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Abstract 

Background  Pregnancy in women with multiple sclerosis (wwMS) is associated with a reduction of long-term dis‑
ability progression. The mechanism that drives this effect is unknown, but converging evidence suggests a role for 
epigenetic mechanisms altering immune and/or central nervous system function. In this study, we aimed to identify 
whole blood and immune cell-specific DNA methylation patterns associated with parity in relapse-onset MS.

Results  We investigated the association between whole blood and immune cell-type-specific genome-wide meth‑
ylation patterns and parity in 192 women with relapse-onset MS, matched for age and disease severity. The median 
time from last pregnancy to blood collection was 16.7 years (range = 1.5–44.4 years). We identified 2965 differentially 
methylated positions in whole blood, 68.5% of which were hypermethylated in parous women; together with two 
differentially methylated regions on Chromosomes 17 and 19 which mapped to TMC8 and ZNF577, respectively. Our 
findings validated 22 DMPs and 366 differentially methylated genes from existing literature on epigenetic changes 
associated with parity in wwMS. Differentially methylated genes in whole blood were enriched in neuronal structure 
and growth-related pathways. Immune cell-type-specific analysis using cell-type proportion estimates from statistical 
deconvolution of whole blood revealed further differential methylation in T cells specifically (four in CD4+ and eight 
in CD8+ T cells). We further identified reduced methylation age acceleration in parous women, demonstrating slower 
biological aging compared to nulligravida women.

Conclusion  Differential methylation at genes related to neural plasticity offers a potential molecular mechanism 
driving the long-term effect of pregnancy on MS outcomes. Our results point to a potential ‘CNS signature’ of methyla‑
tion in peripheral immune cells, as previously described in relation to MS progression, induced by parity. As the first 
epigenome-wide association study of parity in wwMS reported, validation studies are needed to confirm our findings.
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Introduction
Multiple sclerosis (MS) is most prevalent in females, with 
a sex ratio of 3:1 [1]. It is frequently diagnosed between 
20 and 40 years of age, the prime reproductive years for 
women. Understanding the effect of pregnancy on dis-
ease activity and progression is a priority for women with 
MS (wwMS) and their care teams.

Changes to MS disease activity during pregnancy 
and the post-partum are well understood. Relapse rates 
decrease throughout pregnancy and are lowest in the 
third trimester. This decrease is more pronounced for 
women with mild disease than those with severe dis-
ease who discontinue moderately to highly effective 
disease-modifying therapies (DMTs) during pregnancy 
[2]. A subsequent increase in post-partum relapse rate 
is observed, with approximately 14% of women relapsing 
in the modern DMT era [2]. Evidence shows that preg-
nancy-related changes in disease activity are driven by 
the immunomodulatory effects of pregnancy hormones, 
particularly estriol (E3) which is present in 300-fold con-
centration compared to non-pregnancy [3]. Pregnancy is 
not detrimental to long-term MS outcomes [4–17], with 
some studies demonstrating a pregnancy benefit [18–24]. 
One of the largest real-world studies in 1830 wwMS 
found that one or more pregnancies after disease onset 
were associated with a modest, but significant, 0.36 point 
lower Expanded Disability Status Scale (EDSS) score 
compared to nulligravida women over a ten-year fol-
low-up [18]. Notably, the protective effect of pregnancy 
in this cohort was fourfold greater than that of first-line 
DMT exposure in the same timeframe [18]. Furthermore, 
a study of 2557 wwMS showed that a history of childbirth 
delayed the onset of a clinically isolated syndrome (CIS, 
the first demyelinating event indicative of a future MS 
diagnosis) by 3.4 years [25]. Unlike intrapartum disease 
activity, the biological mechanisms underpinning these 
long-term effects of pregnancy are not understood. As 
these effects have been shown to last years beyond birth 
[18], they cannot be explained by pregnancy-related hor-
monal changes exclusively which have been shown to 
return to pre-pregnancy levels by six months post-par-
tum [26].

Epigenetic mechanisms regulate gene expression in 
a dynamic and reversible manner. DNA methylation 
(DNAm) is a key epigenetic mechanism. The absence or 
presence of a methyl group on cytosine-phosphate-gua-
nine (CpG) dinucleotides generally activates or represses 
gene transcription, respectively. Epigenetic mechanisms 
are influenced by life events and environmental factors, 
including the multitude of physiological and hormonal 
changes of pregnancy. DNA methylation enzymes are 
specifically influenced by oestrogen signalling, which 
increases in pregnancy and peaks in the third trimester. 

Converging evidence outlines a role for DNA methyla-
tion in the effect of pregnancy on outcomes in wwMS 
through altering immune and central nervous system 
(CNS) function: (1) oestrogen signalling influences DNA 
methylation enzymes [27], (2) pregnancy has been shown 
to reduce immune epigenetic age in women without MS 
[28], and (3) pregnancy induces changes in the expression 
of immune-activation [29] and axon-guidance [30] genes 
in wwMS for up to 19 years after pregnancy. However, no 
epigenome-wide association study (EWAS) of parity in 
wwMS has been reported to date.

The objective of this study was to understand the long-
term impact of parity on DNA methylation patterns in 
women with relapse-onset MS. We first sought to iden-
tify whole blood and immune cell-specific DNA methyla-
tion patterns, across autosomes, associated with parity. 
Secondly, we aimed to compare methylation age accel-
eration (MAA) between nulligravida and parous wwMS, 
to determine whether reductions in MAA reported in 
health were also evident in an MS cohort.

Results
Cohort descriptive statistics
We included 192 women with relapse-onset MS (RMS) 
across four study sites (nulligravida = 96, parous = 96, 
Additional file  1: Fig. S1). Participants were catego-
rised based on available pregnancy history data from 
the MSBase Registry [31, 32] and matched by age, geo-
graphical location and disease severity. We excluded 
women who had a known history of pregnancy end-
ing in miscarriage or termination. Therefore, the parous 
group included women with term or preterm births, and 
the nulligravida group included women who had never 
been pregnant. The median time from last conception 
to blood collection in the parous group was 16.66 years 
(range = 1.45–44.42 years, Table 1).

Differential methylation analysis—whole blood
After methylation data pre-processing, approximately 
747,000 (86%) of 867,000 probes remained for differen-
tial methylation analysis (Additional file  1: Fig. S2a–d). 
Batch effect analysis identified Plate, Sentrix ID and Sen-
trix Position as significant sources of technical variation 
(p < 0.01), which were corrected and reduced to negligi-
ble effects using the Combat algorithm [33] (Additional 
file 1: Fig. S2e–h).

