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Abstract
In this paper, a class of nonlinear ψ -Hilfer fractional integrodifferential coupled
systems on a bounded domain is investigated. The existence and uniqueness results
for the coupled systems are proved based on the contraction mapping principle.
Moreover, the Ulam–Hyers–Rassias, Ulam–Hyers, and semi-Ulam–Hyers–Rassias
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1 Introduction
The objective of the present paper is to investigate the existence, uniqueness, and stability
of solutions for a class of nonlinear ψ-Hilfer fractional integrodifferential coupled systems
on a bounded domain. The system is described as follows

⎧
⎪⎪⎨

⎪⎪⎩

HDα,β ;ψ
a+ x(t) = f (t, y(t), HDu,v;ψ

a+ y(t)) +
∫ t

a F(t, τ , y(τ ), y(δ(τ ))) dτ , t ∈ J = [a, b],
HDα′ ,β ′ ;ψ

a+ y(t) = g(t, x(t), HDu,v;ψ
a+ x(t)) +

∫ t
a G(t, τ , x(τ ), x(δ(τ ))) dτ , t ∈ J ,

I1–γ ;ψ
a+ x(a) = 0, I1–γ ′ ;ψ

a+ y(a) = 0,

(1.1)

where ψ-Hilfer fractional derivatives HDα,β ;ψ
a+ (·), H Dα′ ,β ′ ;ψ

a+ (·), HDu,v;ψ
a+ (·) [1] of order 0 < u <

α,α′ < 1 with type 0 ≤ β ,β ′, v ≤ 1 and ψ-Riemann–Liouville fractional integral I1–γ ;ψ
a+ (·),

I1–γ ′ ;ψ
a+ (·) [1] of order 1 – γ , where γ = α + β(1 – α), γ ′ = α + β(1 – α), and w = u + v(1 – u).

f : J ×Y×Y→Y and g : J ×Y×Y →Y are continuously differentiable functions and Y

is a real Banach space. F : J × J ×Y×Y → Y and G : J × J ×Y×Y → Y are continuous
functions. δ : J → J is a continuous delay function with δ(t) ≤ t.

Fractional differential equations help practical problems to be described more accu-
rately compared with integer differential equations. In recent years, numerous fractional
derivatives, such as Riemann–Liouville, Caputo, and Hilfer are widely used in the fields
of finance, physics, biology, image processing, etc., which can be found in [2–10] and the
references cited therein.
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As is known, a variety of new concepts about fractional derivatives have been defined, for
instance, Kilbas introduced a new fractional derivative operator of a function with respect
to another function ψ in [11], named the ψ-Riemann–Liouville fractional derivative. Sim-
ilarly, Almeida proposed the ψ-Caputo fractional derivative on the basis of the classical
Caputo fractional derivative [12]. It is well known that the ψ-Hilfer fractional derivative
is given by Sousa and Oliveira [1] in the same way. It is not difficult to discover that the ψ-
Hilfer fractional derivative contains the Riemann–Liouville, Caputo, and Hilfer fractional
derivatives, i.e., the ψ-Hilfer fractional derivative is compatible with classical fractional
derivatives based on Definition 2.1. Therefore, it is a better method to choose fractional
differential systems involving the ψ-Hilfer fractional derivative that includes many frac-
tional differential equations as special cases for resolving problems of finance, physics,
biology, image processing, etc., mentioned above in the real world.

Very recently, numerous monographs have appeared concerning the results of the exis-
tence and stability of Ulam–Hyers–Rassias and Ulam–Hyers of nonlinear fractional differ-
ential equations focused on Riemann–Liouville, Caputo, Hilfer, etc. The readers can refer
to the papers of Wang and Xu [13], Rajan et al. [14] and Haider et al. [15] so on [16–23].
However, there are few research results on the existence and stability of solutions for the
ψ-Hilfer fractional derivative system except for [24, 25]. Sousa and Oliveira have stud-
ied the existence and uniqueness of solutions for the initial value problems of fractional
derivative systems on a finite interval by using the fixed- point method. Furthermore,
Sousa and Oliveira [26] discussed Ulam–Hyers–Rassias, Ulam–Hyers, and semi-Ulam–
Hyers–Rassias stability on a finite interval [a, b]. As a generalization, they also discussed
the stability of Ulam–Hyers–Rassias on the semiinfinite interval [a,∞) in a weighted space
for the following nonlinear ψ-Hilfer fractional integrodifferential equation:

