parameters in the above studies in multiple
ways. For instance, as in this work, we can fix the parameters at zero temperature and
then compute other field theory quantities such as susceptibilities and viscosity at finite
density and temperature. Naturally, another possibility is to fix only those observables
(both at zero and nonzero temperatures) which are robust against changes in parameters
and in the actual bulk action used.

We expect that the ideas presented in this paper and explorations suggested above will
lead to insights into the strong coupling physics of gauge theories in general with a better
hold on universal features.
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