We conducted a whole blood EWAS adjusted for 
immune cell-type proportions (CD4+ T cells, CD8+ T 
cells, B cells, natural killer (NK) cells, granulocytes and 
monocytes) and DNAmPACKYRS due to non-negligible 
differences between groups (Table  1). DNAmPACK-
YRS is an accurate biomarker of smoking history based 
on methylation at a subset of smoking-associated CpGs 
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Table 1  Cohort summary statistics

Characteristics Nulligravida (n = 96) Parous (n = 96) All (n = 192) Cohen’s d

Time from last pregnancy to blood collec‑
tion (years)

 Median (IQR) NA 16.66 (9.13, 27.66) NA –

 Range NA 1.45–44.42 NA

ARMSS score

 Median (IQR) 6.63 (1.47, 8.73) 7.08 (1.29, 8.22) 6.99 (1.39, 8.37) 0.01

 Range 0.16–9.55 0.19–9.91 0.16–9.91

Disease course

 RRMS 57 (60.0%) 63 (66.3%) 120 (63.2%) NA

 SPMS 38 (40.0%) 32 (33.7%) 70 (36.8%)

Sex

 Female 124 (100.0%) 96 (100.0%) 220 (100.0%) NA

 Male 0 (0%) 0 (0%) 0 (0%)

Age at most recent visit

 Median (IQR) 48.3 (40.7, 56.6) 48.6 (39.5, 57.2) 48.9 (40.7, 57.1) 0.03

 Range 27.6–70.6 24.2–69.8 24.2–70.6

Age at blood collection

 Median (IQR) 48.7 (41.2, 57.0) 48.9 (40.3, 57.9) 48.9 (40.7, 57.1) 0.03

 Range 28.3–70.6 26.8–69.8 26.8–70.6

Follow-up in MSBase (years)

 Median (IQR) 6.26 (3.46, 8.91) 6.92 (5.51, 9.42) 6.54 (4.16, 8.99) 0.26

 Range 0.00–24.80 0.00–19.30 0.00–24.80

Number of EDSS scores assessed

 Median (IQR) 7.5 (4.0, 9.0) 8.5 (6.0, 9.0) 8.0 (5.0, 9.0) 0.35

 Range 1.0–9.0 1.0–9.0 1.0–9.0

Symptom duration (years)

 Median (IQR) 15.77 (9.62, 24.60) 14.98 (8.84, 20.65) 15.11 (9.26, 22.15) 0.15

 Range 1.01–42.37 0.21–41.56 0.21–42.37

ARR in preceding year

 Median (IQR) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.08

Range 0.0–3.0 0.0–2.0 0.0–3.0

Number of births

 0 96 (100%) 0 (0%) 96 (50%) –

 1 0 (0%) 29 (30%) 29 (15%)

 2 0 (0%) 46 (48%) 46 (24%)

 3 0 (0%) 14 (15%) 14 (7%)

 ≥ 4 0 (0%) 7 (7%) 7 (4%)

DMT

 None 37 (38%) 34 (35%) 71 (37%) –

 Alemtuzumab 0 (0%) 1 (1%) 1 (1%)

 Dimethyl fumarate 2 (2%) 8 (8%) 10 (5%)

 Fingolimod 21 (22%) 25 (26%) 46 (24%)

 Glatiramer acetate 7 (7%) 3 (3%) 10 (5%)

 Interferon beta 12 (13%) 10 (11%) 22 (11%)

 Natalizumab 17 (18%) 11 (12%) 28 (15%)

 Teriflunomide 0 (0%) 4 (4%) 4 (2%)

Smoking history

 Ever 16 (16.7%) 39 (40.6%) 55 (28.6%) –

 Never 17 (17.7%) 28 (29.2%) 45 (23.4%)

 Unknown 63 (65.6%) 29 (30.2%) 92 (47.9%)
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[34]. This analysis identified 2965 differentially methyl-
ated positions (DMPs) surpassing genome-wide thresh-
olds (FDR < 0.05 and Δmeth > 1%), and Table  2 shows the 
top 10 DMPs by effect size. (Full list is available in Addi-
tional file 2: Table S1.) Of 2965 DMPs, 1395 mapped to 

genes and 1570 to intergenic regions or unannotated 
locations. Moreover, 2046 (68.5%) DMPs were hyper-
methylated and 940 (31.5%) were hypomethylated in the 
parous group, relative to the nulligravida group (Addi-
tional file  1: Fig. S3). Methylation beta values equate to 

Table 1  (continued)

Characteristics Nulligravida (n = 96) Parous (n = 96) All (n = 192) Cohen’s d

DNAmPACKYRSa

 Median (IQR) 0.93 (− 3.9, 8.5) 0.60 (− 4.6, 13.6) 0.85 (− 4.3, 9.8) 0.20

 Range − 12.6–33.7 − 13.5–32.6 − 13.5–33.7

CD4+ cell proportionsb

 Median (IQR) 0.07 (0.05, 0.11) 0.08 (0.05, 0.11) 0.08 (0.05, 0.11) 0.06

 Range 0.01–0.23 0.00–0.26 0.0–0.26

CD8+ cell proportionsb

 Median (IQR) 0.03 (0.01–0.05) 0.03 (0.01, 0.05) 0.03 (0.09, 0.13) 0.13

 Range 0.00–0.10 0.00–0.18 0.04–0.25

NK cell proportionsb

 Median (IQR) 0.08 (0.06, 0.09) 0.08 (0.06, 0.10) 0.08 (0.06, 0.10) 0.41

 Range 0.02–0.13 0.04–0.21 0.02–0.21

B cell proportionsb

 Median (IQR) 0.10 (0.08, 0.11) 0.09 (0.08, 0.12) 0.08 (0.06, 0.10) 0.09

 Range 0.03–0.16 0.05–0.16 0.02–0.21

Monocyte proportionsb

 Median (IQR) 0.10 (0.09, 0.13) 0.11 (0.09, 0.13) 0.11 (0.09, 0.13) 0.17

 Range 0.04–0.21 0.04–0.25 0.04–0.25

Granulocyte proportionsb

 Median (IQR) 0.60 (0.40, 0.67) 0.60 (0.54, 0.66) 0.60 (0.54, 0.66) 0.14

 Range 0.40–0.79 0.31–0.78 0.31–0.79

ARMSS, Age-Related Multiple Sclerosis Severity Score; IQR, interquartile range; EDSS, Expanded Disability Status Scale; ARR, annualised relapse rate; DMT, disease-
modifying therapy; DNAmPACKYRS, DNA methylation estimate of smoking pack years; and NK, natural killer
a A DNA methylation biomarker of smoking estimated using methylation levels at smoking-associated CpGs. Calculated online at https://​dnama​ge.​genet​ics.​ucla.​edu/​
home
b Estimated using reference-based statistical deconvolution with the EpiDISH R package and CIBERSORT algorithm

Table 2  Top 10 differentially methylated positions (DMPs) ranked by absolute effect size (∆meth)

CpG, cytosine-phosphate-guanine; Chr, chromosome; bp, base pair; IGR, intergenic region; TSS200, transcript start site (up to 200 bp 5′ of 5′UTR) promoter region; and 
TSS1500, transcript start site (up to 1500 bp 5′ of 5′UTR) promoter region
* Nulligravida to parous

CpG Chr Position (bp) Gene Feature ∆meth* FDR

cg12036633 15 63758958 IGR − 0.161 0.032

cg27484945 19 15561759 TSS1500 − 0.153 0.042

cg08779649 13 50194554 IGR 0.140 0.043

cg02122327 13 50194322 IGR 0.133 0.015

cg21415084 12 84218134 EPB41L5 IGR 0.114 0.039

cg03885684 2 120770471 TSS200 0.108 0.006

cg24000535 14 91110600 PRKCE Body − 0.083 0.017

cg08166072 2 46213920 Body 0.080 0.012

cg14248704 5 151470842 Body 0.074 0.006

cg10140164 9 75597328 IGR − 0.072 0.017

https://dnamage.genetics.ucla.edu/home
https://dnamage.genetics.ucla.edu/home
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percentage methylation. Therefore, we report methyla-
tion differences (effect size, Δmeth) as a percentage going 
forward (e.g. Δmeth of 0.01 = 1%). Δmeth ranged from 
−  16.1 to 14.0%. Methylation is most likely to impact 
gene transcription when located in CpG islands. Only 
326 (10.9%) of DMPs mapped to CpG islands, with 608 
(20.4%) in shores, 223 (7.5%) in shelves and the major-
ity in open sea regions (1829, 61.3%). Compared to the 
locations of the 746,969 tested CpGs (islands = 143,779 
(19.2%), shores = 136,076 (18.2%), shelves = 51,041 
(6.8%), open sea regions = 416,073 (55.7%)), our DMPs 
show slight overrepresentation in open sea regions and 

underrepresentation in islands. We validated 32 DMPs 
from Mehta et al. [30] (Table 3), 22 with the same direc-
tion of effect (DOE), and 366 genes (Additional file  2: 
Table  S2), 104 (28.4%) with the same DOE (Additional 
file 2: Table S3).