⎧
⎨

⎩

HDα,β ;ψ
a+ y(x) = f (x, y(x),

∫ x
a K(x, τ , y(τ ), y(δ(τ ))) dτ ), t ∈ [a, b],

I1–γ ;ψ
a+ y(a) = c,

(1.2)

where HDα,β ;ψ
a+ (·) is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type β ∈ [0, 1],

I1–γ ;ψ
a+ (·) is the ψ-Riemann–Liouville fractional integral, with 1 – γ and γ = α + β(1 – α).

a, b ∈ R, such that y ∈ C1[a, b] for all x ∈ [a, b]. δ : [a, b] → [a, b] is a continuous delay
function with δ(t) ≤ t for all t ∈ [a, b]. Moreover, continuous functions f : [a, b] × C ×
C → C and K : [a, b] × [a, b] × C × C → C satisfy the following Lipschitz conditions,
respectively:

∣
∣f (x, u, g) – f (x, v, h)

∣
∣ ≤ M

(|u – v| + |g – h|),
∣
∣K(x, u, g) – K(x, v, h)

∣
∣ ≤ L|g – h|,

with M > 0, L > 0.
Motivated by [27–30] and the references therein, we will deal with the existence and sta-

bility of a solution to the initial value problem for the nonlinear integrodifferential equa-
tion (1.1) by virtue of an appropriate Banach space given by

X =
{

x | x(t) ∈ C1(J ,Y), HDu,v;ψ
a+ x(t) ∈ C1(J ,Y)

}
,
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where Y is a real Banach space, endowed with the associated norm:

‖x‖X = max
{

sup
t∈J

∥
∥x(t)

∥
∥, sup

t∈J

∥
∥HDu,v;ψ

a+ x(t)
∥
∥
}

,

where ‖x(t)‖ = maxt∈J |x(t)|, ‖HDu,v;ψ
a+ x(t)‖ = maxt∈J |HDu,v;ψ

a+ x(t)|.
We establish a special Banach space

X×X =
{

(x, y) | x ∈X, y ∈X
}

,

endowed with the associated norm:

∥
∥(x, y)

∥
∥
X×X

= max
{‖x‖X,‖y‖X

}
,

by the method given in [31–33], we can easily obtain that (X,‖ · ‖X) and (X×X,‖ · ‖X×X)
are Banach spaces.

The rest of this paper is organized as follows. In Sect. 2, we present some necessary
material related to our study. Section 3 contains the main results about the existence and
stability of solution for the nonlinear ψ-Hilfer fractional integrodifferential equation (1.1)
that rely on the Banach contraction mapping principle.

2 Preliminaries
Let us begin this section with some basic concepts and conclusions used in our study.

Definition 2.1 (ψ-Hilfer fractional derivative, [1]) Let n – 1 < α < n with n ∈ N. I = [a, b]
be the interval such that –∞ ≤ a < b ≤ ∞ and f ,ψ ∈ Cn([a, b],R) are two functions such
that ψ is increasing and ψ ′(x) �= 0, for all x ∈ I . The left-sided ψ-Hilfer fractional derivative
HDα,β ;ψ

a+ (·) of function of order α and type 0 ≤ β ≤ 1, is defined by

HDα,β ;ψ
a+ f (x) = Iβ(n–α);ψ

a+

(
1

ψ ′(x)
d

dx

)n

I(1–β)(n–α);ψ
a+ f (x),

the right-sided ψ-Hilfer fractional derivative HDα,β ;ψ
b– (·) is defined as follows:

HDα,β ;ψ
b– f (x) = Iβ(n–α);ψ

b–

(

–
1

ψ ′(x)
d

dx

)n

I(1–β)(n–α);ψ
b– f (x).

Definition 2.2 (ψ-Riemann–Liouville fractional integral, [1]) Let (a, b) (–∞ ≤ a < b ≤
∞) be a finite or infinite interval of the real lineR and α > 0. Also, let ψ(x) be an increasing,
positive monotone function on (a, b], having a continuous derivative ψ ′(x) on (a, b). The
left-sided ψ-Riemann–Liouville fractional integral Iα;ψ

a+ (·) of a function f with respect to
another function ψ on [a, b], is defined by

Iα;ψ
a+ f (x) =

1
�(α)

∫ x

a
ψ ′(s)

(
ψ(x) – ψ(s)

)α–1f (s) ds,

the right-sided ψ-Riemann–Liouville fractional integral Iα;ψ
b– (·) is defined in a similar form.
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Lemma 2.1 ([1]) Let α > 0 and β > 0, then we have the following semigroup property given
by

Iα;ψ
a+ Iβ ;ψ

a+ f (x) = Iα+β ;ψ
a+ f (x).