No differentially methylated regions (DMRs) were iden-
tified using the DMRcate algorithm at an FDR threshold 
of 0.05. Therefore, we identified DMRs from our DMP 
list, defining a DMR as a region containing at least five 
DMPs with the same effect direction and FDR < 0.01, 
within 1000  bp of the adjacent DMPs [35]. Using this 
definition, we identified two DMRs on Chromosomes 17 

Table 3  Validated CpGs from Mehta et al. [30] ordered by chromosomal position

CpG, cytosine-phosphate-guanine; Chr, chromosome; bp, base pair; FDR, false discovery rate; and DOE, direction of effect
* Nulligravida to parous

CpG Chr Position (bp) Gene This study Mehta et al. [30] DOE validation

∆meth* FDR ∆meth* p value

cg15132013 1 2163529 SKI 0.028 0.042 − 0.083 0.043 No

cg00935967 1 3822762 LOC100133612 0.018 0.048 − 0.047 0.028 No

cg12385729 1 9243679 − 0.025 0.038 0.140 0.046 No

cg22332037 1 153951279 JTB − 0.013 0.025 0.028 0.02 No

cg17403266 1 226719677 0.011 0.037 − 0.027 0.046 No

cg20848488 4 6417932 PPP2R2C 0.025 0.026 − 0.115 0.018 No

cg05104897 4 120127485 0.029 0.012 − 0.097 0.031 No

cg19083007 6 46293862 RCAN2 0.016 0.027 − 0.049 0.026 No

cg22390040 8 17220621 MTMR7 0.017 0.049 − 0.062 0.012 No

cg03460027 10 390328 DIP2C 0.01 0.026 − 0.040 0.003 No

cg03004330 10 13934438 FRMD4A − 0.017 0.041 0.180 0.024 No

cg21937554 11 44331934 ALX4 − 0.024 0.045 0.305 0.043 No

cg11933951 11 82997796 CCDC90B 0.022 0.028 − 0.062 3.78 × 10−4 No

cg16984132 11 117052181 SIDT2 − 0.011 0.025 − 0.103 0.031 Hypo

cg23031939 11 134216076 GLB1L2 − 0.014 0.044 − 0.179 0.005 Hypo

cg10812526 12 101192122 ANO4 0.037 0.05 0.056 0.041 Hyper

cg01903420 13 27295928 0.049 0.043 − 0.397 0.048 No

cg08419873 13 27296010 0.072 0.031 − 0.386 0.049 No

cg15288350 13 113987359 GRTP1 − 0.011 0.037 − 0.033 0.038 Hypo

cg26647324 16 1516388 CLCN7 0.011 0.046 − 0.023 0.031 No

cg00356208 16 55167581 0.016 0.016 − 0.082 0.034 No

cg09663193 17 7486821 MPDU1 − 0.016 0.031 − 0.124 0.029 Hypo

cg14121185 17 64488849 PRKCA 0.026 0.037 − 0.079 0.032 No

cg05229454 17 80494379 FOXK2 0.031 0.022 − 0.202 0.010 No

cg23973972 18 72152075 0.034 0.008 − 0.090 0.039 No

cg08134671 19 2542837 GNG7 0.035 0.015 − 0.104 0.038 No

cg10669058 19 19648555 CILP2 − 0.029 0.048 − 0.171 0.022 Hypo

cg14166009 19 37825309 HKR1 − 0.022 0.042 − 0.100 0.044 Hypo

cg13687570 19 37825320 HKR1 − 0.028 0.044 − 0.170 0.008 Hypo

cg04442417 20 62191507 HELZ2 − 0.033 0.003 − 0.073 0.025 Hypo

cg02836046 21 38120824 SIM2 − 0.024 0.022 − 0.059 0.044 Hypo

cg11314536 22 18033434 CECR2 0.017 0.034 − 0.046 0.010 No
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and 19 (Table 4, Additional file 1: Fig. S4). DMRChr [17] 
mapped to TMC8 and showed hypermethylation in the 
parous group. DMRChr [19] mapped to ZNF577 and was 
hypomethylated in the parous group.

Differential methylation analysis—immune cell specific
DNA methylation can be cell-type specific. Therefore, 
whole blood analysis can be (1) confounded by cell-type 
proportions or (2) insensitive to cell-specific DMPs asso-
ciated with the outcome. To address these limitations 
of whole blood analysis, we estimated and compared 
the proportion of immune cell types between groups 
using the reference-based CIBERSORT algorithm [36]. 
There were differences in the proportions of CD8+ T 
cells (Cohen’s d = 0.13), NK cells (Cohen’s d = 0.41) and 
monocytes (Cohen’s d = 0.17, Table  1). To address limi-
tation one, we adjusted the whole blood analysis for all 
cell-type proportions. To address the second limitation, 
we used the cell-type proportion estimates to identify 
cell-type-specific DMPs (csDMPs) using a separate linear 
model for each cell type where the outcome was meth-
ylation M-value, and the predictors were cell-type pro-
portion estimate and an interaction term of cell-type 
proportion and parity. This revealed four CD4+ and eight 
CD8+ T cell-specific DMPs (Table  5). All CD4+ T cell 
DMPs were hypermethylated in the parous group com-
pared to the nulligravida group, with only one DMP map-
ping to a gene (cg14172633, HMCN1). In CD8+ T cells, 
three DMPs were hypermethylated and five were hypo-
methylated in the parous group. DMP cg25577322 had 

the largest effect size (estimate = -8.32, SE = 1.45) and 
mapped to AHR. Seven of the eight DMPs mapped to a 
gene, and two DMPs mapped to OR2L13 (cg08944170 
and cg20507276).

Sensitivity analysis
We performed sensitivity analyses to assess the potential 
impact of demographic, clinical, biological and environ-
mental covariates on the primary methylation analysis by 
testing the association between covariates and genome-
wide methylation. Genome-wide methylation was not 
associated with symptom duration, annualised relapse 
rate (ARR), methylation age acceleration (PhenoAge and 
GrimAge) or DMT at blood collection (yes or no). Con-
sequently, these covariates were not included in the dif-
ferential methylation analyses so as not to unnecessarily 
burden the model and reduce statistical power.