Lemma 2.2 ([1]) If f ∈C
n[a, b], n – 1 < α < n and 0 ≤ β ≤ 1, then

Iα;ψ
a+

HDα,β ;ψ
a+ f (x) = f (x) –

n∑

k=1

(ψ(x) – ψ(a))γ –k

�(γ – k + 1)
f [n–k]
ψ I(1–β)(n–α);ψ

a+ f (a),

with γ = α + β(n – α).
In particular, if f ∈C

1[a, b], 0 < α < 1 and 0 ≤ β ≤ 1, then

Iα;ψ
a+

HDα,β ;ψ
a+ f (x) = f (x) –

(ψ(x) – ψ(a))γ –1

�(γ )
I(1–β)(1–α);ψ

a+ f (a),

with (1 – α)(1 – β) = 1 – γ .

Lemma 2.3 ([1]) Let f ∈C
1[a, b], α > 0 and 0 ≤ β ≤ 1, then one has

HDα,β ;ψ
a+ Iα;ψ

a+ f (x) = f (x).

Definition 2.3 (Ulam–Hyers–Rassias stability, [26]) For each continuously differentiable
function x : J → X, satisfying

∥
∥
∥
∥x(t) – Iα;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
K

(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα;ψ
a+ 	(t), ∀t ∈ J ,

∥
∥
∥
∥

HDu,v;ψ
a+ x(t) – Iα–u;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
K

(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα–u;ψ
a+ 	(t), ∀t ∈ J ,

∥
∥
∥
∥y(t) – Iα′ ;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
K

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′ ;ψ
a+ 	(t), ∀t ∈ J ,

∥
∥
∥
∥

HDu,v;ψ
a+ y(t) – Iα′–u;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
K

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′–u;ψ
a+ 	(t), ∀t ∈ J ,

where 	(t) is a positive, nondecreasing continuous function defined on the finite interval
[a, b], there exists a solution (x0, y0) of system (1.1) and a constant C > 0 independent of
(x, y), (x0, y0) such that

∥
∥x(t) – x0(t)

∥
∥ ≤ C	(t), ∀t ∈ J ,

∥
∥HDu,v;ψ

a+ x(t) – H Du,v;ψ
a+ x0(t)

∥
∥ ≤ C	(t), ∀t ∈ J .
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∥
∥y(t) – y0(t)

∥
∥ ≤ C	(t), ∀t ∈ J ,

∥
∥HDu,v;ψ

a+ y(t) – HDu,v;ψ
a+ y0(t)

∥
∥ ≤ C	(t), ∀t ∈ J .

Then, one can say that the fractional integrodifferential equation (1.1) has Ulam–
Hyers–Rassias stability.

Remark 2.1 (Ulam–Hyers stability, [26]) If we replace the nonnegative continuous func-
tion 	(t) with θ ≥ 0 in Definition 2.3, then the fractional integrodifferential equation (1.1)
has Ulam–Hyers stability.

Definition 2.4 (Semi-Ulam–Hyers–Rassias stability, [26]) If for all continuously differ-
entiable functions x : J → X satisfying

∥
∥
∥
∥x(t) – Iα;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
K

(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα;ψ
a+ θ , ∀t ∈ J ,

∥
∥
∥
∥

HDu,v;ψ
a+ x(t) – Iα–u;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
K

(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα–u;ψ
a+ θ , ∀t ∈ J ,

∥
∥
∥
∥y(t) – Iα′ ;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
K

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′ ;ψ
a+ θ , ∀t ∈ J ,

∥
∥
∥
∥

HDu,v;ψ
a+ y(t) – Iα′–u;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
K

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′–u;ψ
a+ θ , ∀t ∈ J ,

where θ ≥ 0, there is a solution (x0, y0) of system (1.1) and a constant C > 0 independent of
(x, y), (x0, y0), for some positive, nonincreasing continuous function 	(t) defined on [a, b],
such that

∥
∥x(t) – x0(t)

∥
∥ ≤ C	(t), ∀t ∈ J ,

∥
∥HDu,v;ψ

a+ x(t) – H Du,v;ψ
a+ x0(t)

∥
∥ ≤ C	(t), ∀t ∈ J .