Targeted methylation quantitative trait loci (mQTL) 
analyses
Differential methylation between sample groups can be 
driven by mQTLs—loci at which the underlying single 
nucleotide variants (SNVs) at or near that site signifi-
cantly influence methylation levels at a nearby CpG. If 
mQTLs are not accounted for, differential methylation 
signals may actually be underlying differences in geno-
type between sample groups. Therefore, we tested the 
relationship between genotype and methylation at CpGs 
within a ± 5  kb window of each DMR to determine if 

Table 4  Differentially methylated regions (DMRs)

Chr, chromosome; bp, base pair; DMP, differentially methylated position; CpG, cytosine-phosphate-guanine; max, maximum; TMC8, transmembrane channel like 8; 
ZNF577, zinc finger protein 577; and TSS1500, transcript start site (up to 1500 bp 5′ of 5′UTR) promoter region

Chr Region (bp) Width (bp) Gene Feature CpGs ∆max ∆mean

17 76128906–76130139 1233 TMC8 Body/TSS1500 cg16301617
cg16935597
cg14055168
cg04945945
cg22833809
cg01791634
cg18437480

0.017 0.013

19 52390810–52391789 979 ZNF577 Body/TSS200/TSS1500 cg06878361
cg03562414
cg10635122
cg24794228
cg10783469
cg16731240
cg23010048
cg11269599
cg22331349
cg09547119
cg12227172
cg22472290
cg13393830
cg25361850

− 0.033 − 0.023
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differential methylation was associated with, or inde-
pendent of, underlying genotype.

After quality control and filtering, 183 patients had 
available genotype data and remained for analysis. 
DMRChr [17] contained 13 SNVs, three of which were 
independent based on linkage disequilibrium (LD) analy-
sis (Additional file 2: Table S4a). Methylation at all DMR 
CpGs except cg16935597 was associated with genotype 
at two or more of the three independent SNVs (Kruskal 
test p values in Additional file  2: Table  S4b). After 
accounting for genotype at these mQTLs, methylation at 
all CpGs within DMRChr [17] remained associated with 
parity (general linear model p values in Additional file 2: 
Table S4b).

DMRChr [19] contained 10 SNVs, four of which were 
independent based on linkage disequilibrium (LD) analy-
sis (Additional file 2: Table S5a). Methylation at all DMR 
CpGs, except cg06878361, cg10635122 and cg16731240, 
was associated with genotype at all four SNVs (Kruskal 
test p values in Additional file  2: Table  S5b). After 
accounting for genotype at these mQTLs, methylation at 
all CpGs within DMRChr [19] remained associated with 
parity (general linear model p values in Additional file 2: 
Table S5b).

Multi‑factor feature selection
Elastic net regression is a form of penalised regression 
that is useful for uncovering multiple conjoint effects in 
datasets with correlated features (e.g. methylation) and a 
greater number of features than samples (p >>> n). This 
method can be useful for identifying important features 

with greater sensitivity than conventional EWAS analy-
ses. Using elastic net regression, we identified a panel of 
CpGs conferring a conjoint association. We determined 
the optimal alpha (0.1) and lambda (0.02) values for our 
data using a cross validation approach. With an alpha 
value closer to zero than one, our elastic net regression 
resembled a lasso regression more closely than a ridge 
regression.

Using these model parameters, our elastic net regres-
sion model selected 1505 CpGs associated with par-
ity (top 10 shown in Table 6, full list in Additional file 2: 
Table S6) in our training dataset (n = 134, 70% of cohort). 
Of these, 316 CpGs were also identified as DMPs in our 
primary analysis.

Gene set enrichment analysis (GSEA)
We conducted GSEA using (a) the 104 genes validated 
from Mehta et al. [30] with the same direction of effect 
(Additional file 2: Table S3) and (b) all 1395 genes iden-
tified in the primary whole blood analysis and by mul-
tifactor feature selection to elucidate potentially small 
but cumulative effects of parity on methylation patterns 
(Additional file 2: Table S7).

Validated genes from Mehta et  al. [30] (n = 366) were 
enriched in synapse cellular components (Additional 
file  1: Fig. S5a) and embryogenesis biological processes 
(Additional file 1: Fig. S5b), including neuron projection 
(ngenes = 53, FDRB&H = 1.07 × 10−3) and central nervous 
system development (ngenes = 53, FDRB&H = 0.005). Using 
genes identified in the primary whole blood analysis and 
by multifactor feature selection (n = 2103), we revealed 

Table 5  Cell-specific differentially methylated positions (csDMPs)

CpG, cytosine-phosphate-guanine; Chr, chromosome; bp, base pair; Est, estimate (from linear regression); SE, standard error; and TSS200, transcript start site (up to 
200 bp 5′ of 5′UTR) promoter region
* Mean M-values reported as M-values used in cell-specific statistical analyses

CpG Chr Position (bp) Gene Feature Nulligravida 
mean*

Parous mean* Est SE p

CD4+ T cells

cg14172633 1 185703557 HMCN1 TSS200 − 3.10 − 2.84 − 3.64 0.62 1.7 × 10−8

cg15145296 3 125709740 − 4.24 − 3.98 − 3.23 0.56 3.6 × 10−8

cg06032337 6 29648468 − 2.82 − 2.71 − 3.17 0.56 5.1 × 10−8

cg06818823 6 46459236 − 6.55 − 5.90 − 5.88 1.04 5.8 × 10−8

CD8+ T cells

cg01858500 17 68202566 − 3.57 − 3.52 − 4.27 0.71 1.1 × 10−8

cg08944170 1 248100614 OR2L13 1stExon − 3.38 − 3.60 − 2.78 0.48 2.3 × 10−8

cg25577322 7 17338213 AHR TSS200 − 6.33 − 6.94 − 8.32 1.45 4.0 × 10−8

cg16402757 10 35311004 CUL2 Body − 2.14 − 2.05 − 2.14 0.38 4.6 × 10−8

cg03495768 13 100637113 ZIC2 Body − 2.98 − 3.07 − 3.05 0.54 6.1 × 10−8

cg04798314 1 246668601 SMYD3 Body − 2.35 − 2.56 − 2.71 0.48 6.7 × 10−8

cg11738485 19 12877000 HOOK2 Body − 2.79 − 2.51 − 2.42 0.43 6.8 × 10−8

cg20507276 1 248100600 OR2L13 1stExon − 3.40 − 3.55 − 2.68 0.48 8.6 × 10−8
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that differential methylation, regardless of direction of 
effect, was primarily enriched in biological processes 
(Fig.  1a) and cellular compartments (Fig.  1b) related 
to neuronal growth. This included neuron projection 
morphogenesis (ngenes = 45, FDRB&H = 0.0008), neuron 
development (ngenes = 68, FDRB&H = 0.0008) and neuron 
projection (ngenes = 76, FDRB&H = 4.5 × 10−6). Further-
more, the top enriched molecular functions related to 
ion transport including anion/cation symporter activity 
(ngenes = 7, FDRB&H = 0.0005) and calcium channel activ-
ity (ngenes = 15, FDRB&H = 0.001, Fig.  1c). There were no 
enriched gene ontology terms using GOmeth with an 
FDR threshold of 0.05. This suggests that our ToppGene 
findings could be a result of probe number or multi-gene 
bias. However, we used GSEA as an exploratory analysis 
to generate hypotheses about the mechanism in which 
pregnancy impacts clinical outcomes and have therefore 
interpreted the results with caution.

Methylation age analysis
Methylation age acceleration (MAA) measures the dis-
parity between chronological and biological age as esti-
mated using methylation age algorithms and can provide 
insight into an individual’s health and lifespan [34, 37, 
38]. As groups were a priori matched by age, there were 
no significant differences in chronological age between 
groups (Table  1). The correlation between chronologi-
cal age and methylation age using the PhenoAge and 
GrimAge algorithms were 0.77 and 0.91, respectively. 
We did not find any evidence for differences in methyla-
tion age between groups using the GrimAge algorithm 
(p = 0.854). However, we did find significant differences 
in methylation age between groups using the PhenoAge 
algorithm (p = 0.034, Additional file 1: Fig. S6).

MAA was calculated as the residual term from regress-
ing chronological age on methylation age. Residual 
terms were normally distributed for the PhenoAge 
(p = 0.551) algorithm, but not the GrimAge algorithm 
(p = 3.52 × 10−05). There were significant differences in 
MAA between nulligravida and parous groups using both 
the PhenoAge (Δμ = 2.27  years, p = 0.001) and Grim-
Age algorithms (Δμ = 1.44 years, p = 0.005, Fig. 2). There 
was no association between GrimAge or PhenoAge 
MAA and years since conception (GrimAge: r = 0.046, 
p = 0.654; PhenoAge: r = 0.057, p = 0.578), or menopause 
(n < 50y.o. = 92, n ≥ 50y.o. = 100, GrimAge: p = 0.574, 
PhenoAge: p = 0.714).

Discussion
Studies have demonstrated an association between preg-
nancy and reduced disability accumulation in women 
with MS (wwMS) [39], lasting for up to ten years post-
pregnancy [18]. Recent studies have identified associa-
tions between birth history and methylation patterns in 
health [40–42] and MS [30], as well as negative associa-
tions between birth history and methylation age accel-
eration in women without MS [28]. No epigenome-wide 
studies to date have examined parity, or methylation age 
acceleration in wwMS.

Our primary EWAS of whole blood methylation dif-
ferences between nulligravida and parous wwMS identi-
fied 2965 differentially methylated positions (DMPs). Of 
these, 32 overlapped with those previously identified by 
Mehta et  al. [30] at the CpG level, and 366 at the gene 
level. One CpG was hypermethylated across both stud-
ies and mapped to ANO4, encoding a chloride channel 
involved in ion channel transport. Upregulated ANO4 
expression in chronically active MS lesions compared to 
inactive lesions has been shown [43]. ANO4 hypermeth-
ylation and potential downregulation in parous wwMS 
in this study may indicate less neuroinflammation and 
associated disability. Nevertheless, gene transcription 
and expression remain to be studied in this cohort. Vali-
dated, hypomethylated CpGs mapped to SIDT2, GLB1L2, 
GRTP1, MPDU1, CILP2, HELZ2 and SIM2. Of these, 
SIM2 is the most relevant as a transcription factor and 
master regulator of central nervous system development 
and neurogenesis [44]. A link between neurogenesis, 
neuronal reserve and MS outcomes has been previously 
suggested [45], with recent corroboration [46]. In addi-
tion to the above-mentioned genes, two validated, hypo-
methylated CpGs mapped to HKR1 (alias ZNF875), a 
protein coding gene involved in transcriptional regula-
tion and shown to be associated with maternal smoking 
[47], age [48] and Alzheimer’s disease (AD) pathology 
[49]. A 2011 study of 36 women found an association 
between maternal smoking and HKR1 hypomethylation 

Table 6  Top ten CpGs associated with parity as selected by the 
elastic net model based on variable importance

Chr, Chromosome; bp, base pair; IGR, intergenic region; TSS200, transcript start 
site (up to 200 bp 5′ of 5′UTR), promoter region; and 5′UTR, 5′ untranslated 
region

CpG Chr Position (bp) Gene Feature Importance

cg26506013 16 28887830 IGR 100

cg25485991 17 8066461 VAMP2 TSS200 99.92

cg23367339 17 36622717 ARHGAP23 Body 99.91

cg08186508 14 68067006 PIGH 5′UTR​ 99.84

cg17070338 13 111268441 CARKD Body 99.82

cg07360021 6 151186904 MTHFD1L 1stExon 99.68

cg23841819 1 204970383 NFASC Body 99.48

cg11918372 2 48132755 FBXO11 5′UTR​ 99.24

cg27573735 3 82857144 99.08

cg12835012 4 183795785 98.91
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Fig. 1  Gene set enrichment analysis of overlapping differentially methylated positions from the differential methylation and elastic net analyses. 
Input data were genes identified in both the differential methylation analysis and elastic net regression (n = 2103). The A ten most significantly 
enriched biological processes, B ten most significantly enriched cellular compartments, C ten most significantly enriched molecular functions. Gene 
ratio is the ratio of the number of genes in the query list and the hit count for that gene set in the genome
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in the placenta [47], although to date, this finding has 
not been validated in peripheral blood. Given the lack of 
evidence in peripheral blood, and the adjustment of our 
differential methylation analysis for maternal smoking 
using a DNA methylation biomarker (DNAmPACKYRS), 
HKR1 is likely a genuine association with parity rather 
than a confounded result driven by smoking history. 
Interestingly, a 2018 study of 12 centenarians demon-
strated a strong association between age in centenarians 
and HKR1 hypermethylation [48]. Here, we matched 
nulligravida and parous groups within three years of age 
due to the known associations between age and methyla-
tion patterns, eliminating age as a confounding variable 
and potential driver of the association with HKR1 meth-
ylation. Lastly, a 2019 study of post-mortem brain tissue 
from 26 AD patients showed strong associations between 
HKR1 hypermethylation and AD-related pathological 
changes in the hippocampus. This association between 
neurodegeneration and HKR1 hypermethylation begs the 
question of whether our findings of HKR1 hypomethyla-
tion in peripheral blood correlate with less degeneration 
in CNS tissue of parous wwMS. While highly speculative, 
this finding brings forth an interesting avenue for further 
neuroimaging-based research.

Exploratory gene set enrichment analysis (GSEA) of 
validated genes with the same direction of effect between 
this study and Mehta et al. [30] highlighted synapse and 
extracellular matrix (ECM)-related cellular compo-
nents and embryogenesis-related biological processes. 
ECM changes are associated with both MS-related 

neuroinflammation and neurodegeneration [50], as well 
as pregnancy [51]. The enrichment of neuronal cellular 
compartments alongside ECM cellular compartments 
suggests that validated differentially methylated genes 
between nulligravida and parous wwMS are enriched 
in genes relevant to MS-related neuroinflammation and 
neurodegeneration. Interestingly, the enrichment of 
embryogenesis-related biological processes demonstrates 
that methylation changes required for successful foe-
tal development are lasting in the maternal methylome. 
Differences in cohort size and study design between this 
study and Mehta et  al. [30] must be highlighted. Mehta 
et  al. [30] sought to identify DMPs in genes that were 
identified a priori after gene expression analyses [30], 
compared to our genome-wide approach. Furthermore, 
they included women with a history of pregnancy, com-
pared to our study which included only women with 
a history of birth. We further conducted GSEA on the 
2103 differentially methylated genes identified in the pri-
mary analysis and elastic net regression. Hypomethylated 
genes in parous wwMS were enriched in neuron develop-
ment and growth biological processes and cellular com-
partments, while hypermethylated genes were enriched 
in signal transduction biological processes and molecular 
functions. Mehta et al. [30] similarly found enrichment of 
neuronal pathways including axon guidance in their study 
of differentially expressed genes between nulliparous and 
parous wwMS [30]. While the majority of DMPs in our 
primary differential methylation analysis had small effect 
sizes, the strength of our penalised regression approach 

Fig. 2  PhenoAge and GrimAge acceleration by sample group. There are significant differences in methylation age acceleration between 
nulligravida and parous groups using both the PhenoAge (Δμ = 2.27 years, standard error (SE) = 0.50, p = 0.001) and GrimAge (Δμ = 1.44 years, 
SE = 0.80, p = 0. 0.005) algorithms
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is the ability to reveal small, correlated relationships 
between features. Taken together, these findings suggest 
that methylation impacts neuro-axonal maintenance and 
neurite growth in parous women in a small but cumula-
tive manner, up to 44.4 years after pregnancy. These find-
ings are consistent with reports that the brains of women 
who have children undergo pronounced morphological 
changes as a result of pregnancy [52]. Moreover, single 
nucleotide variants associated with CNS function were 
recently shown to associate with MS severity outcomes 
[53]. Therefore, our study confirms that genes related to 
neuronal processes are differentially methylated between 
nulligravida and parous wwMS and demonstrates a puta-
tive mechanism by which pregnancy may impact long-
term legacy effects on outcomes in wwMS.