∥
∥y(t) – y0(t)

∥
∥ ≤ C	(t), ∀t ∈ J ,

∥
∥HDu,v;ψ

a+ y(t) – HDu,v;ψ
a+ y0(t)

∥
∥ ≤ C	(t), ∀t ∈ J ,

then one can say that the fractional integrodifferential equation (1.1) has semi-Ulam–
Hyers–Rassias stability.

Definition 2.5 ([34]) IfX is a nonempty set, we say that d : X×X → [0,∞] is a generalized
metric on X, if

(1) d(x, y) = 0, if and only if x = y;
(2) d(x, y) = d(y, x), for all x, y ∈X;
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈X.
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Theorem 2.1 ([34]) Let (X, d) be a generalized complete metric space. Assume that T :
X → X is a strictly contractive operator with the Lipschitz constant L < 1. If there exists a
nonnegative integer k such that d(Tk+1x, Tkx) < ∞ for some x ∈X, then the following three
propositions hold true:

(1) The sequence {Tkx0} converges to a fixed point x∗ of T for an initial point x0 ∈X;
(2) x∗ is the unique fixed point of T in X

∗ = {y ∈X|d(Tkx, y) < ∞};
(3) if y ∈X

∗, then d(y, x∗) ≤ 1
1–L d(Ty, y).

To prove the general existence and stability results, we impose special growth conditions
on functions f and K extending the works given by [34, 35].

(H1) Let L1(·), L2(·), L3(·), L4(·), L5(·), L6(·), L7(·), L8(·) be nonnegative continuous func-
tions. The continuously differentiable function f , g : J × X × X → X satisfies the
following growth condition:

∥
∥f (t, x, y) – f

(
t, x′, y′)∥∥ ≤ L1(t)

∥
∥x(t) – x′(t)

∥
∥ + L2(t)

∥
∥y(t) – y′(t)

∥
∥, ∀t ∈ J ,

∥
∥g(t, x, y) – g(t, x′, y′∥∥ ≤ L3(t)

∥
∥x(t) – x′(t)

∥
∥ + L4(t)

∥
∥y(t) – y′(t)

∥
∥, ∀t ∈ J .

F , G : J × J ×Y×Y →Y are continuous functions satisfying the following growth
condition:

∥
∥F(t, s, x, q) – F

(
t, s, x′, h

)∥
∥

≤ L5(s)
∥
∥x(s) – x′(s)

∥
∥ + L6(s)

∥
∥q(s) – h(s)

∥
∥, ∀t, s ∈ J ,

∥
∥G(t, s, x, q) – G

(
t, s, x′, h

)∥
∥

≤ L7(s)
∥
∥x(s) – x′(s)

∥
∥ + L8(s)

∥
∥q(s) – h(s)

∥
∥, ∀t, s ∈ J .

(H2) Let positive constant 0 < L < 1 and the nonnegative continuous functions L1(t) –
L8(t) satisfy the following conditions, respectively:

P(η) max
t∈[a,b]

{
Li1 (t) + Li2 (t) + b(Li3 + Li4 )(t)

} ≤ L
b – a

, L ∈ (0, 1), (2.1)

where i1 = 1, 3, i2 = 2, 4, i3 = 5, 7 and i4 = 6, 8,

P(η) =
(ψ(b) – ψ(a))η

�(η + 1)
, η =

{
α,α′,α – u,α′ – u

}
.

For computational facilitation, we denote P = min{P(α), P(α – u), P(α′), P(α′ – u)}.

3 Main results
In this section, we will verify the existence and uniqueness of the solution for the sys-
tem (1.1) via the Banach contraction mapping principle. Moreover, Ulam–Hyers–Rassias,
Ulam–Hyers, and semi-Ulam–Hyers–Rassias stabilities are established on the infinite in-
terval [a, b].

3.1 Existence of a solution
Now, we present our first main result dealing with the uniqueness of solutions for the
system (1.1), which relies on the Banach contraction mapping principle.
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Theorem 3.1 Assume that conditions (H1) and (H2) are satisfied, then the system (1.1) has
a unique solution on [a, b].