In addition to 2965 DMPs, we identified two differen-
tially methylated regions (DMRs) on Chromosomes 17 
and 19. DMRChr [17] contains seven hypermethylated 
DMPs in the gene body and transcript start site (up to 
1500 bp 5′ of 5′UTR) promoter region of TMC8, a pro-
tein coding gene thought to be involved in CD4+ T cell 
regulation due to its role in regulating cervical cancer 
susceptibility [54] and head and neck squamous cell can-
cer prognosis [55]. A role for this gene in MS or preg-
nancy has not been established. DMRChr [19] contains 14 
hypomethylated DMPs in the gene body and transcript 
start site (up to 1500  bp 5′ of 5′UTR) promoter region 
of ZNF577, a zinc finger protein coding gene involved 
transcriptional regulation. ZNF577 is a breast cancer risk 
gene in European populations [56], at which hypermeth-
ylation is associated with obesity and post-menopausal 
status in breast cancer tissue [57] and leukocytes [58]. 
Due to age-matching our nulligravida and parous groups, 
we are confident that this finding is not driven by meno-
pause status; however, we were unable to test the effect 
of obesity due to lack of data. Our findings require vali-
dation in an independent cohort where replicated DMR 
signals would provide a rationale for in  vitro functional 
studies of gene and protein expression control mediated 
by each DMR.

Using reference-based statistical deconvolution of 
whole blood methylation data, we identified four CD4+ T 
cell-specific DMPs (csDMPs). CD4+ T cells are central to 
immune regulation and tolerance and have been strongly 
linked to both MS [59] and pregnancy [60]. Multiple 
studies have reported changes in the epigenetic patterns 
of CD4+ T cells during pregnancy in wwMS [29, 61, 62]. 
The only gene-associated DMP was at the transcription 
start site for HMCN1, a member of the immunoglobulin 
superfamily. To date, HMCN1 has not been associated 
with differential methylation in healthy populations or 
wwMS during pregnancy [61], nor is there literature link-
ing HMCN1 to clinical outcomes. Therefore, this finding 

together with the association of differential methylation 
of CRYGN is highly novel and requires further validation.

We identified eight CD8+ T cell csDMPs that map to 
six genes and one intergenic region. The involvement of 
CD8+ T cells in MS pathophysiology is well established 
[59]. During pregnancy CD8+ T cells are critical for 
maternal–foetal tolerance and protection against viruses 
[63]. The functions and diseases associated with the 
CD8+ T cell csDMPs identified in this study suggest they 
are markers of pregnancy outcomes, rather than genes 
implicated in the modulation of MS outcomes due to 
pregnancy (e.g. OR2L1, HOOK2 and CUL2). Most nota-
bly, AHR (cg25577322) is upregulated in decidual natural 
killer cells in women with recurrent spontaneous abor-
tion and was hypomethylated in parous women in our 
study [64]. Here, we excluded pregnancies ending in mis-
carriage or termination to prevent identifying epigenetic 
biomarkers of miscarriage or termination. While it is 
possible that this signal was driven by unreported termi-
nations and/or unknown miscarriages, it was identified 
in peripheral CD8+ T cells only (not whole blood) and is 
therefore unlikely to be a marker of recurrent spontane-
ous abortion in this cohort. Furthermore, multiple stud-
ies have recently correlated AHR agonist activity with 
MS subtype and prognosis [65, 66]. In these studies, AHR 
agonist activity increase was associated with relapse in 
CIS and RRMS [65]. A decrease in AHR agonist activity 
was associated with RRMS remission [65] and progres-
sive MS [66], thus implicating AHR in neuroinflamma-
tory processes. In our study, AHR was hypomethylated. 
Hypomethylation is often, but not always associated 
with upregulation of gene expression. Unfortunately, we 
did not assess gene expression. However, this provides a 
plausible mechanism by which pregnancy could modu-
late disease outcomes and warrants further investigation.

Ours is the first study to report a reduction in MAA 
in parous wwMS, compared to age-matched nulligrav-
ida wwMS. We demonstrated that parous women have 
a reduced mean MAA of between 1.44 to 2.27  years 
depending on the algorithm employed. This shows that, 
as in health, parity is associated with a reduction in MAA 
in wwMS [28]. GrimAge is the newest algorithm with 
robust associations with morbidity and mortality [34]. 
Furthermore, PhenoAge acceleration is associated with 
an increased risk of physical functioning problems [38]. 
Reduced MAA was not associated with years since con-
ception in parous women, demonstrating that the benefit 
of parity on biological aging does not appear to weaken 
with time. Furthermore, MAA was not associated with 
menopause, suggesting that methylation changes asso-
ciated with parity may not be reversed or otherwise 
impacted by the hormonal changes experienced through-
out menopause. As a whole, our findings demonstrate 
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slower biological aging in parous wwMS, and potentially 
a longer period of health and lifespan [38].

This is the largest study to date investigating the asso-
ciation between genome-wide methylation and parity in 
women with relapse-onset MS. We identified hundreds 
of methylation changes associated with parity that may 
underlie long-term outcomes in wwMS.

Cohort matching by age limited confounding and erro-
neous associations between methylation patterns and 
parity. We aimed to mitigate against confounding by 
disease severity by matching for ARMSS scores, there-
fore allowing us to study the relationship between meth-
ylation patterns and parity specifically. Whether these 
changes are specific to wwMS or a broader response to 
pregnancy remains to be confirmed in future studies 
including women without MS. We were underpowered 
to adjust for a range of clinical and environmental fac-
tors potentially associated with methylation patterns, 
including number of births and DMT [67], which could 
have contributed to residual confounding of our findings. 
Study power also limited our ability to identify small cell-
type-specific effects using statistical deconvolution tech-
niques, beyond those identified in T cells. Moreover, the 
use of algorithms that deconvolute immune cell subtypes 
at a more granular level (e.g. B naïve cells), such as IDOL-
ext, may reveal more about the relationship between 
parity, cell-specific methylation patterns and clinical 
outcomes. Therefore, our findings require validation in 
a larger cohort of wwMS to address these limitations 
with adequate statistical power. As ours is a retrospective 
and cross-sectional study, we were not able to establish 
a causal link between pregnancy, methylation pattern 
changes and long-term clinical outcomes in wwMS. We 
are currently undertaking a longitudinal and prospective 
study of methylation changes during and after pregnancy 
relative to a nulligravida baseline, to investigate temporal 
and causal relationships between pregnancy, methylation 
and disease outcomes in wwMS. This could lead to the 
identification novel therapeutic targets.

Conclusion
We investigated the association between whole blood 
and cell-type-specific genome-wide methylation patterns 
and parity in 192 women with relapse-onset MS. We 
identified small but potentially cumulative differences 
in whole-blood and T cell methylation patterns in genes 
related to neural plasticity, offering a putative molecular 
mechanism driving the long-term effect of pregnancy 
on MS outcomes. We further identified reduced meth-
ylation age acceleration in parous wwMS, demonstrating 
slower biological aging compared to nulligravida wwMS. 
As methylation patterns can be cell-type specific, our 
results suggest a potential ‘CNS signature’ of methylation 

in peripheral immune cells, as previously described in 
relation to MS progression [68]. This is the first genome-
wide methylation study of parity in wwMS, and therefore, 
validation studies are needed to confirm our findings.

Materials and methods
Ethics approvals
Ethics approval for the collection of demographic, 
clinical, treatment and pregnancy history data via the 
MSBase Registry [31] was obtained from the Alfred 
Health Human Research Ethics Committee (528/12), and 
institutional review boards at all participating centres. 
Approval for the collection of genetic data was obtained 
from the Australian National Mutual Acceptance Scheme 
(HREC/13/MH/189). Written informed consent was 
obtained from participants as per local laws at each study 
site.

Clinical data collection
This study utilised clinical data from the MSBase Reg-
istry, an international, prospective, observational MS 
clinical outcomes register. Data are collected in a unified 
manner and include patient demographics, Expanded 
Disability Status Scale (EDSS) scores, relapse, treatment 
and pregnancy data, as previously described [31, 32].

Participant recruitment, parity definitions and sample 
collection
Whole-blood samples were obtained from 1984 partici-
pants. From this cohort, we selected 192 matched par-
ticipants based on geographical location (Australia), sex 
(female), birth history availability (nulligravida or parous) 
and age (groups age-matched within three years, Addi-
tional file 1: Fig. S1).

DNA methylation is associated with chronological 
age [69], geographical location [69], immune cell-type 
proportions [70] and smoking [71]. To address this, we 
restricted participants to Australians matched by age 
(within three years). We further matched participants 
by disease severity as measured by Age-Related Multiple 
Sclerosis Severity (ARMSS) scores [72], due to non-neg-
ligible differences between sample groups (Table  1) and 
previously demonstrated associations between ARMSS 
score and methylation patterns [73]. Participants were 
matched using the optmatch package [74] in the R sta-
tistical environment. Smoking and cell-type proportions 
were adjusted for in the primary analysis, as described 
in below in section ‘Primary differential methylation 
analysis’.

The timing of pregnancy effects on methylation pat-
terns remains unclear in wwMS, as does the impact of 
pregnancies resulting in miscarriage or termination com-
pared to birth. We therefore excluded gravida women 
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(i.e. those experiencing a miscarriage or induced abortion 
only) and restricted study inclusion to women who had at 
least one preterm or term birth prior to the date of blood 
collection, or those who were nulligravida. We included 
wwMS from the Royal Melbourne Hospital (VIC, n = 73), 
Box Hill Hospital (VIC, n = 56), John Hunter Hospital 
(NSW, n = 25) and Flinders Medical Centre (SA, n = 38). 
A total of 96 nulligravida and 96 parous females with 
RMS were included in this study (n = 192).

DNA extraction
Each site extracted genomic DNA from whole blood 
using standard protocols and procedures.

Methylation arrays
DNA samples were processed for methylation arrays 
at the Hunter Medical Research Institute (NSW). DNA 
quantity and quality were assessed using Qbit (Inv-
itrogen™, USA) and TapeStation (Agilent™, USA), 
respectively. Samples meeting concentration and qual-
ity requirements were bisulphite converted using the 
EZ-DNA Methylation™ Kit (Zymo) according to manu-
facturer guidelines. Converted DNA was hybridised 
to Illumina Methylation EPIC BeadChip arrays (EPIC 
arrays). Samples were randomised based on clinic site 
using the OSAT R package to avoid batch effects. EPIC 
arrays were read using an iScan (Illumina™), and raw Idat 
files were produced for analysis.

Genotyping arrays
Genomic DNA was sent from participating study sites 
to the Center for Genome Technology, John P. Hussman 
Institute for Human Genomics, University of Miami, 
for quality assessment and genotyping. Genotyping was 
performed in two batches using Illumina Multi-ethnic 
genotyping array (MEGAEX) arrays. Genotype calling was 
conducted in GenomeStudio v2.0 (Illumina).

DNA methylation analysis pipeline
Our EWAS analysis was informed by the guidelines 
described in Campagna et al. (2021) [75]. The Chip Anal-
ysis Methylation Pipeline (ChAMP) Bioconductor pack-
age [76] was used for methylation data pre-processing 
in the R statistical environment. Raw Idat files were fil-
tered to exclude low-quality samples (failed to successful 
probe ratio > 0.1), low-quality probes (negative detec-
tion p value > 0.01, bead count < 3 in ≥ 5% of samples), 
non-CpG probes, SNP-related probes, non-autosomal 
probes and multi-hit probes. Additional multi-hit probes 
were excluded based on Pidsley [77] (Additional file  2: 
Table  S1). Beta values were normalised using the beta-
mixture quantile (BMIQ) method [78]. Batch effects 
at the array and chip level were identified with singular 

value decomposition (SVD) analysis [79] and corrected 
for using the Combat algorithm [33].

Primary differential methylation analysis
Differential methylation (Δmeth) between nulligravida and 
parous groups was identified at the single CpG level, i.e. 
differentially methylated positions (DMPs), and genomic 
region level, i.e. differentially methylated regions (DMRs), 
using the filtered and normalised beta matrix, as previ-
ously described [75]. We used a modified version of the 
ChAMP function champ.DMP to implement an adjusted 
logistic model of methylation level at each probe and par-
ity group, adjusted for cell-type proportion estimates and 
DNAmPACKYRS due to the known confounding effect 
of these variables and significant differences between 
groups (Table  1) [71]. Cell-type proportions were esti-
mated as described below in Differential methylation 
analysis—immune cell specific. DNAmPACKYRS is a bio-
marker of smoking, estimated based on methylation lev-
els at smoking-associated CpGs. We used this biomarker 
due to incomplete self-reported smoking history data and 
calculated DNAmPACKYRS for each participant using 
the GrimAge online tool (https://​dnama​ge.​genet​ics.​ucla.​
edu/​home). A false discovery rate (FDR) threshold of 0.05 
was used to assess statistical significance for all analyses. 
Methylation beta values equate to percentage methyla-
tion; therefore, we report methylation differences (effect 
size) as a percentage (e.g. Δmeth of 0.01 = 1%). DMPs with 
an Δmeth less than 1% were removed to avoid false posi-
tives produced from technical error.

We identified DMRs using a two-pronged approach. 
Firstly, with the DMRcate R package [80] using the fol-
lowing parameters: at least three DMPs within 1000  bp 
of the adjacent DMP, a DMP and DMR threshold of 
FDR < 0.05. Secondly, using the DMP list to identify at 
least five DMPs with an FDR < 0.01 and the same direc-
tion of effect, located within 1000 bp of each other. The 
validity of this strategy to identify DMRs in studies with 
small sample and/or effect sizes has previously been 
shown [35, 81].