Proof Similarly to the proof of Lemma 3.1 in [35], one defines function T : X×X →X×X

as follows:

T(x, y)(t) =
(

Iα;ψ
a+ f

(
t, y(t), HDu,v;ψ

a+ y(t)
)

+ Iα;ψ
a+

∫ t

a
F
(
t, τ , y(τ ), y

(
δ(τ )

))
dτ ,

Iα′ ;ψ
a+ g

(
t, x(t), HDu,v;ψ

a+ x(t)
)

+ Iα′ ;ψ
a+

∫ t

a
G

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

)

�
(
T1y(t), T2x(t)

)
, ∀t ∈ J .

(3.1)

We will prove that the functional T has a unique fixed point and the fixed point is the
solution of the system (1.1) by using the Banach contraction mapping principle.

First, one can conclude that T : X × X → X × X. In fact, it is obvious that y(t) ∈
C

1(J ,Y) and HDu,v;ψ
a+ y(t) ∈ C1(J ,Y) for any y ∈ X. From the definitions of the ψ-Hilfer

fractional derivative and the ψ-Riemann–Liouville fractional integral, one can obtain
T1y(t) ∈ C1(J ,Y) and H Du,v;ψ

a+ T1y(t) ∈ C1(J ,Y). This implies that T1y(t) ∈ X. Similarly, it
holds that T2x(t) ∈ X.

Next, we derive that the operator T : X × X → X × X is strictly contractive on X × X

for any x1, x2, y1, y2 ∈X and for each t ∈ [a, b]. From the Definitions 2.1, 2.2, together with
(3.1), one has

∥
∥T1y1(t) – T1y2(t)

∥
∥

≤ 1
�(α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1∥∥f
(
ξ , y1(ξ ), HDu,v;ψ

a+ y1(ξ )
)

– f
(
ξ , y2(ξ ), HDu,v;ψ

a+ y2(ξ )
)∥
∥dξ

+
1

�(α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1
∫ ξ

a

∥
∥
[
F
(
t, τ , y1(τ ), y1

(
δ(τ )

))

– F
(
t, τ , y2(τ ), y2

(
δ(τ )

))]
dτ

∥
∥dξ

≤ (ψ(b) – ψ(a))α

�(α + 1)

∫ t

a

[
L1(ξ )

∥
∥y1(ξ ) – y2(ξ )

∥
∥

+ L2(ξ )
∥
∥HDu,v;ψ

a+ y1(ξ ) – HDu,v;ψ
a+ y2(ξ )

∥
∥
]

dξ

+
(ψ(b) – ψ(a))α

�(α + 1)

∫ t

a

∫ ξ

a

[
L5(τ )

∥
∥y1(τ ) – y2(τ )

∥
∥

+ L6(τ )
∥
∥y1

(
δ(τ )

)
– y2

(
δ(τ )

)∥
∥
]

dτ dξ

≤ (ψ(b) – ψ(a))α‖y1 – y2‖X
�(α + 1)

∫ t

a

[

max
a≤ξ≤b

(L1 + L2)(ξ ) +
∫ b

a
max
a≤s≤b

(L5 + L6)(s) dτ

]

dξ

≤ (ψ(b) – ψ(a))α‖y1 – y2‖X
�(α + 1)

(b – a) max
t∈[a,b]

{
L1(t) + L2(t) + b(L5 + L6)(t)

}

≤ L‖y1 – y2‖X, L ∈ (0, 1),

the last inequality is obtained from the assumption (H2).
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On the other hand, combining Definitions 2.1, 2.2, and (2.1), one can obtain

∥
∥H Du,v;ψ

a+ T1y1(t) – HDu,v;ψ
a+ T1y2(t)

∥
∥

≤ (ψ(b) – ψ(a))α–u‖y1 – y2‖X
�(α – u + 1)

(b – a) max
t∈[a,b]

{
L1(t) + L2(t) + b(L5 + L6)(t)

}

≤ L‖y1 – y2‖X, L ∈ (0, 1).