Differential methylation analysis—immune cell specific
We estimated cell-type proportions from whole blood 
methylation data using the EpiDISH R package [82] with 
the CIBERSORT algorithm [36] and Reinius (2012) ref-
erence dataset [83]. Cell-type proportion differences 
between nulligravida and parous groups were considered 
non-negligible if the Cohen’s d > 0.15.

Cell-type-specific DMPs (csDMPs) were identified 
using a modified version of the cellDMC function of 
EpiDISH [84]. cellDMC uses one linear model to identify 
csDMPs for all cell types, where the outcome is methyla-
tion level, and predictors are the proportion of each cell 

https://dnamage.genetics.ucla.edu/home
https://dnamage.genetics.ucla.edu/home
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type and an interaction term of proportion and parity for 
the cell type of interest [84]. Below is an example for NK 
cells:

To avoid overburdening the model due to our small 
sample size, we modified this by using one model per 
cell type. In each model, the outcome was methylation 
M-value, and the predictors were cell-type proportion 
estimate and an interaction term of cell-type proportion 
and parity. Below is an example for NK cells:

Furthermore, we used M-values all cell-specific analy-
sis, instead of beta values as per the whole blood analy-
sis, as internal benchmarking showed a bias in cellDMC 
for identifying csDMPs in rarer cell subtypes which was 
attenuated with the use of M-values. A genome-wide 
threshold of p ≤ 9 × 10−8 was used to identify statistically 
significant csDMPs.

Sensitivity analyses
Sensitivity analyses were performed to assess the poten-
tial impact of a series of demographic, clinical, biological 
and environmental covariates on the primary methyla-
tion analysis. Covariates were selected based on non-neg-
ligible differences between groups (Cohen’s d > 0.15), or a 
priori selected based on known associations with meth-
ylation patterns. Covariates included symptom duration, 
ARR and methylation age acceleration (PhenoAge and 
GrimAge). Environmental factors including treatment at 
blood collection (yes or no).

We calculated the difference methylation at each probe 
(Δmeth) between nulligravida and parous pairs matched 
by age and ARMSS score (96 pairs). The correlation 
between Δmeth and covariate tested using Pearson’s cor-
relation tests was used for continuous covariates and 
ANOVA tests for categorical covariates. For treatment 
at blood collection, pairs were required to have the same 
value for the correlation with methylation to be tested. Of 
96 pairs in total, 40 pairs were on treatment at blood col-
lection and 14 were off treatment. An FDR threshold of 
0.05 was used to assess statistical significance for all sen-
sitivity analyses.

Single nucleotide variant analysis
Quality control was performed with PLINKv1.9 [85]. 
Single nucleotide variants (SNVs) were excluded based 
on low call rate (< 95%), low minor allele frequency 

csDMPNK = M − valueCpG ∼ Parity+ NK%+ CD4T%

+ CD8T%+ B%+Mono%+ Granulo%+
(

NK%× Parity
)

csDMPNK = M − valueCpG ∼ Parity+ NK%

+ NK%× Parity

(MAF < 0.05), violation of Hardy–Weinberg equilibrium 
(p < 1 × 10–5), monomorphism and non-autosomal loca-
tion. Samples were excluded based on sex inconsisten-
cies, low call rate (< 95%) and relatedness (pi-hat > 0.05). 
Relatedness was assessed using identity by descent 
(IBD) analysis in PLINKv1.9, followed by confirmation 
in KING [86]. Principal components (PC) analysis was 
implemented in EIGENSTRAT​ [87]. PCs were projected 
to 1000 Genomes Project [88] data to assess population 
stratification effects and exclude population outliers.

Methylation quantitative trait loci (mQTL) analysis
We extracted genotypes at SNVs located ± 5 kb up/down-
stream of DMRChr [17] and DMRChr [19] boundaries 
using the KRIS R package [89] and assessed linkage dis-
equilibrium (LD) using bivariate correlations of genotype 
frequencies. The association between methylation and 
genotype at each DMR CpG-SNV pair was assessed using 
Kruskal–Wallis tests. We then performed general linear 
regressions with methylation as the dependent variable 
and genotype and parity as the independent variables to 
test if methylation was associated with parity independ-
ent of genotype at mQTLs. An p value threshold of 0.05 
was used for all analyses.

Multi‑factor feature selection
We used machine learning to build an elastic net regres-
sion model to identify CpGs at which methylation was 
associated with parity, inputting beta values at 746,969 
CpGs, cell-type proportions and DNAmPACKYRS. Sam-
ples were split into training (n = 134) and testing sets 
(n = 58) to reduce overfitting. The model was trained 
using a cross-validation resampling method with 10 
iterations, with the train function of the caret R pack-
age [90]. The optimal alpha value was used in a subse-
quent k-fold cross-validation elastic net regression to 
identify the minimum lambda value; using the cv.glmnet 
function of the glmnet R package [91]. These alpha and 
lambda values were used in the final elastic net regres-
sion model that was applied to the testing set using the 
glmnet function of glmnet R package [91]. Features iden-
tified by the model to be associated with parity were 
compared to DMPs and DMRs identified in the primary 
analysis, as well as mapped to genes for GSEA performed 
as described below.

Gene set enrichment analysis (GSEA)
We used gene set enrichment analysis (GSEA) to gener-
ate hypotheses about the functional consequence of dif-
ferentially methylated genes between nulligravida and 
parous women. All CpGs that were associated with par-
ity in the primary differential methylation analysis and 
elastic net regression were used as input. We conducted 
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GSEA using two methods. Firstly, the ToppGene online 
application programming interface (API) [92] which 
takes an FDR ranked gene list ranked as input, with 
hypomethylated and hypermethylated genes analysed 
separately. Secondly, we used the GOmeth function [93] 
of the missMethyl R package [94] to address probe num-
ber and multi-gene bias specific to methylation data from 
arrays. A list of DMPs and all CpGs tested were used as 
input, and both Gene Ontology (GO) and KEGG pathway 
collections were tested. We used a Benjamini–Hochberg 
adjusted p value (FDRB&H) threshold of 0.05 to assess the 
statistical significance of enriched gene sets.

Methylation age analysis
Methylation age is the prediction of biological age from 
methylation levels at a subset of CpGs (clock CpGs). Phe-
noAge [38] and GrimAge [34] are the most accurate and 
widely used methylation age algorithms and have been 
associated with increased risk of various morbidities and 
mortality [34, 37, 38].

We estimated methylation age using the PhenoAge [38] 
algorithm with the methyAge function of the ENmix R 
package [95]. GrimAge was calculated with the online 
calculator at https://​dnama​ge.​genet​ics.​ucla.​edu/. MAA 
was defined as the residual term from regressing chrono-
logical age on methylation age estimates. For each algo-
rithm, Shapiro–Wilk normality tests were used to test the 
normality of the MAA distribution. To test if mean MAA 
was significantly different between groups, a one tailed t 
test was used for the PhenoAge algorithm, and a Mann–
Whitney test for the GrimAge algorithm. We used a 
Pearson’s correlation test to test the relationship between 
years since conception and MAA in parous women. As 
menopause data were not available for this cohort, we 
divided women into under/over 50 years of age to study 
the association between menopause and MAA. A t test 
was used to assess statistical significance with a signifi-
cance threshold of 0.05.
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