For any x1(t), x2(t) ∈X, by the definition of T , it is obvious that

∥
∥T2x1(t) – T2x2(t)

∥
∥

≤ 1
�(α′)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α′–1∥∥g
(
ξ , x1(ξ ), HDu,v;ψ

a+ x1(ξ )
)

– g
(
ξ , x2(ξ ), HDu,v;ψ

a+ x2(ξ )
)∥
∥dξ

+
1

�(α′)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α′–1
∫ ξ

a

∥
∥G

(
t, τ , x1(τ ), x1

(
δ(τ )

))

– G
(
t, τ , x2(τ ), x2

(
δ(τ )

))∥
∥dτ dξ

≤ (ψ(b) – ψ(a))α′

�(α′ + 1)

∫ t

a

[
L3(ξ )

∥
∥x1(ξ ) – x2(ξ )

∥
∥

+ L4(ξ )
∥
∥HDu,v;ψ

a+ x1(ξ ) – HDu,v;ψ
a+ x2(ξ )

∥
∥
]

dξ

+
(ψ(b) – ψ(a))α′

�(α′ + 1)

∫ t

a

∫ ξ

a

[
L7(τ )

∥
∥x1(τ ) – x2(τ )

∥
∥

+ L8(τ )
∥
∥x1

(
δ(τ )

)
– x2

(
δ(τ )

)∥
∥
]

dτ dξ

≤ (ψ(b) – ψ(a))α′ ‖x1 – x2‖X
�(α′ + 1)

(b – a) max
t∈[a,b]

{
L3(t) + L4(t) + b(L7 + L8)(t)

}

≤ L‖x1 – x2‖X, L ∈ (0, 1).

Similarly, it is not difficult to obtain the following embedding inequality

∥
∥H Du,v;ψ

a+ T2x1(t) – H Du,v;ψ
a+ T2x2(t)

∥
∥

≤ (ψ(b) – ψ(a))α′–u‖x1 – x2‖X
�(α′ – u + 1)

(b – a) max
t∈[a,b]

{
L3(t) + L4(t) + b(L7 + L8)(t)

}

≤ L‖x1 – x2‖X, L ∈ (0, 1).

Hence, for all (x1, y1), (x2, y2) ∈X×X, we conclude that

∥
∥T(x1, y1) – T(x2, y2)

∥
∥
X×X

≤ L
∥
∥(x1, y1) – (x2, y2)

∥
∥
X×X

, L ∈ (0, 1),

which implies T is a contraction mapping. By Banach’s contraction mapping principle,
the operator T : X×X→X×X has a fixed point (x∗, y∗) ∈X×X that satisfies T(x∗, y∗) =
(x∗, y∗). In consequence, the problem (1.1) has a unique solution on [a, b]. The proof is
completed. �
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3.2 Stability
In this subsection, we will deal with Ulam–Hyers–Rassias stability, Ulam–Hyers stability,
and semi-Ulam–Hyers–Rassias stability on the infinite interval [a, b].

In order to achieve stability results, we list appropriate metrics d1(·) and d2(·) in Banach
spaceX×X. For any (x1, y1), (x2, y2) ∈ X×X, we denote the distance di((x1, y1), (x2, y2)), (i =
1, 2) as follows, respectively:

d1
(
(x1, y1), (x2, y2)

)
= inf

{
M ∈ [0,∞)

∣
∣
∥
∥x1(t) – x2(t)

∥
∥ ≤ M	(t),

∥
∥HDu,v;ψ

a+ x1(t) – HDu,v;ψ
a+ x2(t)

∥
∥ ≤ M	(t),

∥
∥y1(t) – y2(t)

∥
∥ ≤ M	(t),

∥
∥HDu,v;ψ

a+ y1(t) – HDu,v;ψ
a+ y2(t)

∥
∥ ≤ M	(t), t ∈ [a, b]

}
,

where M is a positive constant and 	(t) is a positive, nondecreasing continuous function,

d2
(
(x1, y1), (x2, y2)

)
= sup

{

M ∈ [0,∞)
∣
∣
∣
‖x1(t) – x2(t)‖


(t)
≤ M,

‖HDu,v;ψ
a+ x1(t) – HDu,v;ψ

a+ x2(t)‖

(t)

≤ M,
‖y1(t) – y2(t)‖


(t)
≤ M,

‖HDu,v;ψ
a+ y1(t) – H Du,v;ψ

a+ y2(t)‖

(t)

≤ M, t ∈ [a, b]
}

,

where 
(t) is a positive, nonincreasing continuous function on the finite interval [a, b]. In
a similar manner to [36] and references therein, we can ensure d1(·) and d2(·) are metrics
in Banach space X×X.

Theorem 3.2 Let (H1) and (H2) hold, 	 : [a, b] → (ω,� ) (ω,� > 0) is a positive, non-
decreasing continuous function. In addition, x, y : J → X are continuously differentiable
functions satisfying

∥
∥
∥
∥x(t) – Iα;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
F
(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥ ≤ Iα;ψ

a+ 	(t), (3.2)

∥
∥
∥
∥

HDu,v;ψ
a+ x(t) – Iα–u;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
F
(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα–u;ψ
a+ 	(t),

∥
∥
∥
∥y(t) – Iα′ ;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
G

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥ ≤ Iα′ ;ψ

a+ 	(t) (3.3)

and
∥
∥
∥
∥

HDu,v;ψ
a+ y(t) – Iα′–u;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
G

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′–u;ψ
a+ 	(t)

for all t ∈ J , then there exists a unique solution (x0, y0) ∈X such that inequalities

∥
∥x(t) – x0(t)

∥
∥ ≤ P

1 – L
	(t),
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∥
∥HDu,v;ψ

a+ x(t) – H Du,v;ψ
a+ x0(t)

∥
∥ ≤ P

1 – L
	(t),

∥
∥y(t) – y0(t)

∥
∥ ≤ P

1 – L
	(t)

and

∥
∥HDu,v;ψ

a+ y(t) – HDu,v;ψ
a+ y0(t)

∥
∥ ≤ P

1 – L
	(t)

hold, where L ∈ (0, 1). These inequalities imply that the system (1.1) has Ulam–Hyers–
Rassias stability.

Proof For any t ∈ J , we introduce an operator T : X×X →X×X as

Tx(t) = Iα;ψ
a+ f

(
t, x(t), HDu,v;ψ

a+ x(t)
)

+ Iα;ψ
a+

∫ t

a
K

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ .

For all (x1, y1), (x2, y2) ∈ X × X and t ∈ [a, b], it is easy to derive from conditions (H1),
(H2), and metric d1(·) that

∥
∥T1y1(t) – T1y2(t)

∥
∥

≤ M
�(α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1[L1(ξ )	(ξ ) + L2(ξ )	(ξ )
]

dξ

+
M

�(α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1
∫ ξ

a

[
L5(τ )	(τ ) + L6(τ )	

(
δ(τ )

)]
dτ dξ

≤ M	(t)
�(α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1
[

(L1 + L2)(ξ ) +
∫ ξ

a
(L5 + L6)(τ ) dτ

]

dξ

≤ LM	(t).

(3.4)

In a similar manner, for each t ∈ J , one can find that

∥
∥H Du,v;ψ

a+ T1y1(t) – HDu,v;ψ
a+ T1y2(t)

∥
∥

≤ M	(t)
�(α – u)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–u–1

×
[

(L1 + L2)(ξ ) +
∫ ξ

a
(L5 + L6)(τ ) dτ

]

dξ

≤ LM	(t).

(3.5)

Similarly, one can obtain

∥
∥T2x1(t) – T2x2(t)

∥
∥

≤ M	(t)
�(α′)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α′–1
[

(L3 + L4)(ξ ) +
∫ ξ

a
(L7 + L8)(τ ) dτ

]

dξ

≤ LM	(t), ∀t ∈ J .

(3.6)
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It follows from the definition of HDu,v;ψ
a+ and the conditions of this theorem that

∥
∥H Du,v;ψ

a+ T2x1(t) – H Du,v;ψ
a+ T2x2(t)

∥
∥

≤ M	(t)
�(α′ – u)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α′–u–1

×
[

(L3 + L4)(ξ ) +
∫ ξ

a
(L7 + L8)(τ ) dτ

]

dξ

≤ LM	(t), ∀t ∈ J .

(3.7)

From the definition of d1(·) and combining (3.4)–(3.7), we have

d1
(
T(x1, y1), T(x2, y2)

) ≤ ML = Ld1
(
(x1, y1), (x2, y2)

)
, L ∈ (0, 1).

Next, we show that d1(x, Tx) < ∞, so operator T has a fixed point. In fact, from (3.1),
(3.2), and (3.3), we obtain

∥
∥x(t) – T1y(t)

∥
∥ ≤ Iα;ψ

a+ 	(t) ≤ P(α)	(t), (3.8)
∥
∥HDu,v;ψ

a+ x(t) – H Du,v;ψ
a+ T1y(t)

∥
∥ ≤ Iα–u;ψ

a+ 	(t) ≤ P(α – u)	(t), (3.9)
∥
∥y(t) – T2x(t)

∥
∥ ≤ Iα′ ;ψ

a+ 	(t) ≤ P
(
α′)	(t), (3.10)

∥
∥HDu,v;ψ

a+ y(t) – HDu,v;ψ
a+ T2x(t)

∥
∥ ≤ Iα′–u;φ

a+ ψ(t) ≤ P
(
α′ – u

)
	(t) (3.11)

for all t ∈ J . Based on the above results, we have

d1
(
(x, y), T(x, y)

) ≤ P < ∞,

where P = min{P(α), P(α – u), P(α′), P(α′ – u)}. Hence, it follows by items (1) and (2) of
Theorem 2.1 that there exists a unique fixed point (x0, y0) such that T(x0, y0) = (x0, y0).
According to item (3) of Theorem 2.1, we can obtain

d1
(
(x, y), (x0, y0)

) ≤ 1
1 – L

d1
(
(x, y), T(x, y)

) ≤ P
1 – L

, L ∈ (0, 1).

Based on the above facts, we conclude the system (1.1) has Ulam–Hyers–Rassias stabil-
ity and the proof is completed. �

Remark 3.1 (Ulam–Hyers stability) Assume a positive, nondecreasing continuous func-
tion 	(t) = 1 in Theorem 3.2, then the fractional integrodifferential equation (1.1) has
Ulam–Hyers stability.

In the following theorem, we will show that the solution of system (1.1) has semi-Ulam–
Hyers–Rassias stability.

Theorem 3.3 Assume that (H1) and (H2) hold and 	(t) is a positive, nonincreasing contin-
uous function. Moreover, for t ∈ J , continuously differentiable functions x, y : J →X satisfy

∥
∥
∥
∥x(t) – Iα;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
F
(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥ ≤ Iα;ψ

a+ θ , (3.12)
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∥
∥
∥
∥

H Du,v;ψ
a+ x(t) – Iα–u;ψ

a+

[

f
(
t, y(t), HDu,v;ψ

a+ y(t)
)

+
∫ t

a
F
(
t, τ , y(τ ), y

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα–u;ψ
a+ θ ,

(3.13)

∥
∥
∥
∥y(t) – Iα′ ;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
G

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥ ≤ Iα′ ;ψ

a+ θ , (3.14)

∥
∥
∥
∥

H Du,v;ψ
a+ y(t) – Iα′–u;ψ

a+

[

g
(
t, x(t), HDu,v;ψ

a+ x(t)
)

+
∫ t

a
G

(
t, τ , x(τ ), x

(
δ(τ )

))
dτ

]∥
∥
∥
∥

≤ Iα′–u;ψ
a+ θ .

(3.15)

Then, for any t ∈ J , there exists a unique solution (x0, y0) ∈X such that

∥
∥x(t) – x0(t)

∥
∥ ≤ θPM

1 – L
	(t),

∥
∥HDu,v;ψ

a+ x(t) – H Du,v;ψ
a+ x0(t)

∥
∥ ≤ θPM

1 – L
	(t),

∥
∥y(t) – y0(t)

∥
∥ ≤ θPM

1 – L
	(t),

∥
∥HDu,v;ψ

a+ y(t) – HDu,v;ψ
a+ y0(t)

∥
∥ ≤ θPM

1 – L
	(t).

Proof Similar to the proof of Theorem 3.2, for all (x1, y1), (x2, y2) ∈ X × X and t ∈ [a, b],
one can derive from conditions (H1), (H2), and metric d2(·) that

d2
(
T(x1, y1), T(x2, y2)

) ≤ Ld2
(
(x1, y1), (x2, y2)

)
, L ∈ (0, 1).

From the definition of d2(·) and combining (3.12)–(3.15), we have

d2
(
(x, y), T(x, y)

) ≤ θPM < ∞.

It follows from items (1) and (2) of Theorem 2.1 that there exists a unique fixed point
(x0, y0) such that T(x0, y0) = (x0, y0). According to item (3) of Theorem 2.1, one can obtain

d2
(
(x, y), (x0, y0)

) ≤ 1
1 – L

d2
(
(x, y), T(x, y)

) ≤ θPM
1 – L

, L ∈ (0, 1),

so its conclusion implies that the solution of system (1.1) has semi-Ulam–Hyers–Rassias
stability. This finishes the proof. �
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